# Norms over intuitionistic fuzzy subrings and ideals of a ring 

Rasul Rasuli<br>Mathematics Department, Faculty of Science<br>Payame Noor University (PNU), Tehran, Iran<br>e-mail: rasulirasul@yahoo.com

Received: 12 October 2016
Accepted: 17 December 2016


#### Abstract

In this paper, we apply norms over intuitionistic fuzzy subrings and ideals of a ring. We introduce the notions of intuitionistic fuzzy subrings and ideals of a ring with respect a $t$-norm $T$ and a $t$-conorm $C$ and investigate some related properties under homomorphism.


Keywords: Ring theory, Norms, Fuzzy set theory, Intuitionistic fuzzy subrings, Intuitionistic fuzzy ideals, Homomorphisms, Direct products.
AMS Classification: 13Axx, 03B45, 03E72, 20K30, 20 K 25.

## 1 Introduction

The concept of a fuzzy set was introduced by Zadeh [16], and it is now a rigorous area of research with manifold applications raging from engineering and computer science to medical diagnosis and social behavior studies. In particular, some researchers [2,14,17] applied the notion of fuzzy sets to ideals of a ring. As a generalization of a fuzzy set, the concept of an intuitionistic fuzzy set was introduced by K. T. Atanassov [3, 4]. Recently, Coker [8], Coker and Es [9], Gurcay, Coker and Es [10] and S. J. Lee and E. P. Lee [13] introduced the concept of intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets and investigated some of their properties. In 1989, Biswas [6] introdused the concept of intuitionistic fuzzy subgroups and studied some of it's properties. In 2003, Banejee and Basnet [5] investigated intuitionistic fuzzy subrings and intuitionistic fuzzy ideals using intuitionistic fuzzy sets. Also Hur, Jang and Kang [11] and Hur, Kang and Song [12] studied various properties of intuitionistic fuzzy subgroupoids, intuitionistic fuzzy subgroups and intuitionistic fuzzy subrings. In this work, We introduce the notions of
intuitionistic fuzzy subrings and ideals of a ring with respect a $t$-norm $T$ and a $t$-conorm $C$ and establish necessary and sufficient conditions for them. We also investigate the algebraic nature of such type of intuitionistic fuzzy subrings and ideals under homomorphism and direct product.

## 2 Preliminaries

In this section, we list some basic concepts and well known results needed in the later sections. Throughout this paper, $R$ will be a commutative ring with unity.

Definition 2.1. (See [3]) For sets $X, Y$ and $Z, f=\left(f_{1}, f_{2}\right): X \rightarrow Y \times Z$ is called a complex mapping if $f_{1}: X \rightarrow Y$ and $f_{2}: X \rightarrow Z$ are mappings.

Definition 2.2. (See [3]) Let $X$ be a nonempty set. A complex mapping $A=\left(\mu_{A}, \nu_{A}\right): X \rightarrow$ $[0,1] \times[0,1]$ is called an intuitionistic fuzzy set (in short, IFS) in $X$ if $\mu_{A}+\nu_{A} \leq 1$ where the mappings $\mu_{A}: X \rightarrow[0,1]$ and $\nu_{A}: X \rightarrow[0,1]$ denote the degree of membership (namely $\mu_{A}(x)$ ) and the degree of non-membership (namely $\nu_{A}(x)$ ) for each $x \in X$ to $A$, respectively. In particular $0_{\sim}$ and $1_{\sim}$ denote the intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in $X$ defined by $0_{\sim}(x)=(0,1)$ and $1_{\sim}(x)=(1,0)$, respectively.
We will denote the set of all IFSs in $X$ as $\operatorname{IFS}(X)$.
Definition 2.3. (See [3]) Let $X$ be a nonempty set and let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be IFSs in X. Then
(1) $A \subset B$ iff $\mu_{A} \leq \mu_{B}$ and $\nu_{A} \geq \nu_{B}$.
(2) $A=B$ iff $A \subset B$ and $B \subset A$.

Definition 2.4. (See [1]) A $t$-norm $T$ is a function $T:[0,1] \times[0,1] \rightarrow[0,1]$ having the following four properties:
(T1) $T(x, 1)=x$ (neutral element)
(T2) $T(x, y) \leq T(x, z)$ if $y \leq z$ (monotonicity)
(T3) $T(x, y)=T(y, x)$ (commutativity)
(T4) $T(x, T(y, z))=T(T(x, y), z)$ (associativity), for all $x, y, z \in[0,1]$.

Recall that $T$ is idempotent if for all $x \in[0,1], T(x, x)=x$.
Example 2.5. The basic $t$-norms are $T_{m}(x, y)=\min \{x, y\}, T_{b}(x, y)=\max \{0, x+y-1\}$ and $T_{p}(x, y)=x y$, with $x, y \in[0,1]$, are called standard intersection, bounded sum and algebraic product respectively.

Lemma 2.6. (See [1]) Let T be a t-norm. Then

$$
T(T(x, y), T(w, z))=T(T(x, w), T(y, z)),
$$

for all $x, y, w, z \in[0,1]$.

Definition 2.7. (See [7]) A $t$-conorm $C$ is a function $C:[0,1] \times[0,1] \rightarrow[0,1]$ having the following four properties:
(C1) $C(x, 0)=x$
(C2) $C(x, y) \leq C(x, z)$ if $y \leq z$
(C3) $C(x, y)=C(y, x)$
(C4) $C(x, C(y, z))=C(C(x, y), z)$,
for all $x, y, z \in[0,1]$.
Example 2.8. The basic $t$-conorms are $C_{m}(x, y)=\max \{x, y\}, C_{b}(x, y)=\min \{1, x+y\}$ and $C_{p}(x, y)=x+y-x y$ for all $x, y \in[0,1]$.
$C_{m}$ is standard union, $C_{b}$ is bounded sum, $C_{p}$ is algebraic sum.
Recall that $t$-conorm $C$ is idempotent if for all $x \in[0,1], C(x, x)=x$.
Theorem 2.9. (See [15]) Let $R$ be a ring. A nonempty subset $S$ of $R$ is a subring of $R$ if and only if $x-y \in S$ and $x y \in S$ for all $x, y \in S$.

