
Issues in IFSs and GNs, Vol. 12, 2015/2016, 93–113

Generalized Net API

Nora Angelova1 and Dimitar Dimitrov2

1 Dept. of Bioinformatics and Mathematical Modelling
Institute of Biophysics and Biomedical Engineering

Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria

e-mail: metida.su@gmail.com
2 Faculty of Mathematics and Informatics, Sofia University

5 J. Boucher Str., Sofia-1126, Bulgaria
e-mail: mitex@gbg.bg

Abstract: Generalized Net Application Program Interface (GN API) is de-
fined. The Generalized nets can be used as part of bigger algorithms and prod-
ucts for optimization of the parallel processes, data security etc. Therefore, the
GN models must be able to create and update only by code (JAVA) and the re-
sults of each step of the algorithm execution should be available independently
of the Generalized Net Integrated Development Environment (GN IDE). GN
API implements these features. The paper will summarize the Generalized
Nets theory, GN IDE functionality and will describe GN API functions, ideas
and realization. Finally, the paper will show an example of use of the GN API.
Keywords and prhrases: Generalized nets, GN IDE, Java, GN API.
2000 Mathematics Subject Classification: 68Q85.

1 Generalized Nets

Generalized Nets (GNs) are extensions of Petri Nets [1,2]. The concept of GN
was introduced in year of 1982. They are defined in a way that is principally
different from the ways of defining the other types of Petri nets. In this section
we give the formal definition of a Generalized Nets with priorities depend on
the time (GNPDT). The main part of Generalized Net is called transition.

93

Formally, every transition is described by a seven-tuple:

Z = 〈L′, L′′, t1, t2, r,M,�〉,

where:
(a) L′ and L′′ are finite, non-empty sets of places (the transition’s input and

output places, respectively) (b) t1 is the current time-moment of the transition’s
firing;

(c) t2 is the current value of the duration of its active state;
(d) r is the transition’s condition determining which tokens will transfer

from the transition’s inputs to its outputs. Parameter r has the form of an IM:

r =

l′′1 . . . l
′′
j . . . l

′′
n

l′1
... ri,j
l′i (ri,j − predicate)
... (1 ≤ i ≤ m, 1 ≤ j ≤ n)
l′m

;

where ri,j is the predicate which expresses the condition for transfer from the
i-th input place to the j-th output place. When ri,j has truth-value “true”, then
a token from the i-th input place can be transferred to the j-th output place;
otherwise, this is impossible;

(e) M is an IM of the capacities of transition’s arcs:

M =

l′′1 . . . l
′′
j . . . l

′′
n

l′1
... mi,j

l′i (mi,j ≥ 0−− natural number or∞)
... (1 ≤ i ≤ m, 1 ≤ j ≤ n)
l′m

;

(f) � is called transition type and it is an object having a form similar
to a Boolean expression. It may contain as variables the symbols that serve
as labels for transition’s input places, and it is an expression constructed of
variables and the Boolean connectives ∧ and ∨ determining the following con-

94

ditions:

∧(li1 , li2 , . . . , liu) −− every place li1 , li2 , . . . , liu must contain at least
one token,

∨(li1 , li2 , . . . , liu) −− there must be at least one token in the set of places
li1 , li2 , . . . , liu , where {li1 , li2 , . . . , liu} ⊂ L′.

When the value of a type (calculated as a Boolean expression) is “true”,
the transition can become active, otherwise it cannot.

The Generalized Net is called the ordered four-tuple

E = 〈〈A, πA, πL, c, f, θ1, θ2〉, 〈K,πK , θK〉, 〈T, t0, t∗〉, 〈X,Φ, b〉〉,

where
(a) A is a set of transitions (see above);
(b) πA is a function giving the priorities of the transitions, i.e., πA : A →

N ;
(c) πL is a function giving the priorities of the places, i.e., πL : L → N ,

where
L = pr1A ∪ pr2A

and obviously, L is the set of all GN-places;
(d) c is a function giving the capacities of the places, i.e., c : L→ N ;
(e) f is a function that calculates the truth values of the predicates of the

transition’s conditions;
(f) θ1 is a function giving the next time-moment, for which a given transi-

tion Z can be activated, i.e., θ1(t) = t′, where pr3Z = t, t′ ∈ [T, T + t∗] and
t ≤ t′; the value of this function is calculated at the moment when the transi-
tion terminates its functioning. Here and below priX is the i-th projection of
the n-dimensional set X .

