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Abstract: Generalized Nets (GNs) and intuitionistic fuzzy logic are brie°y reminded.

Three versions of the First type of an intuitionistic fuzzy GN are de¯ned and some of their

properties are discussed.

1 Introduction

Generalized Nets (GNs) are extensions of Petri nets and Petri net modi¯cations and

extensions. They were de¯ned in 1982 (see [3]).

Intuitionistic Fuzzy Sets (IFSs), de¯ned in 1983, are extensions of fuzzy sets (see [5]).

They have two degrees - degree of membership (¹) and degree of non-membership (º) such

that their sum can be smaller that 1, i.e., a third degree - of uncertainty (¼ = 1¡¹¡º) - can
be de¯ned, too. A variety of operations, relations and operators (from modal, topological

and others types) are de¯ned over the IFSs.

GNs have so far over 20 extensions. The ¯rst one, proposed in 1985 (see [1]), was

called Intuitionistic Fuzzy GN (IFGN). The transition condition predicates of these nets

are estimated in intuitionistic fuzzy sense. Later, this extension was called IFGN of type

1, because IFGN of a second type was de¯ned. Two other extensions are described in [6].

2 Short introduction to Generalized Nets (GNs)

Since 1983 more than 600 papers being related to the concept of the GNs have been

published. A part of them is included in the bibliography [7].

32



GNs are de¯ned as extensions of the ordinary Petri nets and their modi¯cations, but

in a way that is principaly di®erent from the ways of de¯ning the other types of Petri

nets. The additional components in the GN-de¯nition provide more and greater modelling

possibilities and determine the place of the GNs among the individual types of Petri nets,

similar to the place of the Turing machine among the ¯nite automata.

The ¯rst basic di®erence between GNs and the ordinary Petri nets is the \place {

transition" relation [8]. Here, the transitions are objects of a more complex nature. A

transition may contain m input and n output places where m;n ¸ 1.
Formally, every transition is described by a seven-tuple (Fig. 1):

Z = hL0; L00; t1; t2; r;M; i;

where:

...

...

...
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l01 l -

l0i l -

l0m l -

r
?

...

...

...

...

l001l-

l00jl-

l00nl-

Fig. 1

(a) L0 and L00 are ¯nite, non-empty sets of places (the transition's input and output

places, respectively); for the transition in Fig. 1 these are L0 = fl01; l02; : : : ; l0mg and L00 =
fl001 ; l002 ; : : : ; l00ng;
(b) t1 is the current time-moment of the transition's ¯ring;

(c) t2 is the current value of the duration of its active state;

(d) r is the transition's condition determining which tokens will pass (or transfer) from

the transition's inputs to its outputs; it has the form of an Index Matrix (IM; see [2]):

r =

l001 : : : l
00
j : : : l

00
n

l01
... ri;j

l0i (ri;j ¡ predicate )
... (1 · i · m; 1 · j · n)
l0m

;

ri;j is the predicate that corresponds to the i-th input and j-th output places. When

its truth value is \true", a token from i-th input place transfers to j-th output place;

otherwise, this is not possible;
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(e) M is an IM of the capacities of transition's arcs:

M =

l001 : : : l
00
j : : : l

00
n

l01
... mi;j

l0i (mi;j ¸ 0¡ natural number )
... (1 · i · m; 1 · j · n)
l0m

;

(f) is an object of a form similar to a Boolean expression. It may contain as variables

the symbols that serve as labels for transition's input places, and is an expression built

up from variables and the Boolean connectives ^ and _ whose semantics is de¯ned as
follows:

^(li1 ; li2 ; : : : ; liu) ¡ every place li1; li2; : : : ; liu must contain at least one token;

_(li1 ; li2 ; : : : ; liu) ¡ there must be at least one token in all places li1 ; li2 ; : : : ; liu;where

fli1; li2; : : : ; liug ½ L0:

When the value of a type (calculated as a Boolean expression) is \true", the transition

can become active, otherwise it cannot.