Definition 2.10. (See [15]) Let $R$ be a ring and $I$ be a nonempty subset of $R$. We say that $I$ is a left(right) ideal of $R$ if for all $x, y \in I$ and for all $r \in R, x-y \in I, r x \in I(x-y \in I, x r \in I)$.

## 3 Intuitionistic fuzzy subrings with respect to a $t$-norm $T$ and a $t$-conorm $C$

Definition 3.1. Let $R$ be a ring. An $A=\left(\mu_{A}, \nu_{A}\right)$ is said to be intuitionistic fuzzy subring with respect to a $t$-norm $T$ and a $t$-conorm $C$ (in short, $\operatorname{IFSTC}(R)$ ) of $R$ if
(1) $\mu_{A}(x-y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)$
(2) $\mu_{A}(x y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)$
(3) $\nu_{A}(x-y) \leq C\left(\nu_{A}(x), \nu_{A}(y)\right)$
(4) $\nu_{A}(x y) \leq C\left(\nu_{A}(x), \nu_{A}(y)\right)$,
for all $x, y \in R$.
Example 3.2. Let $R=(Z,+,$.$) be a ring of integer. For all x \in R$ we define a fuzzy subset $\mu_{A}$ and $\nu_{A}$ of $R$ as

$$
\begin{aligned}
& \mu_{A}(x)= \begin{cases}0.6 & \text { if } x \in\{0, \pm 2, \pm 4, \ldots\} \\
0.5 & \text { if } x \in\{ \pm 1, \pm 3, \ldots\}\end{cases} \\
& \nu_{A}(x)= \begin{cases}0.2 & \text { if } x \in\{0, \pm 2, \pm 4, \ldots\} \\
0.4 & \text { if } x \in\{ \pm 1, \pm 3, \ldots\}\end{cases}
\end{aligned}
$$

let $T(x, y)=T_{p}(x, y)=x y$ and $C(x, y)=C_{p}(x, y)=x+y-x y$ for all $x, y \in R$, then $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFSTC}(R)$.
Proposition 3.3. If $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFSTC}(R)$ and $T, C$ be idempotent, then
(1) $\mu_{A}(0) \geq \mu_{A}(x)$ and $\nu_{A}(0) \leq \nu_{A}(x)$
(2) $A(-x)=A(x)$, for all $x \in R$.

Proof. (1) If $x \in R$, then $\mu_{A}(0)=\mu_{A}(x-x) \geq T\left(\mu_{A}(x), \mu_{A}(x)\right)=\mu_{A}(x)$.
Also $\nu_{A}(0)=\nu_{A}(x-x) \leq C\left(\nu_{A}(x), \nu_{A}(x)\right)=\nu_{A}(x)$.
(2) Let $x \in R$. Then

$$
\begin{gathered}
\mu_{A}(-x)=\mu_{A}(0-x) \geq T\left(\mu_{A}(0), \mu_{A}(x)\right) \geq T\left(\mu_{A}(x), \mu_{A}(x)\right) \\
=\mu_{A}(x)=\mu_{A}(0-(-x)) \geq T\left(\mu_{A}(0), \mu_{A}(-x)\right) \geq T\left(\mu_{A}(-x), \mu_{A}(-x)\right) \\
=\mu_{A}(-x)
\end{gathered}
$$

and so $\mu_{A}(-x)=\mu_{A}(x)$.
Also

$$
\begin{gathered}
\nu_{A}(-x)=\nu_{A}(0-x) \leq C\left(\nu_{A}(0), \nu_{A}(x)\right) \leq C\left(\nu_{A}(x), \nu_{A}(x)\right) \\
=\nu_{A}(x)=\nu_{A}(0-(-x)) \leq C\left(\nu_{A}(0), \nu_{A}(-x)\right) \leq C\left(\nu_{A}(-x), \nu_{A}(-x)\right) \\
=\nu_{A}(-x)
\end{gathered}
$$

and so $\nu_{A}(-x)=\nu_{A}(x)$.
Thus $A(-x)=\left(\mu_{A}(-x), \nu_{A}(-x)\right)=\left(\mu_{A}(x), \nu_{A}(x)\right)=A(x)$.
Proposition 3.4. Let $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFSTC}(R)$ and $x, y \in R$.
(1) If $\mu_{A}(x-y)=1$, then $\mu_{A}(x) \geq \mu_{A}(y)$
(2) If $\nu_{A}(x-y)=0$, then $\nu_{A}(x) \leq \nu_{A}(y)$.

Proof. Let $x, y \in R$. Then
(1) $\mu_{A}(x)=\mu_{A}(x-y+y) \geq T\left(\mu_{A}(x-y), \mu_{A}(y)\right)=T\left(1, \mu_{A}(y)\right)=\mu_{A}(y)$.
(2) $\nu_{A}(x)=\nu_{A}(x-y+y) \leq C\left(\nu_{A}(x-y), \nu_{A}(y)\right)=C\left(0, \nu_{A}(y)\right)=\nu_{A}(y)$.

Proposition 3.5. Let $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFSTC}(R)$ and $T, C$ be idempotent. Then $A(x-y)=A(y)$ if and only if $A(x)=A(0)$ for all $x, y \in R$.

Proof. Let $A(x-y)=A(y)$ then by letting $y=0$ we get $A(x)=A(0)$.
Conversely, assume that $A(x)=A(0)$. Then
(1) $\mu_{A}(x)=\mu_{A}(0)$ and from Proposition 3.3 we get $\mu_{A}(x) \geq \mu_{A}(x-y), \mu_{A}(y)$. Now

$$
\begin{gathered}
\mu_{A}(x-y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right) \geq T\left(\mu_{A}(y), \mu_{A}(y)\right) \\
=\mu_{A}(y)=\mu_{A}(-y)=\mu_{A}(x-y-x) \geq T\left(\mu_{A}(x-y), \mu_{A}(x)\right) \\
\geq T\left(\mu_{A}(x-y), \mu_{A}(x-y)\right)=\mu_{A}(x-y),
\end{gathered}
$$

so $\mu_{A}(x-y)=\mu_{A}(y)$.
(2) $\nu_{A}(x)=\nu_{A}(0)$ and by Proposition 3.3 we have $\nu_{A}(x) \leq \nu_{A}(x-y), \nu_{A}(y)$. Now

$$
\begin{gathered}
\nu_{A}(x-y) \leq C\left(\nu_{A}(x), \nu_{A}(y)\right) \leq C\left(\nu_{A}(y), \nu_{A}(y)\right) \\
=\nu_{A}(y)=\nu_{A}(-y)=\nu_{A}(x-y-x) \\
\leq C\left(\nu_{A}(x-y), \nu_{A}(x)\right) \leq C\left(\nu_{A}(x-y), \nu_{A}(x-y)\right)=\nu_{A}(x-y)
\end{gathered}
$$

hence $\nu_{A}(x-y)=\nu_{A}(y)$.
Therefore from (1) and (2) we obtain that $A(x-y)=A(y)$.