(g) θ2 is a function giving the duration of the active state of a given transi-
tion Z, i.e., θ2(t) = t′, where pr4Z = t ∈ [T, T + t∗] and t′ ≥ 0; the value of
this function is calculated at the moment when the transition starts functioning;

(h) K is the set of the GN’s tokens. In some cases, it is convenient to
consider this set in the form

K =
⋃
l∈QI

Kl,

where Kl is the set of tokens which enter the net from place l, and QI is the
set of all input places of the net;

95

(i) πK : K → N .
(j) θK is a function giving the time-moment when a given token can enter

the net, i.e., θK(α) = t, where α ∈ K and t ∈ [T, T + t∗];
(k) T is the time-moment when the GN starts functioning; this moment is

determined with respect to a fixed (global) time-scale;
(l) t0 is an elementary time-step, related to the fixed (global) time-scale;
(m) t∗ is the duration of the GN functioning;
(n)X is a function which assigns initial characteristics to every token when

it enters input place of the net;
(o) Φ is a characteristic function that assigns new characteristics to every

token when it makes a transfer from an input to an output place of a given
transition;

(p) b is a function giving the maximum number of characteristics witch a
given token can receive, i.e., b : K → N .

2 GN IDE

Environment (GN IDE) is a software tool, which integrated GN simulation
server – GNTicker. GN IDE assists the user through the whole process of
modelling and simulation with GNs. The software tool allows users to load
and save GN XML files, to create and edit GN models, to visualize them and to
run, pause and resume simulation. GN IDE was originally written by Dimitar
Dimitrov and has been developed further by Nora Angelova [3–6]. A GN
model includes description of it’s transitions, places, arcs, tokens, matrices
(predicates), characteristic functions and data.

The Software can run on any platform with Java 71 Runtime Environment
(JRE) installed. GN IDE is written in Java, hence, it is platform independent.
It connects to a simulation core via the Growl Network Transport Protocol
(GNTP) protocol. The GNTP, is a protocol to allow two-way communication
between applications and centralized notification systems and to allow two-
way communication between two machines running centralized notification
systems for notification forwarding purposes.

The newest version of GN IDE implements support for JavaScript as the
language of characteristic and predicates functions. For this purpose is de-
veloped EmbededSimulation class. It implements the algorithm for transition
functioning when merging of tokens is permitted which support JavaScript
predicates.

96

3 GN API Builder and GN API

The Java API requires execution of Java predicates. For this purpose the Em-
bededSImulation class is extended and the algorithm supports this feature. The
concept of the GN API is to implement the ability to create and modify GN
models, to create and control the simulation and to receive results back in con-
venient form only with Java code.

All of these features are available in two packages – GN API Builder and
GN API.

GN API Builder contains one class GeneralizedNetBuilder.
GeneralizedNetBuilder is a class that implements all functions for creat-

ing and updating a GN model. As we mentioned above tha basic steps of
generalized net implementation is adding transitions, places, tokens and their
properties.

GeneralizedNetBuilder implements TransitionBuilder, PlaceBuilder and
TokenBuilder classes which have an object property of the type (Transition,
Place, Token) and methods for add and set their properties. GeneralizedNet-
Builder includes the following public features:

• Create a GN – GeneralizedNetBuilder(String name). GeneralizedNet-
Builder is constructor with a parameter of String type. It creates an
object of type GeneralizedNet by name.

– set duration of the GN functioning – GeneralizedNetBuilder set-
GnTime(int time). setGnTime is a setter method with a parameter
of int type. It sets gloabal GN time.

– set start simulation time – GeneralizedNetBuilder setGnTimeStart
(int time). setGnTimeStart is a setter method with a parameter of
int type. It sets time moment (related to the gloabal time scale)
when the GN start functioning.

– set elementary time-step – GeneralizedNetBuilder setGnTimeStep
(int timeStep). setGnTimeStep is a setter method with a parameter
of int type. It sets an elementary time-step, related to the gloabal
time scale.

