ICIFSTA'2016, 20–22 April 2016, Beni Mellal, Morocco Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 22, 2016, No. 2, 52–58

std-Statistical convergence in intuitionistic fuzzy normed space

Ulaş Yamanci and Mehmet Gürdal

Department of Mathematics, Süleyman Demirel University 32260, Isparta, Turkey e-mails: ulasyamanci@sdu.edu.tr, gurdalmehmet@sdu.edu.tr

Received: 1 March 2016

Accepted: 28 March 2016

Abstract: In this paper, we introduce the notion of *std*-statistical convergence and *std*-statistical Cauchy with respect to the intuitionistic fuzzy norm, study their relationship, and obtain some important results.

Keywords: Intuitionistic fuzzy normed space, *std*-statistical convergence, *std*-statistical Cauchy sequence.

AMS Classification: 03E72.

1 Introduction

Fuzzy theory was introduced by Zadeh [17] in 1965 and applied by researchers to the wellknown results. Afterwards, fuzzy theory was generalized by Atanassov [1] as intuitionistic fuzzy theory and by Saadati and Park [11] as intuitionistic fuzzy normed space. Some important works for intuitionistic fuzzy normed space can be found in the literature [2, 6, 8, 12, 13, 15].

Recently, a powerful notion than Cauchy sequence, called standard Cauchy (shortly, *std*-Cauchy) have been obtained by Ricarte and Romaguera [10]. By using *std*-Cauchy, they established relationships between the theory of complete fuzzy metric spaces and domain theory. Quite recently, Gregori and Minana [5] answered two questions posed by Morillas and Sapera [7] concerned to standard convergence (*std*-convergence) in fuzzy metric spaces in the sense of George and Veeramani [4].

Now we recall some definitions and notations.

Definition 1. ([14]) A binary operation $*:[0,1] \times [0,1] \rightarrow [0,1]$ is said to be a continuous *t*-norm provided that following conditions are satisfied:

- (i) * is associate and commutative,
- (ii) * is continuous,
- (iii) a*1 = a for all $a \in [0,1]$,
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for every $a, b, c, d \in [0, 1]$.

Definition 2. ([14]) A binary operation $\diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be a continuous *t*-conorm provided that following conditions are satisfied:

- (i) \diamond is associate and commutative,
- (ii) \diamond is continuous,
- (iii) $a \diamond 0 = a \text{ for all } a \in [0,1],$
- (iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in [0, 1]$.

In [11], Saadati and Park introduced the notion of intuitionistic fuzzy normed space using the continuous t-norm and t-conorm as follows.

Definition 3. ([11]) The 5-tuple $(X, \mu, v, *, \diamond)$ is said to be an intuitionistic fuzzy normed space (shortly, IFNS) provided that X is a vector space, * is a continuous *t*-norm, \diamond is a continuous *t*-conorm, and μ , *v* are fuzzy sets on $X \times (0, \infty)$ satisfying the following conditions for every $x, y \in X$, and s, t > 0:

(a)
$$\mu(x,t) + \nu(x,t) \le 1,$$

- (b) $\mu(x,t) > 0$,
- (c) $\mu(x,t)=1$ if and only if x=0,
- (d) $\mu(\alpha x, t) = \mu(x, \frac{t}{|\alpha|})$ for each $\alpha \neq 0$,
- (e) $\mu(x,t)*\mu(y,s) \le \mu(x+y,t+s),$
- (f) $\mu(x,.): (0,\infty) \rightarrow [0,1]$ is continuous,
- (g) $\lim_{t\to\infty} \mu(x,t) = 1$ and $\lim_{t\to0} \mu(x,t) = 0$,
- (h) v(x,t) < 1,
- (i) v(x,t) = 0 if and only if x = 0,
- (j) $v(\alpha x, t) = v(x, \frac{t}{|\alpha|})$ for each $\alpha \neq 0$,
- (k) $v(x,t) \Diamond v(y,s) \ge v(x+y,t+s),$
- (1) $v(x,.): (0,\infty) \rightarrow [0,1]$ is continuous,
- (m) $\lim_{t\to\infty} v(x,t) = 0$ and $\lim_{t\to0} v(x,t) = 1$.