The ordered four-tuple

E = hhA; ¼A; ¼L; c; f; µ1; µ2i; hK; ¼K ; µKi; hT; to; t¤i; hX;©; bii

is called a Generalized Net (GN) if:

(a) A is a set of transitions;

(b) ¼A is a function giving the priorities of the transitions, i.e., ¼A : A ! N , where

N = f0; 1; 2; : : :g [ f1g;
(c) ¼L is a function giving the priorities of the places, i.e., ¼L : L ! N , where L =

pr1A[ pr2A, and priX is the i-th projection of the n-dimensional set, where n 2 N; n ¸ 1
and 1 · k · n (obviously, L is the set of all GN-places);
(d) c is a function giving the capacities of the places, i.e., c : L! N ;

(e) f is a function that calculates the truth values of the predicates of the transition's

conditions (for the GN described here let the function f have the value \false" or \true",

i.e., a value from the set f0; 1g;
(f) µ1 is a function giving the next time-moment when a given transition Z can be

activated, i.e., µ1(t) = t0, where pr3Z = t; t0 2 [T; T + t¤] and t · t0. The value of this

function is calculated at the moment when the transition terminates its functioning;

(g) µ2 is a function giving the duration of the active state of a given transition Z, i. e.,

µ2(t) = t
0, where pr4Z = t 2 [T; T + t¤] and t0 ¸ 0. The value of this function is calculated

at the moment when the transition starts its functioning;
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(h) K is the set of the GN's tokens. In some cases, it is convenient to consider it as a

set of the form
K = [

l2QI
Kl ;

where Kl is the set of tokens that enter the net from place l, and QI is the set of all input

places of the net;

(i) ¼K is a function giving the priorities of the tokens, i.e., ¼K : K ! N ;

(j) µK is a function giving the time-moment when a given token can enter the net, i.e.,

µK(®) = t, where ® 2 K and t 2 [T; T + t¤];
(k) T is the time-moment when the GN starts functioning. This moment is determined

with respect to a ¯xed (global) time-scale;

(l) to is an elementary time-step, related to the ¯xed (global) time-scale;

(m) t¤ is the duration of the GN functioning;

(n) X is the set of all initial characteristics the tokens can receive on entering the net;

(o) © is a characteristic function that assigns new characteristics to every token when

it makes the transfer from an input to an output place of a given transition.

(p) b is a function giving the maximum number of characteristics a given token can

receive, i.e., b : K ! N .

A given GN may lack some of the above components. In these cases, any missing

component will be omitted. The GNs of this kind form a special class of GNs called

\reduced GNs".

The de¯nition of a GN is more complex than the de¯nition of a Petri net. Thus the

algorithms of the tokens' transfer in the GNs are also more complex. On the other hand,

as the GNs are more general, the algorithms for movement of tokens in the GN are more

general than those of Petri nets. In a Petri net implementation, parallelism is reduced to

a sequential ¯ring of its transitions and the order of their activation in the general case is

probabilistic or dependent on the transitions' priorities, if such exist. The GN's algorithms

provide a means for a more detailed modelling of the described process. The algorithms for

the token's transfer take into account the priorities of the places, transitions and tokens, i.

e., they are more precise.

Operations and relations are de¯ned as over the transitions, as well as over the GNs in

general.

The operations, de¯ned over the GNs - \union", \intersection", \composition" and

\iteration" (see [3]) do not exist anywhere else in the Petri net theory. They can be

transferred to virtually all other types of Petri nets (obviously with some modi¯cations

concerning the structure of the corresponding nets). These operations are useful for

constructing GN models of real processes.
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In [3] di®erent properties of the operations over transitions and GNs are formulated

and proved. Certain relations over transitions and GNs are also introduced there.

Now, the operator aspect has an important place in the theory of GNs. Six types of

operators are de¯ned in its framework. Every operator assigns to a given GN a new GN

with some desired properties. The comprised groups of operators are:

² global (G¡) operators,
² local (P¡) operators,
² hierarchical (H¡) operators,
² reducing (R¡) operators,
² extending (O¡) operators,
² dynamic (D¡) operators.
The global operators transform, according to a de¯nite procedure, a whole given net or

all its components of a given type.