Proposition 3.6. Let $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFSTC}(R)$ and $T, C$ be idempotent.
(1) $S=\left\{x \in R \mid \mu_{A}(x)=1, \nu_{A}(x)=0\right\}$ is a subring of $R$.
(2) Let $\alpha, \beta \in[0,1]$ with $\alpha+\beta \leq 1$, then $R_{\alpha, \beta}=\left\{x \in R \mid \mu_{A}(x) \geq \alpha, \nu_{A}(x) \leq \beta\right\}$ is a subring of $R$.

Proof. (1) Let $x, y \in S$. Then from $\mu_{A}(x-y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)=T(1,1)=1$, we get $\mu_{A}(x-y)=1$. Since $\nu_{A}(x-y) \leq C\left(\nu_{A}(x), \nu_{A}(y)\right)=C(0,0)=0$ so $\nu_{A}(x-y)=0$. Hence $x-y \in S$.
Also from $\mu_{A}(x y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)=T(1,1)=1$ and $\nu_{A}(x y) \leq C\left(\nu_{A}(x), \nu_{A}(y)\right)=$ $C(0,0)=0$, we get $\mu_{A}(x y)=1$ and $\nu_{A}(x y)=0$ respectively. Hence $x y \in S$.
Thus $S=\left\{x \in R \mid \mu_{A}(x)=1, \nu_{A}(x)=0\right\}$ is a subring of $R$.
(2) Let $x, y \in R_{\alpha, \beta}$. Then by $\mu_{A}(x-y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right) \geq T(\alpha, \alpha)=\alpha$ and $\nu_{A}(x-y) \leq$ $C\left(\nu_{A}(x), \nu_{A}(y)\right) \leq C(\beta, \beta)=\beta$, we get $\mu_{A}(x-y) \geq \alpha$ and $\nu_{A}(x-y) \leq \beta$ respectively. Hence $x-y \in R_{\alpha, \beta}$.
Also from $\mu_{A}(x y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right) \geq T(\alpha, \alpha)=\alpha$ and $\nu_{A}(x y) \leq C\left(\nu_{A}(x), \nu_{A}(y)\right) \leq$ $C(\beta, \beta)=\beta$, we obtain that $\mu_{A}(x-y) \geq \alpha$ and $\nu_{A}(x-y) \leq \beta$ respectively. Thus $x y \in R_{\alpha, \beta}$. Therefore $R_{\alpha, \beta}=\left\{x \in R \mid \mu_{A}(x) \geq \alpha, \nu_{A}(x) \leq \beta\right\}$ is a subring of $R$.

Proposition 3.7. Let $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFS}(R)$ and $T, C$ be idempotent such that for all $x, y \in$ $R$ we have $\mu_{A}(x-y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right), \nu_{A}(x-y) \leq C\left(\nu_{A}(x), \nu_{A}(y)\right)$ and $\mu_{A}(r x) \geq$ $\mu_{A}(x), \nu_{A}(r x) \leq \nu_{A}(x)$. Then
(1) $R_{0}=\{x \in R \mid A(x)=A(0)\}$ is a left ideal of $R$.
(2) $R_{\alpha, \beta}=\left\{x \in R \mid \mu_{A}(x) \geq \alpha, \nu_{A}(x) \leq \beta\right\}$ is a left ideal of $R$ for all $\alpha, \beta \in[0,1]$ with $\alpha+\beta \leq 1$.

Proof. (1) Suppose that $x, y \in R_{0}$ then $\mu_{A}(x)=\mu_{A}(y)=\mu_{A}(0)$ and $\nu_{A}(x)=\nu_{A}(y)=\nu_{A}(0)$. From $\mu_{A}(x-y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)=T\left(\mu_{A}(0), \mu_{A}(0)\right)=\mu_{A}(0) \geq \mu_{A}(x-y)$, we get $\mu_{A}(x-$ $y)=\mu_{A}(0)$. By $\nu_{A}(x-y) \leq C\left(\nu_{A}(x), \nu_{A}(y)\right)=C\left(\nu_{A}(0), \nu_{A}(0)\right)=\nu_{A}(0) \leq \nu_{A}(x-y)$, we obtain $\nu_{A}(x-y)=\nu_{A}(0)$. Hence $A(x-y)=A(0)$ and so $x-y \in R_{0}$.
Also if $x \in R_{0}$ and $r \in R$, then $\mu_{A}(r x) \geq \mu_{A}(x)=\mu_{A}(0) \geq \mu_{A}(r x)$ and $\nu_{A}(r x) \leq \nu_{A}(x)=$ $\nu_{A}(0) \leq \nu_{A}(r x)$ and we get $\mu_{A}(r x)=\mu_{A}(0)$ and $\nu_{A}(r x)=\nu_{A}(0)$ respectively. Thus $A(r x)=$ $A(0)$ and $r x \in R_{0}$.
Therefore $R_{0}$ is a left ideal of $R$.
(2) Assume that $x, y \in R_{\alpha, \beta}$. Then by $\mu_{A}(x-y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right) \geq T(\alpha, \alpha)=\alpha$ and $\nu_{A}(x-y) \leq C\left(\nu_{A}(x), \nu_{A}(y)\right) \leq C(\beta, \beta)=\beta$ we have that $x-y \in R_{\alpha, \beta}$.
Also if $x \in R_{\alpha, \beta}$ and $r \in R$, then by $\mu_{A}(r x) \geq \mu_{A}(x) \geq \alpha$ and $\nu_{A}(r x) \leq \nu_{A}(x) \leq \beta$ we get $r x \in R_{\alpha, \beta}$.
Hence $R_{\alpha, \beta}$ is a left ideal of $R$.

