11th Int. Workshop on IFSs, Banská Bystrica, Slovakia, 30 Oct. 2015 Notes on Intuitionistic Fuzzy Sets ISSN 1310–4926 Vol. 21, 2015, No. 5, 11–15

A note on new distances between intuitionistic fuzzy sets

Peter Vassilev

Institute of Biophysics and Biomedical Engineering Bulgarian Academy of Sciences 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria e-mail: peter.vassilev@gmail.com

Abstract: In the present paper new distances between intuitionistic fuzzy sets are proposed. If the sets are fuzzy they agree with the well known distance defined over fuzzy sets.

Keywords: Intuitionistic fuzzy sets, Distance, Hesitancy, Degree of definiteness.

AMS Classification: 03E72.

1 Introduction

To reflect better the uncertainty and vagueness inherent in real world, in 1965 L. Zadeh introduced the notion of fuzzy sets [6]. In 1983, K. Atanassov introduced the extended notion of intuitionistic fuzzy sets (cf. [1]).

We will briefly remind some basic definitions and notions.

Let X be a universe set, $A \subset X$, $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ are mappings reflecting the degree of membership and non-membership of the element $x \in X$ to the set A, respectively, such that for every x it is fulfilled that

$$\mu_A(x) + \nu_A(x) < 1 \tag{1}$$

Definition 1. Following [1], we call the set

$$A^* \stackrel{\text{def}}{=} \{x, \mu_A(x), \nu_A(x) | x \in E\}$$

an intuitionistic fuzzy set (IFS) and the mapping $\pi_A: X \to [0,1]$, which is given in explicit form by

$$\pi_A(x) \stackrel{\text{def}}{=} 1 - \mu_A(x) - \nu_A(x), \tag{2}$$

is called **intuitionistic fuzzy index** (sometimes also: *hesitancy margin* or degree of *indeterminacy*) of the element x (cf. [4]).

Further we denote the class of all IFSs defined over a universe set X by IFS(X).

Definition 2 (cf. [1, p.134, (7.1)], [4, p.43, Definition 3.4]). For a given IFS $A \in IFS(X)$ the degree of definiteness of the element x is said to be:

$$\sigma_{1,A}(x) \stackrel{\text{def}}{=} \mu_A(x) + \nu_A(x) \tag{3}$$

This degree provides an intuitive measure of the certainty of the knowledge established for the element. Indeed, it is easy to see that it is directly related to *intuitionistic fuzzy index*, since for all $x \in X$, we have

$$\mu_A(x) + \nu_A(x) + \pi_A(x) = 1 \tag{4}$$

and hence

$$\sigma_{1,A}(x) = 1 - \pi_A(x).$$

Definition 3 (cf. [4, p. 39, Definition 3.1.]). We say that $d: IFS(X) \times IFS(X) \to [0, +\infty)$ is a distance between intuitionistic fuzzy sets if the following conditions are fulfilled:

$$d(U,V) = 0 \Leftrightarrow U = V \tag{5}$$

$$d(U,V) = d(V,U) \tag{6}$$

$$d(U,V) + d(V,Q) \ge d(U,Q) \tag{7}$$

If a distance is such that $d_N : \mathrm{IFS}(X) \times \mathrm{IFS}(X) \to [0,1]$, we say that d_N is a normalized distance.

Definition 4. If only the condition (5) from Definition 3 is not true for d^* , i.e. $d^*(U, V) = 0$ for some $U \neq V$, we say that d^* is a pseudodistance.

Remark 1 (cf. [2, p. 113]). Pseudodistances are often used in practice because they can sometimes detect certain "similarities" better than a true distance. Therefore, for particular task it may be beneficial to construct a distance of the form:

$$d' = d + d^*$$
.

where d is a proper distance and d^* is a pseudodistance. The fact that d' is a distance follows directly from the definitions.

For simplicity we suppose further that X is discrete and $X = \{x_1, x_2, \dots, x_n\}$. One of the most used distances used between intuitionistic fuzzy sets is the following (normalized) Hamming distance:

$$l(A,B) = \frac{1}{2n} \sum_{i=1}^{n} |\mu_A(x_i) - \mu_B(x_i)| + |\nu_A(x_i) - \nu_B(x_i)|$$
 (8)

Szmidt and Kacprzyk [3] proposed the following three term distance:

$$l_{\text{IFS}}^{1}(A,B) = \frac{1}{2n} \sum_{i=1}^{n} |\mu_{A}(x_{i}) - \mu_{B}(x_{i})| + |\nu_{A}(x_{i}) - \nu_{B}(x_{i})| + |\pi_{A}(x_{i}) - \pi_{B}(x_{i})|$$
(9)

