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1 Introduction

Let us have a finite number of setsAi, i ∈ N . The probability of their union is given by a formula

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)−
n∑

i<j

P(Ai ∩ Aj) + . . .+ (−1)n+1P

(
n⋂

i=1

Ai

)
,

which is also called ’the inclusion-exclusion principle’. As it was shown in [3], after defining
the union and intersection, respectively other operations and a probability, we can simply replace
the word ’set’ by an ’IF-set’. Aim of this paper is to simplify the proof of Grzegorzewski and to
generalize the inclusion-exslusion principle for larger set of probabilities.

May (Ω, S) be a measurable space, where Ω is a nonempty set and S is a σ-algebra of subsets
of Ω. By IF-set (see [1]) we mean each pair

A = (µA, νA),

where µA, νA : Ω→ [0, 1] and following condition is satisfied:

µA + νA ≤ 1.

µA is called a membership function, νA is a non-membership function. In addition, if µA and νA
are Borel measurable, i. e.

I ⊂ R is an interval⇒ µ−1
A (I) ∈ S, ν−1

A (I) ∈ S,
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then A is an IF-event. The union and intersection of IF-sets are defined by this way:

A ∪B = (µA ∨ µB, νA ∧ νB), A ∩B = (µA ∧ µB, νA ∨ νB).

Let us denote the family of all IF-events by F . We will use Łukasiewicz connectives for A,B ∈
F :

A⊕B = ((µA + µB) ∧ 1, (νA + νB − 1) ∨ 0),

A�B = ((νA + νB − 1) ∨ 0, (µA + µB) ∧ 1).

A partial ordering on F is defined by the formula

A ≤ B ⇔ µA ≤ µB, νA ≥ νB.

Evidently

(0Ω, 1Ω) is the least element of (F ,≤),
(1Ω, 0Ω) is the greatest element of (F ,≤).

The following definition comes from quantum theory ([2]).

Definition 1.1. A mapping m : F → [0, 1] is called a state of the following properties are
satisfied:

1. m((1Ω, 0Ω)) = 1, m((0Ω, 1Ω)) = 0,

2. A�B = (0Ω, 1Ω)⇒ m((A⊕B)) = m(A) +m(B),

3. An ↗ A⇒ m(An)↗ m(A),

∀A,B,Ai ∈ F (i = 1, . . . , n).

Grzegorzewski ([3]) defined a probability of an IF-event A as an interval

P(A) =

[∫
Ω

µAdP, 1−
∫

Ω

νAdP

]
, (1)

where P is a probability measure over Ω. More general, axiomatic approach to probability on
IF-events was created by Riečan ([5]):

Definition 1.2. A mapping P : F → J , where J = {[a, b]; a, b ∈ R, a ≤ b} is called a proba-
bility if the following conditions hold:

1. P((1Ω, 0Ω)) = [1, 1], P((0Ω, 1Ω)) = [0, 0],

2. A�B = (0Ω, 1Ω)⇒ P((A⊕B)) = P(A) + P(B),

3. An ↗ A⇒ P(An)↗ P(A).

Of course, P(A) is an interval on R, let us denote it by

P(A) =
[
P[(A),P](A)

]
.

It is easy to see, that the following proposition holds:
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Proposition 1.3. LetP : F → J be defined byP(A) =
[
P[(A),P](A)

]
. ThenP is a probability

if and only if P[,P] : F → [0, 1] are states.

Hence, we will be interested in states in this paper. In [2], Ciungu and Riečan have proved the
following theorem (see also [6]):

Theorem 1.4. For any state m : F → [0, 1] there exist probability measures P, Q : S → [0, 1]

and α ∈ [0, 1] such that

m((µA, νA)) =

∫
Ω

µAdP + α

(
1−

∫
Ω

(µA + νA)dQ

)
.

This Theorem will be used as a main idea of our proof.

Corollary 1.5. If

P[(A) =

∫
Ω

µAdP + α

(
1−

∫
Ω

(µA + νA)dQ

)
,

P](A) =

∫
Ω

µAdR + β

(
1−

∫
Ω

(µA + νA)dS

)
and we put Q = R = S, α = 0 and β = 1, we obtain the Grzegorzewski definition of probability.

2 The inclusion-exclusion principle

It is natural to start with a probability of an union and intersection of IF-events, but this was
already done in [3] and [4]. We will only summarize the main results without proofs here.

Theorem 2.1. Let Ai be IF-events, Ai = (µAi
, νAi

), i = 1, . . . , n. Let m be a state and
m((µA, νA)) =

∫
Ω
µAdP + α

(
1−

∫
Ω

(µA + νA)dQ
)
∀A ∈ F . Then m satisfies the inclusion-

exclusion principle, i. e.

m

(
n⋃

i=1

Ai

)
=

n∑
i=1

m(Ai)−
n∑

i<j

m(Ai ∩ Aj) + . . .+ (−1)n+1m

(
n⋂

i=1

Ai

)
.

The proof can be found in [4].

Corollary 2.2. From (1.3) and (2.1) we get the assertion

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)−
n∑

i<j

P(Ai ∩ Aj) + . . .+ (−1)n+1P

(
n⋂

i=1

Ai

)
.

Further, we will work with so called product operations between IF-events:

A+B = (µA + µB − µAµB, νAνB),

A ·B = (µAµB, νA + νB − νAνB).

We will use a notation:
n∑

i=1

Ai = A1 + A2 + . . .+ An,
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n∏
i=1

Ai = A1 · A2 · . . . · An.