## 4 Intuitionistic fuzzy ideals with respect to a $t$-norm $T$ and a $t$-conorm $C$

Definition 4.1. Let $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFS}(R)$. Then $A$ is called an intuitionistic fuzzy ideal with respect to a $t$-norm $T$ and a $t$-conorm $C$ (in short, $\operatorname{IFITC}(R)$ ) of $R$ if
(1) $\mu_{A}(x-y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)$
(2) $\mu_{A}(x y) \geq \mu(x), \mu(y)$
(3) $\nu_{A}(x-y) \leq C\left(\nu_{A}(x), \nu_{A}(y)\right)$
(4) $\nu_{A}(x y) \leq \nu(x), \nu(y)$,
for all $x, y \in R$.
Proposition 4.2. Let $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFITC}(R)$ and $x, y \in R$. Then $A(x-y)=A(0)$ if and only if $A(x)=A(0)$.

Proof. Let $x, y \in R$. If $A(x-y)=A(0)$ and $y=0$, then $A(x)=A(0)$.
Conversely, let $A(x)=A(0)$. Now $\mu_{A}(x-y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right)=T\left(\mu_{A}(0), \mu_{A}(0)\right)=$ $\mu_{A}(0) \geq \mu_{A}(x-y)$ and so $\mu_{A}(x-y)=\mu_{A}(0)$.
Also $\nu(x-y) \leq C(\nu(x), \nu(y))=C(\nu(0), \nu(0))=\nu(0) \leq \nu(x-y)$ and then $\nu(x-y)=\nu(0)$.
Thus $A(x-y)=\left(\mu_{A}(x-y), \nu_{A}(x-y)\right)=\left(\mu_{A}(0), \nu_{A}(0)\right)=A(0)$.
Proposition 4.3. Let $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFS}(R)$ and $T, C$ be idempotent. Then $A=\left(\mu_{A}, \nu_{A}\right) \in$ $\operatorname{IFITC}(R)$ if and only if $R_{\alpha, \beta}=\left\{x \in R \mid \mu_{A}(x) \geq \alpha, \nu_{A}(x) \leq \beta\right\}$ is an ideal of $R$, for all $\alpha, \beta \in[0,1]$ with $\alpha+\beta \leq 1$, where $\mu_{A}(0) \geq \alpha$ and $\nu_{A}(0) \leq \beta$.

Proof. Let $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFITC}(R)$. If $x, y \in R_{\alpha, \beta}$, then by $\mu_{A}(x-y) \geq T\left(\mu_{A}(x), \mu_{A}(y)\right) \geq$ $T(\alpha, \alpha)=\alpha$ and $\nu_{A}(x-y) \leq C\left(\nu_{A}(x), \nu_{A}(y)\right) \leq C(\beta, \beta)=\beta$, we obtain that $x-y \in R_{\alpha, \beta}$.
Now let $x \in R_{\alpha, \beta}$ and $r \in R$. Then from $\mu_{A}(r x) \geq \mu_{A}(x) \geq \alpha$ and $\nu_{A}(r x) \leq \nu_{A}(x) \leq \beta$, we get $r x \in R_{\alpha, \beta}$. Similary we have $x r \in R_{\alpha, \beta}$. Thus $R_{\alpha, \beta}$ is an ideal of $R$.
Conversely, let $R_{\alpha, \beta}$ be an ideal of $R$ and $x, y \in R_{\alpha, \beta}$ such that $\mu_{A}(x)=\mu_{A}(y)=\alpha$ and $\nu_{A}(x)=\nu_{A}(y)=\beta$. Since $x-y \in R_{\alpha, \beta}$ so $\mu_{A}(x-y) \geq \alpha=T(\alpha, \alpha)=T\left(\mu_{A}(x), \mu_{A}(y)\right)$ and $\nu_{A}(x-y) \leq \beta=C(\beta, \beta)=C\left(\nu_{A}(x), \nu_{A}(y)\right)$.
Also since $x y \in R_{\alpha, \beta}$ then $\mu_{A}(x y) \geq \alpha=\mu_{A}(x)$ and $\nu_{A}(x y) \leq \beta=\nu_{A}(x)$.
Therefore $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFITC}(R)$.
Corollary 4.4. $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFS}(R)$ and $T, C$ be idempotent. Then $A=\left(\mu_{A}, \nu_{A}\right) \in$ $\operatorname{IFITC}(R)$ if and only if $U=\left\{x \in R \mid \mu_{A}(x) \geq \alpha\right\}$ and $L=\left\{x \in R \mid \nu_{A}(x) \leq \beta\right\}$ are ideals of $R$ for all $\alpha, \beta \in[0,1]$ with $\alpha+\beta \leq 1$.

Proof. Let $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFITC}(R)$. Then $U=R_{\alpha, 1}$ and $L=R_{0, \beta}$ are ideals of $R$.
Conversely, $U \cap L=R_{\alpha, \beta}$ is also an ideal of $R$ and so $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFITC}(R)$.
Definition 4.5. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be two intuitionistic fuzzy sets of $R$. Define $A \cap B=\left(\mu_{A \cap B}, \nu_{A \cup B}\right)$ as $\mu_{A \cap B}(x)=T\left(\mu_{A}(x), \mu_{B}(x)\right)$ and $\nu_{A \cup B}(x)=C\left(\nu_{A}(x), \nu_{B}(y)\right)$ for all $x \in R$.

Proposition 4.6. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be two intuitionistic fuzzy sets in $R$. If $A, B \in \operatorname{IFITC}(R)$, then $(A \cap B) \in \operatorname{IFITC}(R)$.