– set token splitting property – GeneralizedNetBuilder setTokenSplit-
tingEnabled(boolean enabled). setTokenSplittingEnabled is a set-
ter method with a parameter of boolean type which enables or dis-
ables token splitting during the simulation. Each setter method

97

returns an GeneralizedNetBuilder object, allowing the calls to be
chained together in a single statement without requiring variables
to store the intermediate results.

– add transtion method – TransitionBuilder addTransition(String id).
addTransition is method with parameter of String type. It creates a
transiton by an id, add it to GN model, creates and returns an ob-
ject of type TransitionBuilder. TransitionBuilder is a class part of
GeneralizedNetBuilder that implements all methods of transition
setup.

• Create transitionBuilder – TransitionBuilder(Transition transition). Tran-
sitionBuilder is contructor with parameter of Transition type. It creates
an TransitionBuilder object by an transition object.

– set transition start time – TransitionBuilder setTransitionStartTime
(int startTime). setTransitionStartTime is a setter method with a
parameter of int type. It sets the current time-moment of the tran-
sition’s firing.

– set transition life time – TransitionBuilder setLifeTime(IntegerInf
lifeTime). setLifeTime is a setter method with a parameter of In-
tegerInf type. IntegerInf is class that represents a natural number
and allows the value “positive infinity”. The method sets current
value of the duration of transition active state.

– set transition priority – TransitionBuilder setTransitionPriority(int
priority). setTransitionPriority is a setter method with a parameter
of int type. It sets current transition priority during the simulation.

– set capacity – TransitionBuilder setCapacity(String fromId, String
toId, IntegerInf value). setCapacity is a setter method with 3 pa-
rameters – two of String type (id of an input place and id of an
output place) and one of IntegerInf type(capacity value). Method
sets the capacity of transition arc from an input place to an output
place. The capacity value can be “positive infinity”.

– set transition predicate – TransitionBuilder setPredicate(String fro-
mId, String toId, JavaFunction predicate). setPredicate is a setter
method with 3 parameters – two of String type(id of an input place
and id of an output place) and on of JavaFunction type (predicate).

98

Method sets the predicate which expresses the condition for trans-
fer from the inplut place with id fromId to the one output place
with id toId.

– set transition type – TransitionBuilder setType(String type). set-
Type is a setter method with a parameter of String type. It sets
transition’s type described above.

Each TransitionBuilder setter method returns an TransitionBuilder ob-
ject, allowing the calls to be chained together in a single statement with-
out requiring variables to store the intermediate results.

– add transition input place – PlaceBuilder addInput(String id). addIn-
put is method with a parameter of String type. It creates a place by
an id, add it to transition input places list, creates and returns an
object of type PlaceBuilder. PlaceBuilder is a class, part of Gener-
alziedNetBuilder that implements all methods of place setup.

– add transition output place – PlaceBuilder addOutput(String id).
addOutput is method with a parameter of String type. It creates a
place, add it to transition output places list, creates and returns an
object of type PlaceBuilder.

• Create placeBuilder object – PlaceBuilder(Place place, Transition last-
Transition). PlaceBuilder is constructor with 2 parameters – one of Place
type and one of Transition type. It creates an PlaceBuilder object for an
place and place transition.

– set place capacity – PlaceBuilder setPlaceCapacity(IntegerInf ca-
pacity). setPlaceCapacity is a setter method with a parameter of
IntegerInf type. It sets the place capacity. The capacity value can
be – positive infinity”.

– set place priority – PlaceBuilder setPlacePriority(int priority). set-
PlacePriority is a setter method with a parameter of int type. It sets
current place priority during the simulation.

– set place merge rule – PlaceBuilder setMergeRule(JavaFunction
function). setMergeRule is a setter method with a parameter of
JavaFunction type. It sets a mergeRule which enables or disables
tokens merge in the place during the simulation.

99

– set place merge boolean value – PlaceBuilder setMergeTokens
(boolean merge). setMergeTokens is a setter method with a pa-
rameter of boolean type which enables or disables tokens merge in
the place during the simulation.