The second type of operators are local operators. They transform single components

of some of the transitions of a given GN.

The third type of operators are the hierarchical operators.They are of ¯ve di®erent

types and fall into two groups according to their way of action:

² expanding a given GN (H1, H3, H5 and H6),
² shrinking a given GN (H2, H4 and H5),
The H5 operator can be expanding as well as shrinking, depending on its form. According

to their object of action the operators fall again into three groups:

² acting upon or giving as a result a place (H1 and H2),
² acting upon or giving as a result a transition (H3 H4 and H5);
² acting upon a token (H6).
The next (fourth) group of operators de¯ned over the GNs produce a new, reduced GN

from a given net. They would allow the construction of elements of the classes of reduced

GNs. To ¯nd the place of a given Petri net modi¯cation among the classes of reduced GNs,

it must be compared to some reduced GN obtained by an operator of this type. These

operators are called reducing operators.

Operators from the ¯fth group extend a given GN. These operators are called extending

operators. The extending operators are associated with every one of the GN extensions.

Finally, the operators from the last - sixth - group are related to the ways the GN

functions, so that they are called dynamic operators. These are the following:

² operators D(1; i) that determine the procedure of evaluating the transition condition
predicates (1 · i · 18);
² operators governing token splitting: one that allows (D(2; 1)) and one that prohibits
splitting (D(2; 2)), respectively; and operators governing the union of tokens having a
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common predecessor: an allowing one (D(2; 4)) and a prohibiting one (D(2; 3));

² operators that determine the strategies of the tokens transfer: one by one at a time vs.
all in groups (the operator D(3; 2); the operator D(3; 1) does not allow this);

² operators related to the ways of evaluating the transition condition predicates: predicate
checking (D(4; 1)); changing the predicates by probability functions with corresponding

forms (D(4; 2)); expert estimations of predicate values (D(4; 3)); predicates depending on

solutions of optimization problems (e.g., transportation problem) (D(4; 4)).

The operators of di®erent types, as well as the others that can be de¯ned, have a major

theoretical and practical value. On the one hand, they help us study the properties and the

behaviour of GNs. On the other hand, they facilitate the modelling of many real processes.

The basic properties of the operators are discussed in [3, 4].

3 The basics of Intuitionistic Fuzzy Logic (IFL)

To each proposition (in the classical sense) we can assign its truth value: truth { denoted

by 1, or falsity { 0. In the case of fuzzy logic this truth value is a real number in the

interval [0; 1] and may be called \truth degree" of a particular proposition. Here we add

one more value { \falsity degree" { which will be in the interval [0; 1] as well. Thus two real

numbers, ¹(p) and º(p), are assigned to the proposition p with the following constraint to

hold (see [5]):

¹(p) + º(p) · 1:

Let this assignment be provided by an evaluation function V de¯ned over a set of

propositions S in such a way that:

V (p) = h¹(p); º(p)i:

For the needs of the discussion below we shall de¯ne the notion of intuitionistic fuzzy

tautology (IFT) through:

\A is an IFT" if and only if, if V (A) = ha; bi, then a ¸ b.

4 Short remarks on the extensions of the di®erent

types of IFGNs

First, we shall note that the GNs have more than 20 conservative extensions. An ordinary

GN can represent the functioning and the results of work of each of these extensions.