Proof. Let $x, y \in R$. Then
(1)

$$
\begin{gathered}
\mu_{A \cap B}(x-y)=T\left(\mu_{A}(x-y), \mu_{B}(x-y)\right) \geq T\left(T\left(\mu_{A}(x), \mu_{A}(y)\right), T\left(\mu_{B}(x), \mu_{B}(y)\right)\right) \\
=T\left(T\left(\mu_{A}(x), \mu_{B}(x)\right), T\left(\mu_{A}(y), \mu_{B}(y)\right)\right)=T\left(\mu_{A \cap B}(x), \mu_{A \cap B}(y)\right) .
\end{gathered}
$$

(2) $\mu_{A \cap B}(x y)=T\left(\mu_{A}(x y), \mu_{B}(x y)\right) \geq T\left(\mu_{A}(x), \mu_{B}(x)\right)=\mu_{A \cap B}(x)$.
(3)

$$
\begin{gathered}
\nu_{A \cup B}(x-y)=C\left(\nu_{A}(x-y), \nu_{B}(x-y)\right) \leq C\left(C\left(\nu_{A}(x), \nu_{A}(y)\right), C\left(\nu_{B}(x), \nu_{B}(y)\right)\right) \\
=C\left(C\left(\nu_{A}(x), \nu_{B}(x)\right), C\left(\nu_{A}(y), \nu_{B}(y)\right)\right)=C\left(\nu_{A \cup B}(x), \nu_{A \cup B}(y)\right) .
\end{gathered}
$$

(4) $\nu_{A \cup B}(x y)=C\left(\nu_{A}(x y), \nu_{B}(x y)\right) \leq C\left(\nu_{A}(x), \nu_{B}(x)\right)=\nu_{A \cup B}(x)$.

Hence $(A \cap B) \in \operatorname{IFITC}(R)$.
Corollary 4.7. Let $\left\{A_{i}=\left(\mu_{A_{i}}, \nu_{A_{i}}\right) \mid i=1,2,3, \ldots, n\right\} \subseteq \operatorname{IFITC}(R)$. Then so does $\cap_{A_{i}}=$ $\left(\mu_{\cap A_{i}}, \nu_{\cup A_{i}}\right)$.

Definition 4.8. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be two intuitionistic fuzzy sets in $R$. Then the intuitionistic fuzzy product of $A$ and $B$ with respect to a $t$-norm $T$ and a $t$-conorm $C, A \circ B$ is defined as follows:
for all $x \in R$,

$$
\begin{aligned}
A \circ B(x) & =\left(\mu_{A \circ B}(x), \nu_{A \circ B}(x)\right) \\
& = \begin{cases}\left(\operatorname { s u p } _ { x = y z } \left\{T\left(\mu_{A}(y), \mu_{B}(z)\right\}, \inf _{x=y z}\left\{C\left(\nu_{A}(y), \nu_{B}(z)\right\}\right)\right.\right. & \text { if } x=y z \\
(0,1) & \text { if } x \neq y z\end{cases}
\end{aligned}
$$

Recall that a ring $R$ is said to be regular if for each $a \in R$ there exists an $x \in R$ such that $a=a x a$.

Proposition 4.9. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be two intuitionistic fuzzy sets in $R$. If $R$ is regular and $A, B \in \operatorname{IFITC}(R)$, then $A \circ B=A \cap B$.

Proof. Let $x \in R$ and suppose $A \circ B(x)=(0,1)$. Then there is nothing to show. Assume $A \circ B(x) \neq(0,1)$. Then $A \circ B(x)=\left(\sup _{x=y z}\left\{T\left(\mu_{A}(y), \mu_{B}(z)\right\}, \inf _{x=y z}\left\{C\left(\nu_{A}(y), \nu_{B}(z)\right\}\right)\right.\right.$.
Since $A, B \in \operatorname{IFITC}(R)$,

$$
\mu_{A}(y) \leq \mu_{A}(y z)=\mu_{A}(x), \nu_{A}(y) \geq \nu_{A}(y z)=\nu_{A}(x)
$$

and

$$
\mu_{B}(z) \leq \mu_{B}(y z)=\mu_{B}(x), \nu_{B}(z) \geq \nu_{B}(y z)=\nu_{B}(x) .
$$

Hence

$$
\mu_{A \circ B}(x)=\sup _{x=y z}\left\{T\left(\mu_{A}(y), \mu_{B}(z)\right\} \leq T\left(\mu_{A}(x), \mu_{B}(x)\right)=\mu_{A \cap B}(x)\right.
$$

and

$$
\nu_{A \circ B}(x)=\inf _{x=y z}\left\{C\left(\nu_{A}(y), \nu_{B}(z)\right\} \geq C\left(\nu_{A}(x), \nu_{B}(x)\right)=\nu_{A \cap B}(x) .\right.
$$

Therefore $A \circ B \subset A \cap B$.
Now we show $A \cap B \subset A \circ B$. Let $a \in R$ and since $R$ is regular so there exists an $x \in R$ such that $a=a x a$. Hence

$$
\mu_{A}(a)=\mu_{A}(a x a) \geq \mu_{A}(a x) \geq \mu_{A}(a)
$$

and

$$
\nu_{A}(a)=\nu_{A}(a x a) \leq \nu_{A}(a x) \leq \nu_{A}(a)
$$

so $\mu_{A}(a x)=\mu_{A}(a)$ and $\nu_{A}(a x)=\nu_{A}(a)$. Thus $A(a x)=A(a)$. Now

$$
\begin{gathered}
\mu_{A \circ B}(a)=\sup _{a=y z}\left\{T\left(\mu_{A}(y), \mu_{B}(z)\right\} \geq T\left(\mu_{A}(a x), \mu_{B}(a)\right) \quad \text { (Since } a=a x a\right) \\
=T\left(\mu_{A}(a), \mu_{B}(a)\right)=\mu_{A \cap B}(a)
\end{gathered}
$$

and

$$
\begin{gathered}
\nu_{A \circ B}(a)=\inf _{a=y z}\left\{C\left(\nu_{A}(y), \nu_{B}(z)\right\} \leq C\left(\nu_{A}(a x), \nu_{B}(a)\right) \quad(\text { Since } a=a x a)\right. \\
C\left(\nu_{A}(a), \nu_{B}(a)\right)=\nu_{A \cap B}(a) .
\end{gathered}
$$