In this case (μ, v) is called an intuitionistic fuzzy norm (IFN). An IFNS $(X, \mu, v, *, \diamond)$ will be denoted simply by X.

As a standard example, we can give the following example.

Let $(X, \|.\|)$ be a normed space, and let a * b = ab and $a \diamond b = \min\{a+b,1\}$ for all $a, b \in [0,1]$. For all $x \in X$ and every t > 0, take into consider

$$\mu(x,t) = \frac{t}{t + \|x\|} \text{ and } v(x,t) = \frac{\|x\|}{t + \|x\|}.$$

Then X is an intuitionistic fuzzy normed space (IFNS).

The following definitions are due to Saadati and Park [11].

Definition 4. Let X be an IFNS. Then a sequence $x = \{x_k\}$ in X is said to be convergent to $\alpha \in X$ with respect to the intuitionistic fuzzy norm (μ, ν) provided that for every $\varepsilon > 0$ and t > 0, there exists $k_0 \in \mathbb{N}$ such that $\mu(x_k - \alpha, t) > 1 - \varepsilon$ and $\nu(x_k - \alpha, t) < \varepsilon$ for all $k \ge k_0$. It is denoted by $(\mu, \nu) - \lim x = \alpha$ or $x_k \xrightarrow{(\mu, \nu)} \alpha$ as $k \to \infty$.

Definition 5. Let X be an IFNS. Then a sequence $x = \{x_k\}$ in X is said to be *Cauchy* to $\alpha \in X$ with respect to the intuitionistic fuzzy norm (μ, ν) if, for every $\varepsilon > 0$ and t > 0, there exists $k_0 \in \mathbb{N}$ such that $\mu(x_k - x_m, t) > 1 - \varepsilon$ and $\nu(x_k - x_m, t) < \varepsilon$ for all $k, m \ge k_0$.

2 std-Statistical convergence on IFNS

Let $K \subset \mathbb{N}$ and $\delta(K) := \lim_{n \to \infty} \frac{1}{n} |\{k \in K : k \le n\}|$ denote the natural density of set $K = \{k \in K : k \le n\}$, where the vertical bars denote number of elements of K not exceeding $n \in \mathbb{N}$. A sequence $x = (x_k)_{k \in \mathbb{N}}$ of real (or complex) numbers is said to be statistically convergent to α provided that for every $\varepsilon > 0$, natural density of the set $\{k \in \mathbb{N} : |x_k - \alpha| \ge \varepsilon\}$ is zero. If $(x_k)_{k \in \mathbb{N}}$ is statistically convergent to α we write st - lim $x_k = \alpha$ [3, 16].

Definition 6. Let X be an IFNS. Then a sequence $x = \{x_k\}_{k \in \mathbb{N}}$ is said to be *std-statistically convergent* to $\alpha \in X$ with respect to the intuitionistic fuzzy norm (μ, ν) provided that for each $\varepsilon > 0$ and t > 0,

$$\delta\left\{k \in \mathbb{N} : \mu(x_k - \alpha, t) \le \frac{t}{t + \varepsilon} \text{ or } \nu(x_k - \alpha, t) \ge \frac{\varepsilon}{t + \varepsilon}\right\} = 0$$
(1)

or equivalently

$$\frac{1}{n} \left| \left\{ k \in \mathbb{N} : \mu(x_k - \alpha, t) \le \frac{t}{t + \varepsilon} \text{ or } \nu(x_k - \alpha, t) \ge \frac{\varepsilon}{t + \varepsilon} \right\} \right| = 0$$

In this case we abbreviate $st_{(\mu,\nu)}^{std} - \lim x = \alpha$.

Definition 7. Let X be an IFNS. Then a sequence $x = \{x_k\}_{k \in \mathbb{N}}$ is said to be *std*-statistically Cauchy with respect to the intuitionistic fuzzy norm (μ, v) provided that for each $\varepsilon > 0$ and t > 0,

$$\delta \left\{ k \in \mathbb{N} : \mu(x_k - x_m, t) \leq \frac{t}{t + \varepsilon} \text{ or } v(x_k - x_m, t) \geq \frac{\varepsilon}{t + \varepsilon} \right\} = 0.$$

From (1) and property of density, we can easily following result.