– set place charachteristic function – PlaceBuilder setCharFunction
(JavaFunction charFunction). setCharFunction is a setter method
with a parameter of JavaFunction type. It sets a characteristic func-
tion that assigns new characteristics to each token when it enters in
the place.

Each PlaceBuilder setter method returns an PlaceBuilder object, allow-
ing the calls to be chained together in a single statement without requir-
ing variables to store the intermediate results.

– add token – TokenBuilder addToken(String id). addToken is a
method with a parameter of String type. It creates a token by an
id and current place, add it to the model, creates and returns an
object of type TokenBuilder. TokenBuilder is a class, part of Gen-
eralizedNetBuilder that implements all methods of token setup.

– add periodic token generator – TokenBuilder addPeriodicToken-
Generator(String id, int period). addPeriodicTokenGenerator is a
method with two parameters of String and int type. It creates a
token generator by an id and time period that generates a token for
this place for each period.

– add random token generator – TokenBuilder addRandomToken-
Generator(String id). addRandomTokenGenerator is a method with
a parameter of String type. It create token generator that creates
and token for this place randomly.

– add conditional token generator – TokenBuilder addConditional-
TokenGenerator(String id, JavaFunction condition). addCondition-
alTokenGenerator is a method with two parameters of String and
JavaFunction type. It creates token generator that generate token
when condition is true.

• Create tokenBuilder object – TokenBuilder(Token token, Place lastPlace,
Transition lastTransition). Token Builder is constructor with 3 parame-
ters – one of Token type, one of Place type and one of Transition type.

100

It creates an TokenBuilder object for an token, token place and token
transition.

– set token priority – TokenBuilder setTokenPriority(int priority).
setTokenPriority is a setter method with a parameter of int type.
It sets current token priority during the simulation.

– set token entering time – TokenBuilder setTokenEnteringTime(int
enteringTime). setTokenEnteringTime is a setter method with a
parameter of Int type. It sets a time-moment when a given token
can enter into the GN model.

– set token leaving time – TokenBuilder setTokenLeavingTime
(IntegerInf leavingTime). setTokenLeavingTime is a setter method
with a parameter of IntegerInf type. It sets a time-moment when a
given token can leave the GN model.

– add token characteristic – TokenBuilder addCharacteristic(String
name, String type, int history). addCharacteristic is method with 3
parameters – two of String type and one of int type. The method
add token characteristic with name, type and history.

– add token characteristic with value – TokenBuilder addCharacter-
istic(String name, String type, int history, String value). addChar-
acteristic is method with 4 parameters – three of String type and
one of int type. The method add token characteristic with name,
type and history and set its value with string.

Each TokenBuilder method returns an TokenBuilder object, allowing the
calls to be chained together in a single statement without requiring vari-
ables to store the intermediate results.

Once the GN is completed, it should be build and prepare to start. Gen-
eralizedNetBuilder include JavaGeneralizedNet build() method witch finally
creates an JavaGeneralizedNet object from an GeneralizedNetBuilder.

The GN API implements the ability to create and control the simulation
and to receive results back in convenient form. GN API includes the following
classes:

101

• GeneralizedNetFacade – GeneralizedNetFacade is a class that imple-
ments start simulation functionality. It works only with GN objects of
JavaGeneralizedNet type created from the GeneralizedNetBuilder. Gen-
eralizedNetFacade includes 2 methods for start simulation.

– start simulation – JavaSimulation startSimulation(JavaGeneralized-
Net gn). startSimulation method accepts one parameter of Java-
GeneralizedNet type and returns an object of JavaSimulation type.
The method creates a simulation events listener and calls startSim-
ulation method with two parameters.

– start simulation with events listener – JavaSimulation startSimu-
lation(JavaGeneralizedNet gn, SimulationEventsListener listener).
The method has 2 parameters – one of type JavaGeneralizedNet
type and one of type SimulationEventsListeners. It creates a sim-
ulation object, add observer, start simulation and return simulation
object.

• JavaSimulation – JavaSimulation is a class that extends EmbededSim-
ulation class [3]. JavaSimulation class implements the ability to cre-
ate and control the simulation. It has one constuctor – JavaSimula-
tion(GeneralizedNet gn) with a parameter of GeneralizedNet type. The
simulation is carried out in steps. Steps are initiated by void step(int
count) method. It has a parameter of type int that says how many steps
of the simulation to be released.