Therefore $A \cap B \subset A \circ . B$
Hence $A \cap B=A \circ B$. This completes the proof.
Definition 4.10. Let Let $\varphi$ be a morphism from ring $R$ into ring $S$ such that $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be two intuitionistic fuzzy sets in $R$ and $S$ respectively.
For all $x \in R, y \in S$, we define

$$
\begin{aligned}
\varphi(A)(y) & =\left(\varphi\left(\mu_{A}\right)(y), \varphi\left(\nu_{A}\right)(y)\right) \\
& = \begin{cases}\left(\sup \left\{\mu_{A}(x) \mid x \in R, \varphi(x)=y\right\}, \inf \left\{\nu_{A}(x) \mid x \in R, \varphi(x)=y\right\}\right) & \text { if } \varphi^{-1}(y) \neq \emptyset \\
(0,1) & \text { if } \varphi^{-1}(y)=\emptyset\end{cases}
\end{aligned}
$$

Also $\varphi^{-1}(B)(x)=\left(\varphi^{-1}\left(\mu_{B}\right)(x), \varphi^{-1}\left(\nu_{B}\right)(x)\right)=\left(\mu_{B}(\varphi(x)), \nu_{B}(\varphi(x))\right)$.
Proposition 4.11. Let $\varphi$ be an epimorphism from ring $R$ into ring $S$. If $A=\left(\mu_{A}, \nu_{A}\right) \in$ $\operatorname{IFITC}(R)$, then $\varphi(A) \in \operatorname{IFITC}(S)$.

Proof. Let $y_{1}, y_{2} \in S$. Then
(1)

$$
\begin{gathered}
\varphi\left(\mu_{A}\right)\left(y_{1}-y_{2}\right)=\sup \left\{\mu_{A}\left(x_{1}-x_{2}\right) \mid x_{1}, x_{2} \in R, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}\right\} \\
\geq \sup \left\{T\left(\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right) \mid x_{1}, x_{2} \in R, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}\right\}
\end{gathered}
$$

$$
\begin{gathered}
=T\left(\sup \left\{\mu_{A}\left(x_{1}\right) \mid x_{1} \in R, \varphi\left(x_{1}\right)=y_{1}\right\}, \sup \left\{\mu_{A}\left(x_{2}\right) \mid x_{2} \in R, \varphi\left(x_{2}\right)=y_{2}\right\}\right) \\
=T\left(\varphi\left(\mu_{A}\right)\left(y_{1}\right), \varphi\left(\mu_{A}\right)\left(y_{2}\right)\right)
\end{gathered}
$$

(2)

$$
\begin{gathered}
\varphi\left(\mu_{A}\right)\left(y_{1} y_{2}\right)=\sup \left\{\mu_{A}\left(x_{1} x_{2}\right) \mid x_{1}, x_{2} \in R, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}\right\} \\
\geq \sup \left\{\mu_{A}\left(x_{1}\right) \mid x_{1} \in R, \varphi\left(x_{1}\right)=y_{1}\right\}=\varphi\left(\mu_{A}\right)\left(y_{1}\right) .
\end{gathered}
$$

(3)

$$
\begin{gathered}
\varphi\left(\nu_{A}\right)\left(y_{1}-y_{2}\right)=\inf \left\{\nu_{A}\left(x_{1}-x_{2}\right) \mid x_{1}, x_{2} \in R, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}\right\} \\
\leq \inf \left\{C\left(\nu_{A}\left(x_{1}\right), \nu_{A}\left(x_{2}\right)\right) \mid x_{1}, x_{2} \in R, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}\right\} \\
=C\left(\inf \left\{\nu_{A}\left(x_{1}\right) \mid x_{1} \in R, \varphi\left(x_{1}\right)=y_{1}\right\}, \inf \left\{\nu_{A}\left(x_{2}\right) \mid x_{2} \in R, \varphi\left(x_{2}\right)=y_{2}\right\}\right) \\
=C\left(\varphi\left(\nu_{A}\right)\left(y_{1}\right), \varphi\left(\nu_{A}\right)\left(y_{2}\right)\right) .
\end{gathered}
$$

(4)

$$
\begin{gathered}
\varphi\left(\nu_{A}\right)\left(y_{1} y_{2}\right)=\inf \left\{\nu_{A}\left(x_{1} x_{2}\right) \mid x_{1}, x_{2} \in R, \varphi\left(x_{1}\right)=y_{1}, \varphi\left(x_{2}\right)=y_{2}\right\} \\
\leq \inf \left\{\nu_{A}\left(x_{1}\right) \mid x_{1} \in R, \varphi\left(x_{1}\right)=y_{1}\right\}=\varphi\left(\nu_{A}\right)\left(y_{1}\right) .
\end{gathered}
$$

Hence $\varphi(A) \in \operatorname{IFITC}(S)$.
Proposition 4.12. Let Let $\varphi$ be a morphism from ring R into ring S. If $B=\left(\mu_{B}, \nu_{B}\right) \in \operatorname{IFITC}(S)$, then $\varphi^{-1}(B) \in \operatorname{IFITC}(R)$.

Proof. Let $x_{1}, x_{2} \in R$.
(1)

$$
\begin{gathered}
\varphi^{-1}\left(\mu_{B}\right)\left(x_{1}-x_{2}\right)=\mu_{B}\left(\varphi\left(x_{1}-x_{2}\right)\right)=\mu_{B}\left(\varphi\left(x_{1}\right)-\varphi\left(x_{2}\right)\right) \\
\geq T\left(\mu_{B}\left(\varphi\left(x_{1}\right)\right), \mu_{B}\left(\varphi\left(x_{2}\right)\right)\right)=T\left(\varphi^{-1}\left(\mu_{B}\right)\left(x_{1}\right), \varphi^{-1}\left(\mu_{B}\right)\left(x_{2}\right)\right) .
\end{gathered}
$$

(2)

$$
\begin{gathered}
\varphi^{-1}\left(\mu_{B}\right)\left(x_{1} x_{2}\right)=\mu_{B}\left(\varphi\left(x_{1} x_{2}\right)\right)=\mu_{B}\left(\varphi\left(x_{1}\right) \varphi\left(x_{2}\right)\right) \\
\geq \mu_{B}\left(\varphi\left(x_{1}\right)\right)=\varphi^{-1}\left(\mu_{B}\right)\left(x_{1}\right) .
\end{gathered}
$$