2 The proposed distances

In the present study we were looking into ways to incorporate the information about the element derived from *degree of definiteness* into the distance. Based on this idea we propose the following

Theorem 1. Let $X = \{x_1, x_2, \dots, x_n\}$. Then $d_{\sigma} : \mathrm{IFS}(X) \times \mathrm{IFS}(X) \to [0, 1]$ given for any $A, B \in \mathrm{IFS}(X)$ by:

$$d_{\sigma}(A,B) = \frac{1}{2n} \sum_{i=1}^{n} |\sigma_{1,A}(x_i)\mu_A(x_i) - \sigma_{1,B}(x_i)\mu_B(x_i)| + |\sigma_{1,A}(x_i)\nu_A(x_i) - \sigma_{1,B}(x_i)\nu_B(x_i)|$$
(10)

is a distance.

Proof. The fact that d_{σ} satisfies (6) is obvious. Let us consider (5). We shall prove that it is satisfied. If A = B it is obvious that $d_{\sigma}(A, B) = 0$. It remains to prove that if $d_{\sigma}(A, B) = 0$, then A = B.

It is well known that (see [5, p.11]):

$$|a| + |b| \ge |a+b| \tag{11}$$

Denoting for brevity:

$$a_{i} = \sigma_{1,A}(x_{i})\mu_{A}(x_{i}) - \sigma_{1,B}(x_{i})\mu_{B}(x_{i});$$

$$b_{i} = \sigma_{1,A}(x_{i})\nu_{A}(x_{i}) - \sigma_{1,B}(x_{i})\nu_{B}(x_{i});$$

$$c_{i} = a_{i} + b_{i} = (\sigma_{1,A}(x_{i}))^{2} - (\sigma_{1,B}(x_{i}))^{2}$$
(12)

Using (11) and (10) we obtain:

$$d_{\sigma}(A,B) = \frac{1}{2n} \sum_{i=1}^{n} |a_i| + |b_i| \ge \frac{1}{2n} \sum_{i=1}^{n} |c_i|$$
(13)

Hence, for $d_{\sigma}(A, B) = 0$ it is required that for all i:

$$|c_i| = 0.$$

However, this is only possible when $\sigma_{1,A}(x_i) = \sigma_{1,B}(x_i)$ for all i. But in such case it is easy to see that $|a_i| = |b_i| = 0$ if and only if $\mu_A(x_i) = \mu_B(x_i)$ and $\nu_A(x_i) = \nu_B(x_i)$ for all i. Hence, $d_{\sigma}(A,B) = 0$ implies A = B. Therefore, $d_{\sigma}(A,B)$ satisfies (5).

The validity of (7) follows directly from (11).
$$\Box$$

Corollary 1. Let f be a continuous monotounously increasing function such that f(0) = 0 and f(1) = 1. Then

$$d_{f(\sigma)}(A,B) = \frac{1}{2n} \sum_{i=1}^{n} (|f(\sigma_{1,A}(x_i))\mu_A(x_i) - f(\sigma_{1,B}(x_i))\mu_B(x_i)| + |f(\sigma_{1,A}(x_i))\nu_A(x_i) - f(\sigma_{1,B}(x_i))\nu_B(x_i)|)$$
(14)

is a distance.

Proof. The fact that $d_{f(\sigma)}$ satisfies (6) is obvious. The validity of (7) follows directly from (11). Let us consider (5). Using again (11), we obtain that a necessary condition for $d_{f(\sigma)}(A, B) = 0$, is $|f(\sigma_{1,A}(x_i))\sigma_{1,A}(x_i) - f(\sigma_{1,B}(x_i))\sigma_{1,B}(x_i)| = 0$. But this is only possible if $\sigma_{1,A}(x_i) = \sigma_{1,B}(x_i)$, since f is monotonously increasing. Hence, $f(\sigma_{1,A}(x_i)) = f(\sigma_{1,B}(x_i))$, i.e. $d_{f(\sigma)}(A, B) = 0$ only when $\mu_A(x) = \mu_B(x)$, $\nu_A(x) = \nu_B(x)$, that is when A = B.

Corollary 2. Let

$$\sigma(A) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \sigma_{1,A}(x_i).$$

Then

$$d_{\sigma_{\text{avg}}}(A, B) = \frac{1}{2n} \sum_{i=1}^{n} (|\sigma(A)\mu_A(x_i) - \sigma(B)\mu_B(x_i)| + |\sigma(A)\nu_A(x_i) - \sigma(B)\nu_B(x_i)|)$$
(15)

is a distance.