• SimulationEventsListener – SimulationEventsListener is a class that im-
plements simaltion events observer.

– create SimulationEventsListener – SimulationEventsListener().
SimulationEventsListener is default constructor that creates an ob-
server with an update method. The update method handles 3 type
of events – JavaEnterEvent, JavaMoveEvent and JavaLeaveEvent.

– get events observer – BaseObserver getObserver(). getObserver is
a method with no parameters that returns the events observer.

• JavaGnEvent – JavaGnEvent is a class that implements base event func-
tionality. It has an protected GnEvent object and two methods.

102

– get event token – JavaToken getToken(). getToken is a getter method
with no parameters which returns token associated with the event.

– get event characteristics – List <JavaCharacteristic >getChars().
getChars is a getter method with no parameters which returns a list
with javaCharacteristics associated with the event.

• JavaEnterEvent – JavaEnterEvent is a class that implements place en-
tering event. The event is fire when a token enters the GN in a place.
JavaEnterEvent class extends JavaGNEvent class described above re-
tains all methods of it and add a constructor and getPlace method.

– create JavaEnterEvent – JavaEnterEvent(EnterEvent event).Java-
EnterEvent is a constructor with one parameter of EnterEvent type.
It creates an object of JavaEnterEvent type.

– get event place – JavaPlace getPlace(). getPlace is a getter method
with no parameters which returns a place where the token is enter-
ing during the simulation step.

• JavaLeaveEvent – JavaLeaveEvent is a class that implements place leav-
ing event. The event is fire when a token leave the GN from a place.
JavaLeaveEvent class extends JavaGNEvent class described above re-
tains all methods of it and add a constructor and getPlace method.

– create JavaLeaveEvent – JavaLeaveEvent(LeaveEvent event).Java-
LeaveEvent is a constructor with one parameter of LeaveEvent
type. It creates an object of JavaLeaveEvent type.

– get event place – JavaPlace getPlace(). getPlace is a getter method
with no parameters which returns a place where the token is leav-
ing the GN.

• JavaMoveEvent – JavaMoveEvent is a class that implements place mov-
ing event. The event is fire when a token move from one place to other.
JavaMoveEvent class extends JavaGNEvent class described above re-
tains all methods of it and add a constructor, getStartPlace and getEnd-
Place methods.

– create JavaMoveEvent – JavaMoveEvent(MoveEvent event). Java-
MoveEvent is a constructor with one parameter of MoveEvent type.
It creates an object of JavaMoveEvent type.

103

– get start event place – JavaPlace getStartPlace(). getStartPlace is a
getter method with no parameters which returns a place which the
token leaves during movement.

– get end event place – JavaPlace getEndPlace(). getEndPlace is a
getter method with no parameters which returns a place where the
token enters during movement.

GN API implements classes that allows to create Java objects from en-
gine objects and to get their properties. The API differs the following
objects – GN, transition, place, token, characteristic or function. We are
described all classes below.

• JavaGeneralizedNet – JavaGeneralizedNet is a class with one private
property of GeneralizedNet type. It implements constructor and getter
methods associated with the Java(API) GN model.

– create JavaGeneralizedNet object – JavaGeneralizedNet(Genera-
lizedNet gn). JavaGeneralizedNet is a constructor with one param-
eter of GeneralizedNet type. It creates an object of JavaGeneral-
izedNet type.

– get name – String getName()

– get current time – int getTime()

– get all transitions – List<JavaTransition>getTransitions()

– get transition by id – JavaTransition getTransition(String id)

– get all places – List<JavaPlace>getPlaces()

– get place by id – JavaPlace getPlace(String id)

– get tokens – List<JavaToken>getTokens()

– get token by id – JavaToken getToken(String id)

• JavaTransition – JavaTransition is a class with one private property of
Transition type. It implements constructor and getter methods associated
with the Java(API) Transition.

– create JavaTransition object – JavaTransition(Transition transition).
JavaTransition is a constructor with one parameter of Transition
type. It creates an object of JavaTransition type.