Lemma 1. Let X be an IFNS. Then, for every $\varepsilon > 0$ and t > 0, the following conditions are equivalent:

(i)
$$st_{(\mu,\nu)} - \lim x = \alpha$$
,

(ii)
$$\delta\left\{k \in \mathbb{N} : \mu(x_k - \alpha, t) \le \frac{t}{t + \varepsilon}\right\} = \delta\left\{k \in \mathbb{N} : \nu(x_k - \alpha, t) \ge \frac{\varepsilon}{t + \varepsilon}\right\} = 0,$$

(iii)
$$\delta \left\{ k \in \mathbb{N} : \mu(x_k - \alpha, t) > \frac{t}{t + \varepsilon} \text{ or } \nu(x_k - \alpha, t) < \frac{\varepsilon}{t + \varepsilon} \right\} = 1,$$

(iv)
$$st - \lim \mu(x_k - \alpha, t) = 1$$
 and $st - \lim \nu(x_k - \alpha, t) = 0$.

Theorem 1. Let X be an IFNS. If a sequence $x = \{x_k\}_{k \in \mathbb{N}}$ is *std*-statistically convergent with respect to the IFN (μ, ν) , then the $st_{(\mu,\nu)} \stackrel{std}{-}$ limit is unique.

Proof. Suppose that $st_{(\mu,\nu)}^{std} - \lim x = \alpha_1$ and $st_{(\mu,\nu)}^{std} - \lim x = \alpha_2$. Given $\varepsilon > 0$ and t > 0 choose $\eta > 0$ such that

$$\left(\frac{t}{t+\eta}\right)*\left(\frac{t}{t+\eta}\right) > \frac{t}{t+\varepsilon} \text{ and } \left(\frac{\eta}{t+\eta}\right) \diamond \left(\frac{\eta}{t+\eta}\right) < \frac{\varepsilon}{t+\varepsilon}.$$

Then, for any t > 0, define the following sets:

$$M_{\mu,1}(\eta,t) = \left\{ k \in \mathbb{N} : \mu(x_k - \alpha_1, t) \le \frac{t}{t+\eta} \right\},\$$

$$M_{\mu,2}(\eta,t) = \left\{ k \in \mathbb{N} : \mu(x_k - \alpha_2, t) \le \frac{t}{t+\eta} \right\},\$$

$$M_{\nu,1}(\eta,t) = \left\{ k \in \mathbb{N} : \nu(x_k - \alpha_1, t) \ge \frac{\eta}{t+\eta} \right\},\$$

$$M_{\nu,2}(\eta,t) = \left\{ k \in \mathbb{N} : \nu(x_k - \alpha_2, t) \ge \frac{\eta}{t+\eta} \right\}.$$

As $st_{(\mu,\nu)}^{std} - \lim x = \alpha_1$, we can obtain

$$\delta(M_{\mu,1}(\varepsilon,t)) = \delta(M_{\nu,1}(\varepsilon,t)) = 0$$

for all t > 0. Moreover, $st_{(\mu,\nu)}^{std} - \lim x = \alpha_2$, we have

$$\delta(M_{\mu,2}(\varepsilon,t)) = \delta(M_{\nu,2}(\varepsilon,t)) = 0$$

for all t > 0. Let

$$M_{\mu,\nu}(\varepsilon,t) = \{M_{\mu,1}(\varepsilon,t) \cup M_{\mu,2}(\varepsilon,t)\} \cap \{M_{\nu,1}(\varepsilon,t) \cup M_{\nu,2}(\varepsilon,t)\}.$$