(3)

$$
\begin{gathered}
\varphi^{-1}\left(\nu_{B}\right)\left(x_{1}-x_{2}\right)=\nu_{B}\left(\varphi\left(x_{1}-x_{2}\right)\right)=\nu_{B}\left(\varphi\left(x_{1}\right)-\varphi\left(x_{2}\right)\right) \\
\leq C\left(\nu_{B}\left(\varphi\left(x_{1}\right)\right), \nu_{B}\left(\varphi\left(x_{2}\right)\right)\right)=C\left(\varphi^{-1}\left(\nu_{B}\right)\left(x_{1}\right), \varphi^{-1}\left(\nu_{B}\right)\left(x_{2}\right)\right) .
\end{gathered}
$$

(4) $\varphi^{-1}\left(\nu_{B}\right)\left(x_{1} x_{2}\right)=\nu_{B}\left(\varphi\left(x_{1} x_{2}\right)\right)=\nu_{B}\left(\varphi\left(x_{1}\right) \varphi\left(x_{2}\right)\right) \leq \nu_{B}\left(\varphi\left(x_{1}\right)\right)=\varphi^{-1}\left(\nu_{B}\right)\left(x_{1}\right)$.

Thus $\varphi^{-1}(B) \in \operatorname{IFITC}(R)$.
Definition 4.13. Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be two intuitionistic fuzzy sets in $R$ and $S$, respectively. The direct product of $A$ and $B$, denoted by $A \times B=\left(\mu_{A} \times \mu_{B}, \nu_{A} \times \nu_{B}\right)$, is an intuitionistic fuzzy set in $R \times S$ such that for all $x$ in $R$ and $y$ in $S,\left(\mu_{A} \times \mu_{B}\right)(x, y)=$ $T\left(\mu_{A}(x), \mu_{B}(y)\right)$ and $\left(\nu_{A} \times \nu_{B}\right)(x, y)=C\left(\nu_{A}(x), \nu_{B}(y)\right)$

Proposition 4.14. If $A_{i}=\left(\mu_{A_{i}}, \nu_{A_{i}}\right) \in \operatorname{IFITC}\left(R_{i}\right)$ for $i=1,2$, then $A_{1} \times A_{2} \in \operatorname{IFITC}\left(R_{1} \times R_{2}\right)$.

Proof. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in R_{1} \times R_{2}$. Then
(1)

$$
\begin{gathered}
\left(\mu_{A_{1}} \times \mu_{A_{2}}\right)\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right)=\left(\mu_{A_{1}} \times \mu_{A_{2}}\right)\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \\
=T\left(\mu_{A_{1}}\left(x_{1}-x_{2}\right), \mu_{A_{2}}\left(y_{1}-y_{2}\right)\right) \geq T\left(T\left(\mu_{A_{1}}\left(x_{1}\right), \mu_{A_{1}}\left(x_{2}\right)\right), T\left(\mu_{A_{2}}\left(y_{1}\right), \mu_{A_{2}}\left(y_{2}\right)\right)\right)
\end{gathered}
$$

$=T\left(T\left(\mu_{A_{1}}\left(x_{1}\right), \mu_{A_{2}}\left(y_{1}\right)\right), T\left(\mu_{A_{1}}\left(x_{2}\right), \mu_{A_{2}}\left(y_{2}\right)\right)\right)=T\left(\left(\mu_{A_{1}} \times \mu_{A_{2}}\right)\left(x_{1}, y_{1}\right),\left(\mu_{A_{1}} \times \mu_{A_{2}}\right)\left(x_{2}, y_{2}\right)\right)$.
(2)

$$
\begin{gathered}
\left(\mu_{A_{1}} \times \mu_{A_{2}}\right)\left(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right)=\left(\mu_{A_{1}} \times \mu_{A_{2}}\right)\left(x_{1} x_{2}, y_{1} y_{2}\right) \\
=T\left(\mu_{A_{1}}\left(x_{1} x_{2}\right), \mu_{A_{2}}\left(y_{1} y_{2}\right)\right) \geq T\left(\mu_{A_{1}}\left(x_{1}\right), \mu_{A_{2}}\left(y_{1}\right)\right)=\left(\mu_{A_{1}} \times \mu_{A_{2}}\right)\left(x_{1}, y_{1}\right) .
\end{gathered}
$$

(3)

$$
\begin{gathered}
\left(\nu_{A_{1}} \times \mu_{A_{2}}\right)\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right)=\left(\nu_{A_{1}} \times \nu_{A_{2}}\right)\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \\
=C\left(\nu_{A_{1}}\left(x_{1}-x_{2}\right), \nu_{A_{2}}\left(y_{1}-y_{2}\right)\right) \leq C\left(C\left(\nu_{A_{1}}\left(x_{1}\right), \nu_{A_{1}}\left(x_{2}\right)\right), C\left(\nu_{A_{2}}\left(y_{1}\right), \nu_{A_{2}}\left(y_{2}\right)\right)\right) \\
=C\left(C\left(\nu_{A_{1}}\left(x_{1}\right), \nu_{A_{2}}\left(y_{1}\right)\right), C\left(\nu_{A_{1}}\left(x_{2}\right), \nu_{A_{2}}\left(y_{2}\right)\right)\right)=C\left(\left(\nu_{A_{1}} \times \nu_{A_{2}}\right)\left(x_{1}, y_{1}\right),\left(\nu_{A_{1}} \times \nu_{A_{2}}\right)\left(x_{2}, y_{2}\right)\right) .
\end{gathered}
$$

(4)

$$
\begin{gathered}
\left(\nu_{A_{1}} \times \nu_{A_{2}}\right)\left(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right)=\left(\nu_{A_{1}} \times \nu_{A_{2}}\right)\left(x_{1} x_{2}, y_{1} y_{2}\right) \\
=C\left(\nu_{A_{1}}\left(x_{1} x_{2}\right), \nu_{A_{2}}\left(y_{1} y_{2}\right)\right) \leq C\left(\nu_{A_{1}}\left(x_{1}\right), \nu_{A_{2}}\left(y_{1}\right)\right)=\left(\nu_{A_{1}} \times \nu_{A_{2}}\right)\left(x_{1}, y_{1}\right) .
\end{gathered}
$$