Proof. The fact that $d_{\sigma_{avg}}(A,B)$ satisfies (6) is obvious. The validity of (7) follows directly from (11). Let us consider (5). Using (11), we obtain that a necessary condition for $d_{\sigma_{avg}}(A,B)=0$, is $|\sigma(A)\sigma_{1,A}(x_i)-\sigma(B)\sigma_{1,B}(x_i)|=0$. Without loss of generality assume that $\sigma(A)>\sigma(B)$. Then there exists at least one x_0 , such that $\sigma_{1,A}(x_0)>\sigma_{1,B}(x_0)$, i.e. $|\sigma(A)\sigma_{1,A}(x_0)-\sigma(B)\sigma_{1,B}(x_0)|>0$, hence, $d_{\sigma_{avg}}(A,B)>0$. Thus we must have $\sigma(A)=\sigma(B)$, then if the necessary condition is to hold $\sigma_{1,A}(x_i)=\sigma_{1,B}(x_i)$, for all i and consequently, we conclude (as in the proofs above) that $d_{\sigma_{avg}}(A,B)=0$ only when A=B.

Corollary 3. We can define a three-term analogue of the above analogues to equation (9). In other words the following are normalized distances.

$$d'_{\sigma}(A,B) = d_{\sigma}(A,B) + \frac{1}{2n} \sum_{i=1}^{n} |\sigma_{1,A}(x_i)\pi_A(x_i) - \sigma_{1,B}(x_i)\pi_B(x_i)|$$
 (16)

$$d'_{f(\sigma)}(A,B) = d_{f(\sigma)}(A,B) + \frac{1}{2n} \sum_{i=1}^{n} (|f(\sigma_{1,A}(x_i))\pi_A(x_i) - f(\sigma_{1,B}(x_i))\pi_B(x_i)|$$
(17)

$$d'_{\sigma_{\text{avg}}}(A,B) = d_{\sigma_{\text{avg}}}(A,B) + \frac{1}{2n} \sum_{i=1}^{n} |\sigma(A)\pi_{A}(x_{i}) - \sigma(B)\pi_{B}(x_{i})|$$
(18)

Proof. The fact that all are distances follows from Remark 1 and Definitions 3 and 4. We will show that all are normalized, i.e. that they cannot obtain value greater than 1. Using the fact that (see [5, p.11]):

$$|a| - |b| \le |a + b|,$$

and having in mind (4), we obtain, respectively:

$$d'_{\sigma}(A, B) \le \frac{1}{2n} \sum_{i=1}^{n} (\sigma_{1,A}(x_i) + \sigma_{1,B}(x_i)) \le 1$$

$$d'_{f(\sigma)}(A,B) \le \frac{1}{2n} \sum_{i=1}^{n} (f(\sigma_{1,A}(x_i)) + f(\sigma_{1,B}(x_i))) \le 1$$

$$d'_{\sigma_{\text{avg}}}(A, B) \le \frac{1}{2}(\sigma(A) + \sigma(B)) \le 1.$$

Remark 2. The proposed here distances coincides with the distance between fuzzy sets given by:

$$d(A,B) = \frac{1}{n} \sum_{i=1}^{n} |\mu_A(x_i) - \mu_B(x_i)|$$

since for fuzzy sets $|\mu_A(x_i) - \mu_B(x_i)| = |\nu_A(x_i) - \nu_B(x_i)|$ and $\sigma_{1,A}(x_i) = \sigma_{1,B}(x_i) = 1$.

3 Conclusion

In the present paper we have proposed new distances between intuitionistic fuzzy sets which utilize membership, non-membership and the degree of definiteness. We showed that these distances coincide with the distance between fuzzy sets. In future work we will study more of their properties.

Acknowledgments

The author is thankful for the support provided by the Bulgarian National Science Fund under Grant DFNI-I-02-5 "InterCriteria Analysis A New Approach to Decision Making".

References

- [1] Atanassov, K. T. (2012) On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
- [2] Atanassov, K., P. Vassilev & R. Tsvetkov (2013) *Intuitionistic Fuzzy Sets, Measures and Integrals.* "Prof. M. Drinov" Acad. Publ. House, Sofia
- [3] Szmidt, E. & J. Kacprzyk (1997) On measuring distances between intuitionistic fuzzy sets. *Notes on Intuitionistic Fuzzy Sets*, 3(4), 1–13.
- [4] Szmidt, E. (2014) *Distances and Similarities in Intuitionistic Fuzzy Sets*. Springer, Heidelberg.
- [5] Abramowitz, M. & I. A. Stegun (Eds.) (1972) *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*. New York, Dover Publications.
- [6] Zadeh, L. A. (1965) Fuzzy sets. *Information and Control*, 8, 338–353.