The ¯rst type of GN-extensions, related to the IFSs, is Intuitionistic fuzzy GN of

type 1 (IFGN1). Its transition condition predicates are evaluated over the set [0; 1]2
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with a degree of truth (¹) and a degree of falsity (º) for which ¹+ º · 1 (see [3]). If ri;j is
the predicate, corresponding to the condition for a token transfer from i-th input to j-th

output place, then this transfer is possible, if

¹(ri;j) > 0 or º(ri;j) < 1:

Now, we shall introduce another rule for token transfer. It corresponds to the idea for

the IFT and has the form: if ri;j is the predicate, corresponding to the condition for a

token transfer from i-th input to j-th output place, then the transfer is possible, if

¹(ri;j) ¸ º(ri;j):

Third modi¯cation is the following. Let the two constants ®; ¯ 2 [0; 1] be given, so that
® ¸ ¯. The rule has the form: if ri;j is the predicate, corresponding to the condition for a
token transfer from i-th input to j-th output place, then the transfer is possible, if

¹(ri;j) ¸ ® and º(ri;j) · ¯:

It is obvious that if a token can transfer following the third rule (for given ®; ¯ satisfying

the above conditions, then the token will transfer from the same input and to the same

output places, following the second rule, because from

¹(ri;j) ¸ ® ¸ ¯ ¸ º(ri;j)

it follows that ¹(ri;j) ¸ º(ri;j); i.e., h¹(ri;j); º(ri;j)i is an IFT.
On the other hand, if h¹(ri;j); º(ri;j)i is an IFT, then

¹(ri;j) ¸ º(ri;j) ¸ 0;

and

1 ¸ 1¡ ¹(ri;j) ¸ º(ri;j):

Of course, if the third rule can be realized, then the ¯rst one can be realized, too.

In [3] some logical operator are de¯ned over the class of all GNs. Here we shall modify

them in the following form. Let place l that is input place of transition Z be ¯xed. We can

note this fact by l 2 pr1Z and the predicate between places l and l0 - by rl;l0 . We de¯ne
the sets

¼1(l) = fl0 = (l0 2 pr2Z) & (¹(rl;l0) > 0 & º(rl;l0) < 1)g:

¼2(l) = fl0 = (l0 2 pr2Z) & (¹(rl;l0) ¸ º(rl;l0))g:

When the real numbers ®; ¯ 2 [0; 1], satisfying the above conditions, are given and the
third rule is use, then we de¯ne the set

¼3(l) ´ ¼3;®;¯(l) = fl0 = (l0 2 pr2Z) & (¹(rl;l0) ¸ ® & º(rl;l0) · ¯)g:
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Let LE be the set of all places of GN E, Q
I
E and Q

O
E be the input and output places of

E.

The following assertion is valid.

Theorem 1. For every l 2 LE ¡QOE and for every ®; ¯ 2 [0; 1]:

¼2(l) ½ ¼1(l); (1)

¼3(l) ½ ¼2(l): (2)

Proof. Let m 2 ¼2(l). Therefore, l 2 pr1Z, m 2 pr2Z and for

f(rl;m) = h¹(rl;m); º(rl;m)i

is valid inequality

¹(rl;m) ¸ º(rl;m):

If º(rl;m) = 0, then ¹(rl;m) ¸ 0 and º(rl;m) < 1, i.e., the ¯rst rule is valid, too. Hence
m 2 ¼1(l):
If

0 < º(rl;m) · ¹(rl;m) < 1;

then again we obtain that m 2 ¼1(l): Therefore, inclusion (1) is valid.
Inclusion (2) is proved by analogy.

Let us de¯ne for l 2 QIE and for i-th rule for i = 1; 2:

¦i(l) = fl0 = (l0 2 QOE) & (9l1; l2; :::; ls 2 LE)(l1 = l&ls = l0

&(8j : 2 · j · s)(lj 2 ¼i(lj¡1)))g:

When the real numbers ®; ¯ 2 [0; 1] are given and the third rule is use, then we de¯ne
the set

¦3(l) ´ ¦3;®;¯(l) = fl0 = (l0 2 QOE) & (9l1; l2; :::; ls 2 LE)(l1 = l&ls = l0

&(8j : 2 · j · s)(lj 2 ¼3;®;¯(lj¡1)))g:

Similarly to above, we can prove the following

Theorem 2. For every l 2 QIE and for every ®; ¯ 2 [0; 1]:

¦2(l) ½ ¦1(l);

¦3(l) ½ ¦2(l):
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