Then the following theorem holds:

Theorem 2.3. Let Ai be IF-events, Ai = (µAi
, νAi

), i = 1, . . . , n. Let m be a state and
m((µA, νA)) =

∫
Ω
µAdP + α

(
1−

∫
Ω

(µA + νA)dQ
)
∀A ∈ F . Then m satisfies the inclusion-

exclusion principle, i. e.

m

(
n∑

i=1

Ai

)
=

n∑
i=1

m(Ai)−
n∑

i<j

m(Ai · Aj) + . . .+ (−1)n+1m

(
n∏

i=1

Ai

)
.

Proof. To make the notation more simple, let us denote

a� b = a+ b− ab.

a� b = ab, ∀a, b ∈ R.

Hence, we can write
A+B = (µA � µB, νA � νB),

A ·B = (µA � µB, νA � νB).

Moreover, operations � and � are both associative, so for a finite number of IF-sets A1, . . . , An

we can write
n∑

i=1

Ai = (�n
i=1µAi

,�n
i=1νAi

),

n∏
i=1

Ai = Ai(�
n
i=1µAi

,�n
i=1νAi

).

One can easily see, that there holds

�n
i=1ai =

n∑
i=1

ai −
n∑

i<j

ai � aj + . . . (−1)n+1 �n
i=1 ai, (2)

�n
i=1ai =

n∑
i=1

ai −
n∑

i<j

ai � aj + . . . (−1)n+1 �n
i=1 ai, (3)

∀ai ∈ R, i = 1, . . . , n, n ∈ N.

Seeing that the values of the membership and non-membership function are real numbers too,
we can use the formulas (2) and (3) for them as well.

We will need the following equality:

0 = (1− 1)n =

(
n

0

)
−
(
n

1

)
+ . . .+ (−1)n

(
n

n

)
,

and hence

1 =

(
n

1

)
−
(
n

2

)
+ . . .+ (−1)n+1

(
n

n

)
.
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That’s why we will sometimes write
(
n

1

)
instead of simple n. Let us have a look at individual

summands on the right site of the assertion.

n∑
i=1

m(Ai) =
n∑

i=1

∫
Ω

µAi
dP +

n∑
n=1

α

(
1−

∫
Ω

(µAi
+ νAi

)dQ

)
n∑

i=1

m(Ai) =

∫
Ω

(
n∑

i=1

µAi

)
dP + α

((
n

1

)
−
∫

Ω

(
n∑

n=1

(µAi
+ νAi

)

)
dQ

)

Similarly

n∑
i<j

m(Ai · Aj) =

∫
Ω

(
n∑

i<j

µAi
� µAj

)
dP + α

((
n

2

)
−
∫

Ω

(
n∑

i<j

(µAi
� µAj

+ νAi
� νAj

)

)
dQ

)
...

m

(
n∏

i=1

Ai

)
=

∫
Ω

(�n
i=1µAi

) dP + α

((
n

n

)
−
∫

Ω

(�n
i=1µAi

+ �n
i=1νAi

) dQ

)
Put A =

∑n
i=1Ai and sum the previous equalities, multiplying every second one by −1 (to

get the right site of the assertion).

n∑
i=1

m(Ai)−
n∑

i<j

m(Ai · Ai) + . . .+ (−1)n+1m

(
n∏

i=1

Ai

)
=

=

∫
Ω

(
n∑

i=1

µAi
−

n∑
i<j

µAi
� µAj

+ . . .+ (−1)n+1 �n
i=1 µAi

)
dP+

+α

((
n

1

)
−
(
n

2

)
+ . . .+ (−1)n+1

(
n

n

)
−

−
∫

Ω

(
n∑

i=1

(µAi
+ νAi

)−
n∑

i<j

(µAi
� µAi

+ νAi
� νAi

) + . . .+ (−1)n+1(�n
i=1µAi

+ �n
i=1νAi

)

)
dQ =

=

∫
Ω

µAdP + α

(
1−

∫
Ω

(µA + νA)dQ

)
= m(A)

Corollary 2.4. From (1.3) and (2.3) we get the assertion

P

(
n∑

i=1

Ai

)
=

n∑
i=1

P(Ai)−
n∑

i<j

P(Ai · Aj) + . . .+ (−1)n+1P

(
n∏

i=1

Ai

)
.
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3 Conclusion

IF-events are a generalization of fuzzy sets, by IF-event A we mean a pair (µA, νA), where µA is
a membership function of A, µA is a non-membership function of A and µA + νA ≤ 1. In the
classic set theory the well-known inclusion-exclusion principle holds, i. e.

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)−
n∑

i<j

P(Ai ∩ Aj) + . . .+ (−1)n+1P

(
n⋂

i=1

Ai

)
,

where Ai are sets and P is a probability function. There was shown in [3], that the same principle
holds for IF-events as well. Moreover, we can replace the union and intersection of IF-sets by the
operations

A+B = (µA + µB − µAµB, νAνB),

A ·B = (µAµB, νA + νB − νAνB),

where A = (µA, νA), B = (µb, νB) are IF-sets. Then the inclusion-exclusion principle will have
a form

P

(
n∑

i=1

Ai

)
=

n∑
i=1

P(Ai)−
n∑

i<j

P(Ai · Aj) + . . .+ (−1)n+1P

(
n∏

i=1

Ai

)
.

In this contribution, the mentioned theorems have been proved using a new method and for larger
set of probabilities.

References

[1] Atanassov, K. Intuitionistic Fuzzy Sets: Theory and Applications, Springer-Verlag, Heidel-
berg, 1999.
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[5] Riečan, B. Probability theory on IF events, In: Algebraic and Proof-Theoretic Aspects on
Non-classical Logics (S. Aguzzolii, et al., eds.), papers in honor of Daniele Mundici on the
occasion of his 60th birthday, Lecture Notes on Comput. Sci., Springer, Berlin, 2007, pp.
290–308.
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