Second International Workshop on IFSs

Banska Bystrica, Slovakia, 3 Dec. 2006
NIFS 12 (2006), 4, 9-11

n-EXTRACTION OPERATION OVER INTUITIONISTIC FUZZY SETS

Beloslav Riećan ${ }^{1}$ and Krassimir T. Atanassov ${ }^{2}$

${ }^{1}$ Faculty of Natural Sciences, Matej Bel University, Department of Mathematics Tajovského 40, 97401 Banská Bystrica, Slovakia
and
Mathematical Institute of Slovak Acad. of Sciences, Štefá nikova 49, SK-81473 Bratislava e-mail: riecan@mat.savba.sk, riecan@fpv.umb.sk

${ }^{2}$ CLBME - Bulgarian Academy of Sciences, Sofia-1113, P.O.Box 12
 e-mail: krat@bas.bg

Let a set E be fixed. The Intuitionistic Fuzzy Set (IFS) A in E is defined by (see, e.g., [1]):

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\},
$$

where functions $\mu_{A}: E \rightarrow[0,1]$ and $\nu_{A}: E \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$
0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1
$$

Let for every $x \in E$:

$$
\pi_{A}(x)=1-\mu_{A}(x)-\nu_{A}(x) .
$$

Therefore, function π determines the degree of uncertainty.
Let us define the empty IFS, the totally uncertain IFS, and the unit IFS (see [1]) by:

$$
\begin{aligned}
O^{*} & =\{\langle x, 0,1\rangle \mid x \in E\}, \\
U^{*} & =\{\langle x, 0,0\rangle \mid x \in E\}, \\
E^{*} & =\{\langle x, 1,0\rangle \mid x \in E\} .
\end{aligned}
$$

Different relations and operations are introduced over the IFSs. Some of them are the following

$$
\begin{aligned}
& A \subset B \quad \text { iff } \quad(\forall x \in E)\left(\mu_{A}(x) \leq \mu_{B}(x) \& \nu_{A}(x) \geq \nu_{B}(x)\right), \\
& A=B \quad \text { iff } \quad(\forall x \in E)\left(\mu_{A}(x)=\mu_{B}(x) \& \nu_{A}(x)=\nu_{B}(x)\right), \\
& \bar{A} \quad=\quad\left\{\left\langle x, \nu_{A}(x), \mu_{A}(x)\right\rangle \mid x \in E\right\}, \\
& A \cap B= \\
& A \cup B=\left\{\left\langle x, \min \left(\mu_{A}(x), \mu_{B}(x)\right), \max \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}, \\
& A+B=\left\{\left\langle x, \max \left(\mu_{A}(x), \mu_{B}(x)\right), \min \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}, \\
& A \cdot B \quad\left\{\left\langle x, \mu_{A}(x)+\mu_{B}(x)-\mu_{A}(x) \cdot \mu_{B}(x), \nu_{A}(x) \cdot \nu_{B}(x)\right\rangle \mid x \in E\right\}, \\
& \left\{\left\langle x, \mu_{A}(x) \cdot \mu_{B}(x), \nu_{A}(x)+\nu_{B}(x)-\nu_{A}(x) \cdot \nu_{B}(x)\right\rangle \mid x \in E\right\} .
\end{aligned}
$$

In [2] Supriya Kumar De, Ranjit Biswas and Akhil Ranjan Roy introduced two operations which are related to the last two above ones:

$$
\begin{aligned}
n . A & =\left\{\left\langle x, 1-\left(1-\mu_{A}(x)\right)^{n},\left(\nu_{A}(x)\right)^{n}\right\rangle \mid x \in E\right\}, \\
A^{n} & =\left\{\left\langle x,\left(\mu_{A}(x)\right)^{n}, 1-\left(1-\nu_{A}(x)\right)^{n}\right\rangle \mid x \in E\right\},
\end{aligned}
$$

where n is a natural number.
In this short remark we introduce a new operator, defined over IFSs. It is an analogous of operations "extraction" and has the form for every IFS A and for every natural number $n \geq 1$:

$$
\sqrt[n]{A}=\left\{\left\langle\sqrt[n]{\mu_{A}(x)}, 1-\sqrt[n]{1-\nu_{A}(x)},\right\rangle \mid x \in E\right\}
$$

First, we must check that in a result of the operation we obtain an IFS. Really, for given IFS A, for each $x \in E$, and for each $n \geq 1$:

$$
\sqrt[n]{\mu_{A}(x)}+1-\sqrt[n]{1-\nu_{A}(x)} \leq 1
$$

because from $\mu_{A}(x) \leq 1-\nu_{A}(x)$ it follows that

$$
\sqrt[n]{\mu_{A}(x)} \leq \sqrt[n]{1-\nu_{A}(x)}
$$

Obviously, for every natural number $n \geq 1$:

$$
\begin{aligned}
& \sqrt[n]{O^{*}}=O^{*} \\
& \sqrt[n]{U^{*}}=U^{*} \\
& \sqrt[n]{E^{*}}=E^{*}
\end{aligned}
$$

By similar to the above way we can prove the following assertions.
Theorem 1: For every IFS A and for every natural number $n \geq 1$:
(a) $\sqrt[n]{A^{n}}=A$,
(b) $(\sqrt[n]{A})^{n}=A$.