Then see that $\delta(M_{\mu,\nu}(\varepsilon,t))=0$ which implies $\delta(N/M_{\mu,\nu}(\varepsilon,t))=1$. If $k \in N/M_{\mu,\nu}(\varepsilon,t)$, there are two possible cases. The first is the case of $k \in N/M_{\mu,1}(\varepsilon,t) \cup M_{\mu,2}(\varepsilon,t)$, and the second is the case of $k \in N/M_{\nu,1}(\varepsilon,t) \cup M_{\nu,2}(\varepsilon,t)$. We first take into consideration that $k \in N/M_{\mu,1}(\varepsilon,t) \cup M_{\mu,2}(\varepsilon,t)$. Then we obtain

$$\mu(\alpha_1 - \alpha_2, t) \ge \mu\left(x_k - \alpha_1, \frac{t}{2}\right) * \mu\left(x_k - \alpha_2, \frac{t}{2}\right)$$
$$> \left(\frac{t}{t + \eta}\right) * \left(\frac{t}{t + \eta}\right)$$
$$> \frac{t}{t + \varepsilon}.$$

As $\varepsilon > 0$ is arbitrary, we have $\mu(\alpha_1 - \alpha_2, t) = 1$ for all t > 0. Therefore, we get $\alpha_1 - \alpha_2 = 0$, that is, $\alpha_1 = \alpha_2$.

On the other hand, if $k \in \mathbb{N}/M_{\nu,1}(\varepsilon,t) \cup M_{\nu,2}(\varepsilon,t)$, the we get

$$v(\alpha_1 - \alpha_2, t) \le v\left(x_k - \alpha_1, \frac{t}{2}\right) \diamondsuit v\left(x_k - \alpha_2, \frac{t}{2}\right)$$
$$< \left(\frac{\eta}{t + \eta}\right) \diamondsuit \left(\frac{\eta}{t + \eta}\right)$$
$$< \frac{\varepsilon}{t + \varepsilon}.$$

Again, since $\varepsilon > 0$ is arbitrary, we have $v(\alpha_1 - \alpha_2, t) = 0$ for all t > 0, which implies $\alpha_1 = \alpha_2$. As a consequence, in all cases, we conclude that the the $st_{(\mu,\nu)}^{std}$ – limit is unique.

Theorem 2. Let X be an IFNS. If $(\mu, v)^{std} - \lim x = \alpha$, then $st_{(\mu, v)}^{std} - \lim x = \alpha$. *Proof.* Since $(\mu, v)^{std} - \lim x = \alpha$, for every $\varepsilon > 0$ and t > 0, there exits $k_{\varepsilon} \in \mathbb{N}$ such that

$$\mu(x_k - \alpha, t) > \frac{t}{t + \varepsilon} \text{ and } \nu(x_k - \alpha, t) < \frac{\varepsilon}{t + \varepsilon}$$

for all $k \ge k_{\varepsilon}$. This guarantees that the set

$$\left\{k \in \mathsf{N} : \mu(x_k - \alpha, t) \leq \frac{t}{t + \varepsilon} \text{ or } \nu(x_k - \alpha, t) \geq \frac{\varepsilon}{t + \varepsilon}\right\}$$

has at most finitely many terms. As every finite subset of the natural numbers has density zero, we get that

$$\delta\left\{k \in \mathsf{N} : \mu(x_k - \alpha, t) \leq \frac{t}{t + \varepsilon} \text{ or } v(x_k - \alpha, t) \geq \frac{\varepsilon}{t + \varepsilon}\right\} = 0,$$

as a desired.

The following two results show that the notions of *std*-statistically convergence and *std*-statistically Cauchy are both stronger than usual statistically convergence and statistically Cauchy respectively in an IFNS.

Theorem 3. Let X be an IFNS and the sequence $x = \{x_k\}_{k \in \mathbb{N}}$ in X be *std*-statistically convergent to $\alpha \in X$. Then $\{x_k\}$ is statistically convergent to $\alpha \in X$ with respect to the IFN (μ, ν) .