104

– check transition equality – boolean equals(Object obj)

– get id – String getId()

– get priority – int getPriority()

– get input places – List<JavaPlace>getInputs()

– get output places – List<JavaPlace>getOutputs()

• JavaPlace – JavaPlace is a class with one private property of Place type.
It implements constructor and getter methods associated with the
Java(API) Place.

– create JavaPlace object – JavaPlace(Place place)

– check place equality – boolean equals(Object obj)

– get id – String getId()

– get priority – int getPriority()

– get capacity – IntegerInf getCapacity()

– get transition where the place is input – JavaTransition getInput()

– get transition where the place is output – JavaTransition getOut-
put()

– get tokens – List<JavaToken>getTokens()

– get token by id – JavaToken getToken(String id)

– add token with id – JavaToken addToken(String id)

– remove token by id – void removeToken(String id)

• JavaToken – JavaToken is a class with one private property of Token
type. It implements constructor and getter methods associated with the
Java(API) Token.

– create JavaToken object – JavaToken(Token token)

– check token equality – boolean equals(Object obj)

– get id – String getId()

– get priority – int getPriority()

– get host place – JavaPlace getHost()

– get token characteristics – List<JavaCharacteristic>getChars()

105

– get default characteristics – JavaCharacteristic getDefault()

– get characteristic by id – JavaCharacteristic getChar(String id)

– add characteristic – JavaCharacteristic addChar(String id, String
type, int history)

– delete characteristic by id – void delChar(String id)

• JavaCharacteristic – JavaCharacteristic is a class with one private prop-
erty of Characteristci type. It implements constructor, getter and setter
methods associated with the Java(API) Characteristic.

– create JavaCharacteristic object – JavaCharacteristic(Characteristic
characteristic)

– get name – String getName()

– get type – String getType()

– get value – String getValue()

– set value – void setValue(String value)

– push historic value – void pushValue(String value)

– get history – List<String>getHistory()

• JavaFunction – JavaFunction is a class that implements constructor and
run method for Java function objects. Java Functions are important for
the predicates definitions.

– create JavaFunction by name – JavaFunction(String name)

– run method – abstract Object run(GeneralizedNet gn, JavaToken
token)

• JavaFunctionReference – JavaFunctionReference is a class that imple-
ments reference to the function. It has one private property – JavaFunc-
tion, constructor and a get method.

– create reference function object – JavaFunctionReference(Java-
Function function)

– get function – JavaFunction getFunction()

• JavaFunctionRunner – JavaFunctionRunner is a class that implements
function runner functionality. It has one private and static instance prop-
erty, get and run method.

106

– get instance – static JavaFunctionRunner getInstance(). The method
try to get instance, if it is not defined, the method creates the new
one and returns it.

– run JavaFunctionReference – Object run(FunctionReference func-
tion, GeneralizedNet gn, Token token). It has 3 parameters of
FunctionReference, GeneralizeNet and Token type. The first pa-
rameter is function. The method cast FunctionReference to Java-
FunctionReference type, get function and run it with gn and Java-
Token parameter.

4 Wastewater Treatment Process Simulation
Using GN API

There have been developed several generalized net models of some wastewa-
ter treatment systems (see [8,9]. The first GN model developed using GN IDE
software for the purposes of wastewater treatment process simulation based on
real experiment data is presented in [10]. The GN model describes technologi-
cal scheme of wastewater treatment including the three main stages: mechani-
cal, physics-chemical and biological treatment. The detailed description, from
the point of view of wastewater treatment, is given in [10].

The flow of treated water gets into the exit position as purified water and
theated waste. The model has 7 transtions and 19 places. Six of places – l3, l6,
l9, l12, l14, l17 are using for monitoring and storing information of the process.
The rest described the process of water purification from different elements
like oil, mechanical impurities ets. In this chapter, the part of GN model of
wastewater treatment plant will be implemented with help of GN API.

The graphical representation of WT process which will be implemented is
shown in Fig. 4.

The model has 7 transitions. Each of them described step of water treat-
ment. First it should create a generalized net. For this purpose it is necessary
to use GeneralizedNetBuilder constructor.