Theorem 2: For every IFS A and for every two natural numbers $m, n \geq 1$:

$$
\sqrt[m]{\sqrt[n]{A}}=\sqrt[m n]{A}=\sqrt[n]{\sqrt[m]{A}}
$$

Theorem 3: For every two IFSs A and B and for every natural number $n \geq 1$:
(a) $\sqrt[n]{A \cap B}=\sqrt[n]{A} \cap \sqrt[n]{B}$,
(b) $\sqrt[n]{A \cup B}=\sqrt[n]{A} \cup \sqrt[n]{B}$.

Proof: We shall prove (a) and (b) is proved analogically.

$$
\begin{aligned}
& \sqrt[n]{A \cap B}=\sqrt[n]{\left\{\left\langle x, \min \left(\mu_{A}(x), \mu_{B}(x)\right), \max \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}} \\
= & \left\{\left\langle x, \sqrt[n]{\min \left(\mu_{A}(x), \mu_{B}(x)\right)}, 1-\sqrt[n]{\left.1-\max \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle}\right\rangle \mid x \in E\right\} \\
= & \left\{\left\langle x, \min \left(\sqrt[n]{\mu_{A}(x)}, \sqrt[n]{\mu_{B}(x)}\right), 1-\sqrt[n]{\min \left(1-\nu_{A}(x), 1-\nu_{B}(x)\right)}\right\rangle \mid x \in E\right\} .
\end{aligned}
$$

Let for arbitrary $x \in E: \nu_{A}(x) \leq \nu_{B}(x)$. Then

$$
\sqrt[n]{\min \left(1-\nu_{A}(x), 1-\nu_{B}(x)\right)}=\sqrt[n]{1-\nu_{B}(x)}=\min \left(\sqrt[n]{1-\nu_{A}(x)}, \sqrt[n]{1-\nu_{B}(x)}\right)
$$

The same equality will be valid for $\nu_{A}(x) \geq \nu_{B}(x)$. Therefore

$$
\begin{gathered}
\sqrt[n]{A \cap B}=\left\{\left\langle x, \min \left(\sqrt[n]{\mu_{A}(x)}, \sqrt[n]{\mu_{B}(x)}\right), 1-\min \left(\sqrt[n]{1-\nu_{A}(x)}, \sqrt[n]{1-\nu_{B}(x)}\right)\right\rangle \mid x \in E\right\} \\
=\left\{\left\langle x, \min \left(\sqrt[n]{\mu_{A}(x)}, \sqrt[n]{\mu_{B}(x)}\right), \max \left(1-\sqrt[n]{1-\nu_{A}(x)}, 1-\sqrt[n]{1-\nu_{B}(x)}\right)\right\rangle \mid x \in E\right\} \\
=\left\{\left\langle x, \sqrt[n]{\mu_{A}(x)}, 1-\sqrt[n]{1-\nu_{A}(x)}\right\rangle \mid x \in E\right\} \cap\left\{\left\langle x, \sqrt[n]{\mu_{B}(x)}, 1-\sqrt[n]{1-\nu_{B}(x)}\right\rangle \mid x \in E\right\} \\
=\sqrt[n]{A} \cap \sqrt[n]{B} .
\end{gathered}
$$

Theorem 4: For every two IFSs A and B and for every natural number $n \geq 1$:
(a) $\sqrt[n]{A+B} \supset \sqrt[n]{A}+\sqrt[n]{B}$,
(b) $\sqrt[n]{A \cdot B} \subset \sqrt[n]{A} \cdot \sqrt[n]{B}$.

The simplest modal operators defined over IFSs (see, e.g., [1]) are:

$$
\begin{aligned}
& \square A=\left\{\left\langle x, \mu_{A}(x), 1-\mu_{A}(x)\right\rangle \mid x \in E\right\} ; \\
& \diamond A=\left\{\left\langle x, 1-\nu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\} .
\end{aligned}
$$

They are analogous of the modal logic operators "necessity" and "possibility". For them it is valid
Theorem 5: For every IFS A and for every natural number $n \geq 1$:
(a) $\square \sqrt[n]{A}=\sqrt[n]{\square A}$,
(b) $\diamond \sqrt[n]{A}=\sqrt[n]{\diamond A}$.

In IFSs theory some level operators are defined. Two of them are:

$$
\begin{aligned}
& P_{\alpha, \beta}(A)=\left\{\left\langle x, \max \left(\alpha, \mu_{A}(x)\right), \min \left(\beta, \nu_{A}(x)\right)\right\rangle \mid x \in E\right\}, \\
& Q_{\alpha, \beta}(A)=\left\{\left\langle x, \min \left(\alpha, \mu_{A}(x)\right), \max \left(\beta, \nu_{A}(x)\right)\right\rangle \mid x \in E\right\},
\end{aligned}
$$

where $\alpha+\beta \leq 1$. For them it is valid
Theorem 6: For every IFS A, for every natural number $n \geq 1$ and for every $\alpha, \beta \in[0,1]$, so that $\alpha+\beta \leq 1$:
(a) $P_{\alpha, \beta}(\sqrt[n]{A})=\sqrt[n]{P_{\alpha^{n}, 1-(1-\beta)^{n}} A}$,
(b) $Q_{\alpha, \beta}(\sqrt[n]{A})=\sqrt[n]{Q_{\alpha^{n}, 1-(1-\beta)^{n}} A}$.

References

[1] K. Atanassov, Intuitionistic Fuzzy Sets, Springer Physica-Verlag, Berlin, 1999.
[2] S.K. De, R. Biswas and A. R. Roy, Some operations on intuitionistic fuzzy sets, Fuzzy sets and Systems, Vol. 114, 2000, No. 4, 477-484.