Proof. Suppose $st_{(\mu,\nu)}^{std} - \lim x = \alpha$. Then we have

$$\delta \left\{ k \in \mathsf{N} : \mu(x_k - \alpha, t) \le \frac{t}{t + \varepsilon} \text{ or } v(x_k - \alpha, t) \ge \frac{\varepsilon}{t + \varepsilon} \right\} = 0$$

for $\varepsilon > 0$ and t > 0. Since $\frac{\varepsilon}{t + \varepsilon} < \varepsilon$ for all t > 0, we obtain that

$$\frac{t}{t+\varepsilon} = 1 - \frac{\varepsilon}{t+\varepsilon} > 1 - \varepsilon$$

As a result,

$$\delta\{k \in \mathbb{N} : \mu(x_k - \alpha, t) \le 1 - \varepsilon \text{ or } \nu(x_k - \alpha, t) \ge \varepsilon\} = 0,$$

as desired.

By same arguments in Theorem 3, the following can be easily proved.

Theorem 4. Let X be an IFNS and the sequence $x = \{x_k\}_{k \in \mathbb{N}}$ in X be *std*-statistically Cauchy. Then $\{x_k\}$ is statistically Cauchy with respect to the IFN (μ, ν) .

Definition 8. A sequence $x = \{x_k\}_{k \in \mathbb{N}}$ in IFNS is said to be strong *std*-statistically convergent if it is both statistically convergent and *std*-statistically Cauchy with respect to the IFN (μ, ν) .

Theorem 5. Let X be an IFNS and $x = \{x_k\}_{k \in \mathbb{N}}$ be a strong *std*-statistically convergent sequence in X. Then $x = \{x_k\}_{k \in \mathbb{N}}$ is *std*-statistically convergent with respect to the IFN (μ, ν) .

References

- [1] Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
- [2] Atanassov, K. T., Pasi, G. & Yager, R. (2002) Intuitionistic fuzzy interpretations of multiperson multicriteria decision making. *Proceedings of 2002 First International IEEE Symposium Intelligent Systems*, 1, 115–119.
- [3] Fridy, J. A. (1985) On statistical convergence, *Analysis*, 5, 301–313.

- [4] George, A., & Veeramani, P. (1994) On some results in fuzzy metric spaces, *Fuzzy Sets and Systems*, 64(3), 395–399
- [5] Gregori, V., Minana, J. (2015) *std*-Convergence in fuzzy metric spaces, *Fuzzy Sets and Systems*, 267, 140–143.
- [6] Karakus, S., Demirci, K., Duman O. (2008) Statistical convergence on intuitionistic fuzzy normed spaces, *Chaos Solitons Fractals*, 35, 763–769.
- [7] Morillas, S., & Sapena, A. (2013) On standard Cauchy sequences in fuzzy metric spaces. *Proceedings of the Conference in Applied Topology, WiAT'13*, 101–108.
- [8] Mursaleen, M., & Mohiuddine, S. A. (2009) On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, *J. Comput. Appl. Math.*, 233, 142–149.
- [9] Park, J. H. (2004) Intuitionistic fuzzy metric spaces, *Chaos Solitons Fractals*, 22, 1039–1046.
- [10] Ricarte, L. A., & Romaguera, S. (2014) A domain-theoretic approach to fuzzy metric spaces, *Topol. Appl.*, 163, 149–159.
- [11] Saadati, R., & Park, J. H. (2006) On the intuitionistic fuzzy topological spaces, *Chaos Solitons Fractals*, 27, 331–344.
- [12] Savaş, E. & Gürdal, M. (2015) A generalized statistical convergence in intuitionistic fuzzy normed spaces, *Science Asia*, 41, 289–294.
- [13] Savaş, E. & Gürdal, M. (2014) Certain summability methods in intuitionistic fuzzy normed spaces, *Journal of Intelligent and Fuzzy Systems*, 27(4), 1621–1629.
- [14] Schweizer, B., & Sklar, A. (1960) Statistical metric spaces, Pacific J. Math., 10, 313–334.
- [15] Sen, M., & Debnath, P. (2011) Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces, *Math. Comput. Modelling*, 54, 2978–2985.
- [16] Steinhaus, H. (1951) Sur la convergence ordinarie et la convergence asymptotique, *Colloq. Math.*, 2, 73–74.
- [17] Zadeh, L. A. (1965) Fuzzy sets, Inform. Control, 8, 338–353.