Then $A_{1} \times A_{2} \in \operatorname{IFITC}\left(R_{1} \times R_{2}\right)$.
Corollary 4.15. Let $A_{i}=\left(\mu_{A_{i}}, \nu_{A_{i}}\right) \in \operatorname{IFITC}\left(R_{i}\right)$ for $i=1,2, \ldots, n$. Then

$$
A_{1} \times A_{2} \times \ldots \times A_{n} \in \operatorname{IFITC}\left(R_{1} \times R_{2} \times \ldots \times R_{n}\right)
$$

Next we will introduce the concept of intuitionistic fuzzy set in $R / I$.
Definition 4.16. $A=\left(\mu_{A}, \nu_{A}\right) \in I F S(R)$ and $I$ be an ideal of $R$.
Define $A^{*}=\left(\mu_{A^{*}}, \nu_{A^{*}}\right) \in \operatorname{IFS}(R / I)$ by

$$
\mu_{A^{*}}(x+I)=\left\{\begin{aligned}
T\left(\mu_{A}(x), \mu_{A}(i)\right) & \text { if } x \neq i \\
(1,0) & \text { if } x=i
\end{aligned}\right.
$$

and

$$
\nu_{A^{*}}(x+I)=\left\{\begin{aligned}
C\left(\nu_{A}(x), \nu_{A}(i)\right) & \text { if } x \neq i \\
(0,1) & \text { if } x=i
\end{aligned}\right.
$$

for all $x \in R$ and $i \in I$.
Proposition 4.17. Let $A=\left(\mu_{A}, \nu_{A}\right) \in \operatorname{IFITC}(R)$. If $T$ and $C$ be idempotent, then $A^{*}=\left(\mu_{A^{*}}, \nu_{A^{*}}\right) \in \operatorname{IFITC}(R / I)$.

Proof. Let $x+I, y+I \in R / I$ and $i \in I$ such that $x \neq i \neq y$.
(1)

$$
\begin{aligned}
& \mu_{A^{*}}((x+I)-(y+I))=\mu_{A^{*}}((x-y)+I)=T\left(\mu_{A}(x-y), \mu_{A}(i)\right) \\
\geq & T\left(T\left(\mu_{A}(x), \mu_{A}(y)\right), \mu_{A}(i)\right)=T\left(T\left(\mu_{A}(x), \mu_{A}(y)\right), T\left(\mu_{A}(i), \mu_{A}(i)\right)\right) \\
= & T\left(T\left(\mu_{A}(x), \mu_{A}(i)\right), T\left(\mu_{A}(y), \mu_{A}(i)\right)\right)=T\left(\mu_{A^{*}}(x+I), \mu_{A^{*}}(y+I)\right) .
\end{aligned}
$$

(2) $\mu_{A^{*}}((x+I)(y+I))=\mu_{A^{*}}((x y)+I)=T\left(\mu_{A}(x y), \mu_{A}(i)\right) \geq T\left(\mu_{A}(x), \mu_{A}(i)\right)=\mu_{A^{*}}(x+I)$.
(3)

$$
\begin{aligned}
& \nu_{A^{*}}((x+I)-(y+I))=\nu_{A^{*}}((x-y)+I)=C\left(\nu_{A}(x-y), \nu_{A}(i)\right) \\
\leq & C\left(C\left(\nu_{A}(x), \nu_{A}(y)\right), \nu_{A}(i)\right)=C\left(C\left(\nu_{A}(x), \nu_{A}(y)\right), C\left(\nu_{A}(i), \nu_{A}(i)\right)\right) \\
= & C\left(C\left(\nu_{A}(x), \nu_{A}(i)\right), C\left(\nu_{A}(y), \nu_{A}(i)\right)\right)=C\left(\nu_{A^{*}}(x+I), \nu_{A^{*}}(y+I)\right) .
\end{aligned}
$$

(4) $\nu_{A^{*}}((x+I)(y+I))=\nu_{A^{*}}((x y)+I)=C\left(\nu_{A}(x y), \nu_{A}(i)\right) \leq C\left(\nu_{A}(x), \nu_{A}(i)\right)=\nu_{A^{*}}(x+$ I).

## Acknowledgment

We would like to thank the reviewers for carefully reading the manuscript and making several helpful comments to increase the quality of the paper.

## References

[1] Abu Osman, M. T. (1987) On some products of fuzzy subgroups, Fuzzy Sets and Systems, 24, 79-86.
[2] Ajmal, N. \& Thomas, K. V. (1995) The lattice of fuzzy ideals of a ring, Fuzzy Sets and Systems, 74, 371-379.
[3] Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87-96.
[4] Atanassov, K. T. (1994) New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61, 137-142.
[5] Banejee, B. \& Basnet, D. Kr. (2003) Intuitionistic fuzzy subrings and ideals, J. Fuzzy Math., 11(1), 139-155.
[6] Biswas, R. (1989) Intuitionistic fuzzy subrings, Mathematical Forum, 10, 37-46.
[7] Buckley, J. J. \& Eslami, E. (2002) An introduction to fuzzy logic and fuzzy sets, SpringerVerlag, Berlin Heidelberg GmbH.
[8] Coker, D. (1997) An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88, 81-99.
[9] Coker, D. \& Es, A. H. (1995) On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 3(4), 899-909.
[10] Gurcay, H., Coker, D. \& Es, A. H. (1997) On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 5(2), 355-378.
[11] Hur, K. , Jang, S. Y. \& Kang, H. W. (2003) Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems, 3(1), 72-77.
[12] Hur, K., Kang, H. W. \& Song, H. K. (2003) Intuitionistic fuzzy subgroups and subrings, Honam Math. J. , 25(1), 19-41.
[13] Lee, S. J. \& Lee, E. P. (2000) The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc., 37(1), 63-76.
[14] Majumdar, S.\& Sultana, Q. S. (1996) The lattice of fuzzy ideals of a ring, Fuzzy Sets and Systems, 81, 271-273.
[15] Malik, D. S., Mordeson, J. N. \& Sen, M. K. (1997) Fundamentals of Abstract Algebra, McGraw Hill.
[16] Zadeh, L. A. (1965) Fuzzy sets, Inform. and Control, 8, 338-353.
[17] Zhang, Q. \& Meng, G. (2000) On the lattice of fuzzy ideals of a ring, Fuzzy Sets and Systems, 112, 349-353.

