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1 Introduction 

In this short remark a comparison between two of the extensions of the Zadeh’s fuzzy sets 
[1, 2] is given. The first extension of the concept of a fuzzy set is the L-fuzzy set [3] of J. 
Goguen. Some years later Z. Pawlak introduced the concept of rough set [4]. The next two ex-
tensions are interval type-2 fuzzy sets [5, 6] and intuitionistic fuzzy sets [7,8]. The first two au-
thors work intensively on the first of the later concepts (see, e.g. [9,10]), while the second two 
– on the second one of these fuzzy set extensions (see [11,12,13]). The present remark is the 
first attempt to discuss both concepts in parallel. 
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2 Main results 

First, following [B4], we mention that if for a type-1 membership function, as in Fig. 1, we 
blur it to the left and to the right, as illustrated in Fig. 2, then a type-2 membership function is 
obtained. In this case, for a specific value 'x , the membership function ( 'u ), takes on different 
values, which are not all weighted the same, so we can assign an amplitude distribution to all 
of those points.  

 
Figure 1. Type-1 membership function 

 

 
Figure 2. Blurred type-1 membership function  

A type-2 fuzzy set A~ , is characterized by the membership function [15, 16]: 

 ( ){ }( , ), ( , ) | , [0,1]xAA x u x u x X u Jμ= ∈ ∈ ⊆�
�  (1) 
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in which 1),(0 ~ ≤≤ uxAμ .  Another expression for A~  is 

 ),/(),(~
~ uxuxA

Xx Ju A
x

∫ ∫∈ ∈
= μ  (2) 

for [0,  1]xJ ⊆ , where ∫ ∫ denotes the union over all admissible input variables x and u.  For 

discrete universes of discourse ∫ is replaced by ,∑ [17].  

In the same case, the intuitionistic fuzzy set A~ , is characterized by the membership and 
non-membership function and has the form: 

 
( ){ }( , ), ( , ), ( , ) | , [0,1]xA AA x u x u x u x X u Jμ ν= ∈ ∈ ⊆� �

�  (3)
 

in which 0 ( , ) 1A x uμ≤ ≤� , 0 ( , ) 1A x uν≤ ≤� , 0 ( , ) ( , ) 1A Ax u x uμ ν≤ + ≤� � .  The analogous of the 

second expression (2), now is: 

 
( , ) ( , ) / ( , )

x
A Ax X u J

A x u x u x uμ ν
∈ ∈

= ×∫ ∫ � �
�    (4)

 

for [0,  1],xJ ⊆  where, as above, ∫ ∫ denotes the union over all admissible input variables x 

and u.  For discrete universes of discourse ∫ is replaced by .∑  

Let X be a universe, : X [0,  1]g →  be an interval function and ( )g
x X

X x g x
∈

= ×∪ .  

Let us consider the IFS  
* , (z),{ ( ) zz | }g gA AA z Xμ ν= 〈 〉 ∈� � . 

Then any type-2 fuzzy set A~  can be represented by IFS *
gA  with a suitable choice of g. 

In fact [0,  1]xJ ⊆  represents the primary membership of x, and ),(~ uxAμ is a type-1 fuzzy 
set known as the secondary set.  Hence, a type-2 membership grade can be any subset in [0, 1], 
i.e. the primary membership. Corresponding to each primary membership, there is a secondary 
membership (which can also be in [0, 1]) that defines the possibilities for the primary member-
ship. Uncertainty is represented by a region, which is called the footprint of uncertainty (FOU). 

When ( , ) 1,A x uμ =�  for every [0,  1]xu J∈ ⊆  we have an interval type-2 membership func-

tion, as shown in Figure 3. The uniform shading for the FOU represents the entire interval 
type-2 fuzzy set and it can be described in terms of an upper membership function )(~ xAμ and a 

lower membership function )(~ xAμ .  
Let us consider IFS  

* { , ( ), ( ) | }A AA x x x x Xμ ν= 〈 〉 ∈ , 

where ) )( (
AA x xμμ = �  and  ( ) 1 ( )A A xxν μ= − � . 

Then the thickness of interval type-2 membership function the second axis in each point x 
will be described by the function  

( ) 1 ( ) ( )A A Ax x xπ μ ν= − − . 
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If Aμ and Aν  are Riemann integrable functions on [a, b], where supp( ) [ , ]A a bμ =� , then the 

area of the thickness of interval type-2 membership function is equal to  ( )
b

a
A x dxπ∫ . 

In the general case when we have a monotonously measurable space ( , ,m)X F  and ( )A xπ  
is measurable, then the nearest picture of the area of the thickness of interval type-2 member-
ship function is given by Choquet integral 

( ) A
X

C dmπ∫ . 

 
Figure 3. Interval type-2 membership function 

 
Figure 4. Intuitionistic fuzzy interpretation 

In IFS theory there are different geometrical interpretations (see, e.g. [11, 12]). Another one 
is shown on Fig. 4, where the interval type-2 membership function from Fig. 3 now has an essen-
tially different form. If we like to observe the development of the process of constructing the val-
ues of interval type-2 membership function in time, we can use a temporal IFS (see, e.g., [12]). 

〈0; 0〉 〈1; 0〉 

〈0; 1〉 
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In conclusion, we mention that in future a detail comparison between both concepts will be 
prepared and relationships between the operations, relations and especially the operators will 
be compared. 
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