Example:

GeneralizedNetBuilder wastewaterTreatmentGN = new
GeneralizedNetBuilder("WTGeneralizedNet")

107

Figure 1: Graphical representation of the GN model of WT process

First Transition is named Z1. It has two input places – l1, l3 and two ouput
places – l2, l3. The place l1 contains conditional token generator that creates
a new token for each record of previously collected data. Each token has a
characterstic wastewater quantity. l3 contains token which store information
like a wastewater quantity history characteristic during the simulation.

The r1 matrix allows token movement from l1 to l2 and from l3 to l3
First it should create and add transition with name Z1.

Example:

TransitionBuilder transitionZ1 =
wastewaterTreatmentGN.addTransition("Z1");

Then it should add input place l1.

Example:

PlaceBuilder placeL1 = transitionZ1.addInput("l1");

108

Then it should add conditional token generator.

Example:

TokenBuilder generatedToken =
placeL1.addConditionalTokenGenerator("tokenGeneratorL1",
new JavaFunction("isGenerate") {

@Override
public Object run(GeneralizedNet net, JavaToken

token) {
// some condition (days number if the simulation

works with days data during a month or etc.)
}

})

Each generated token can be changed like set entering, leaving time, prior-
ity or start characterstic.

Then it should add other input place l3 with token “l3 waterQuantity token”
that will record information about the polutted water quantity during the sim-
ulation. The token will not leave the Gn and the leaving time will be infity
(default state). The token has a characteristic with name “Q3 history” of type
“number” and history. In contrast to examples above, the definition will be on
a single line.

Example:

transitionZ1.addInput("l3").addToken("l3_waterQuantity\
_token").addCharacteristic("Q3_history", ‘‘number",

history_capacity);

Now, it should add two ouput places l2 and l3, two characteristic func-
tions for l2 and l3 and the transition predicat that determines under what con-
ditions the token can pass from input to ouput places. A token will be en-
ter in place l2, if water is polluted and will obtain a new characteristic state
with a value “Polluted wastewater for treatment”. The token in position l3 –
“l3 waterQuantity token” will pass from l3 to l3 if has polluted water and will
obtain a new value for “Q3 history” characteristic. The definion will be on a
single line.

109

Example:

transitionZ1.addOutput("l2").setCharFunction(new
JavaFunction("l2_charFunc") {
@Override
public Object run(GeneralizedNet net, JavaToken

token) {
token.addChar("state", ‘‘String",

100).setValue("Polluted wastewater for
treatment");

}
}).addOutput("l3").setCharFunction(new

JavaFunction("l3_charFunc") {
@Override
public Object run(GeneralizedNet net, JavaToken

token) {
token.getChar("Q3_history").setValue(’some value

from our data’);
return true;

}
}).setPredicate("l1", ‘‘l2", new JavaFunction("l12") {

@Override
public Object run(GeneralizedNet net, JavaToken

token) {
// return true if water is polluted and false

otherwise
}

}).setPredicate("l3", ‘‘l2", new JavaFunction("l32") {
@Override
public Object run(GeneralizedNet net, JavaToken

token) {
return false;

}
}).setPredicate("l1", ‘‘l3", new JavaFunction("l13") {

@Override
public Object run(GeneralizedNet net, JavaToken

token) {
return false;

}
}).setPredicate("l3", ‘‘l3", new JavaFunction("l33") {

@Override

110

public Object run(GeneralizedNet net, JavaToken
token) {

// return true if has water in l_{1} and water is
polluted and false otherwise

}
});

Similarly can be described each transition in the GN. The GN API allows
to user to make model definition on single line. When the model is described
it should be build and convert to JavaGeneralizedNet type. To start the simu-
lation is necessary to use either of the metods in GeneralizedNetFacade class.
Both metods return JavaSimulation object and has a parameter of type Java-
GeneralizedNet. The second metod has an event listener parameter. Below we
will show the use of both metod.

Example1:

JavaSimulation simulation =
GeneralizedNetFacade.startSimulation(wastewaterTreat-
mentGN);

Example2:

JavaSimulation simulation =
GeneralizedNetFacade.startSimulation(wastewaterTreat-
mentGN, new SimulationEventsListener() {

@Override
public void handleEvent(List<JavaGnEvent> events) {

for (JavaGnEvent event: events) {
System.out.println("event: ‘‘ +

event.getClass().getSimpleName() + ‘‘ ‘‘ +
event.getToken().getId() + ‘‘ ‘‘ +
event.getChars().size());

}
}

});

When the simulation is sterted we can play a step or more. Example:
simulation.step(1);

If it use the second metod to start the simulation (with events listener), for
each step of simulation progress, it will call the handleEvent function with all

111

events for the step.
This allows programmers to process and store this information in the most

convenient way. Furthemore the most part of the models can be simplified.
Let us look at the example again.
As we mentioned above, the model described wastewater treatment pro-

cess. The most important part of the net is detecting to unusual measurements,
to view historic data for wasteWater quantity (place l2) etc. Now, all data is
available in the events handlers, we can parse the information for tokens which
are entering in place l2 for example, to get the water quantity and to store it to
database, arrays etc. The great advantage is that this information can be used
like a history, can be visualized from different interfaces, to be analyzed from
diffenrent algorithms without the limitations of the Genedit and the graphics
editor. As a consequence the model can be simplified by removing l3, l6, l9,
l12, l14, l17 places and tokens with host in this places.

5 Benefits and Conslusion

The difference between models is that the first one simulates WT process dur-
ing different months using previously collected data, has graphical represen-
tation and not communicate with other application. The second one is more
appropriate for the general case. The main benefits of GN API implementation
are:

• a simple Java implementation

• use GN models functionality only through the interface

• learning of the Genedit is not necessary

• ability to be used as part of bigger and real-time application

• sending of events occurring in the GN model through JAVA code that
can easily be processed to detect unusual measurements

• simplified models

• opportunity for a different visualization of stored data.

112

References

[1] Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceed-
ings of the IEEE. Vol. 77, 1989, No. 4, 541–580.

[2] Petri, C.-A. Kommunication mit Automaten, Ph. D. Thesis, Univ. of
Bonn, 1962; Schriften des Inst. fur Instrument. Math., No 2, Bonn, 1962.

[3] Dimitrov, D. G. GN IDE – A Software Tool for Simulation with Gen-
eralized Nets. Proceedings of Tenth Int. Workshop on Generalized Nets.
Sofia, 5 December 2009, 70–75.

[4] Dimitrov, D. G. A Graphical Environment for Modeling and Simulation
with Generalized Nets. Annual of “Informatics” Section, Union of Sci-
entists in Bulgaria, Vol. 3, 2010, 51–66 (In Bulgarian).

[5] Dimitrov, D. G. Software products implementing generalized nets. An-
nual of Section “Informatics”, Union of Scientists in Bulgaria, Vol. 3,
2010, 37–50 (In Bulgarian).

[6] Andonov, V., N. Angelova. Modifications of the algorithms for transition
functioning in GNs, GNCP, IFGNCP1 and IFGNCP3 when merging of
tokens is permitted. Imprecision and Uncertainty in Information Repre-
sentation and Processing, Vol. 332 Studies in Fuzziness and Soft Com-
puting, Springer, 2016, 275–288.

[7] Trifonov, T., K. Georgiev. GNTicker – A software tool for efficient in-
terpretation of generalized net models, Issues in Intuitionistic Fuzzy Sets
and Generalized Nets, Vol. 3, Warsaw, 2005, 71–78.

[8] Georgieva V., E. Sotirova. Generalized Net Model of Biological Treat-
ment of Wastewater, Issues in Intuitionistic Fuzzy Sets and Generalized
Nets, Vol. 11, 2014, 63–72.

[9] Georgieva V., O. Roeva, T. Pencheva. Generalized Net model of Physics-
chemical Wastewater Treatment, Ecology & Safety, Vol. 9, 2015, 468–
475.

[10] Georgieva V., N. Angelova, O. Roeva, T. Pencheva. Simulation of Paral-
lel Processes in Wastewater Treatment Plant Using Generalized Net In-
tegrated Development Environment, Comptes rendus de l’Academie bul-
gare des Sciences, Tome 69, 2016, No. 11, 1493–1502.

113

