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1 Introduction

Let us have a finite number of sets A;, ¢ € N. The probability of their union is given by a formula
P (U Ai> =Y P(A) =) P(ANA)+...+(=1)"'P (ﬂ Ai> :
i=1 i=1 i<j =1

which is also called ’the inclusion-exclusion principle’. As it was shown in [3], after defining
the union and intersection, respectively other operations and a probability, we can simply replace
the word ’set’ by an ’IF-set’. Aim of this paper is to simplify the proof of Grzegorzewski and to
generalize the inclusion-exslusion principle for larger set of probabilities.

May (€2, S) be a measurable space, where (2 is a nonempty set and .S is a o-algebra of subsets
of €). By IF-set (see [1]) we mean each pair

A= (#Aa VA)7
where 14,74 :  — [0, 1] and following condition is satisfied:
pa+va <1

14 1s called a membership function, v4 is a non-membership function. In addition, if ;4 and v4
are Borel measurable, i. e.

I C Risaninterval = p,* (1) € S, v;'(I) € S,
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then A is an [F-event. The union and intersection of IF-sets are defined by this way:
AUB = (uaV pug,va Avg), ANB = (ua A pp,va V vp).

Let us denote the family of all IF-events by . We will use Lukasiewicz connectives for A, B €
F:
A®B = ((pa+ps) N1, (va+vp —1)V0),

AOB=(va+ve—1)VO0,(ua+ us)N1).
A partial ordering on F is defined by the formula
A< B <& pa<up, va > vp.
Evidently

(0q, 1g) is the least element of (F, <),
(1, 0q) is the greatest element of (F, <).

The following definition comes from quantum theory ([2]).

Definition 1.1. A mapping m : F — [0,1] is called a state of the following properties are
satisfied:

1. m((1g,00)) = 1, m((0g, 1a)) =0,
2. A® B = (0g, 10) = m((A @ B)) = m(A) +m(B),
3. An S A= m(4,) S m(A),

VA,B,A € F(i=1,....n).

Grzegorzewski ([3]) defined a probability of an IF-event A as an interval

Py = | [ maara— [ vaar|. 1)
Q Q

where P is a probability measure over ). More general, axiomatic approach to probability on
IF-events was created by Riecan ([5]):

Definition 1.2. A mapping P : F — J, where J = {[a,b];a,b € R,a < b} is called a proba-
bility if the following conditions hold:

1. P((1a,00)) = [1,1], P((0e, 1a)) = [0,0],

2. A0 B=(0g,1qg) = P((A® B)) =P(A) + P(B),

3. A, A= P(A,) S P(A).

Of course, P(A) is an interval on R, let us denote it by
P(A) = [P’(A), PHA)] .

It is easy to see, that the following proposition holds:
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Proposition 1.3. Let P : F — J be defined by P(A) = [P’(A), P*(A)]. Then P is a probability
if and only if P, P* : F — [0, 1] are states.

Hence, we will be interested in states in this paper. In [2], Ciungu and Rie€an have proved the
following theorem (see also [6]):

Theorem 1.4. For any state m : F — |0, 1] there exist probability measures P, () : S — [0, 1]
and o € [0, 1] such that

mlleava) = [ adPa (1= [t vaaQ).

This Theorem will be used as a main idea of our proof.

Corollary 1.5. If

P (A) :/gzMAdP+a (1—/9(u,4+u4)d@>,
Pﬁ(A):/Q;LAdR+6(1—/Q(uA+VA)dS)

and we put () = R = S, o = 0 and = 1, we obtain the Grzegorzewski definition of probability.

2 The inclusion-exclusion principle

It is natural to start with a probability of an union and intersection of IF-events, but this was
already done in [3] and [4]. We will only summarize the main results without proofs here.

Theorem 2.1. Let A; be IF-events, A; = (pa,,va,), © = 1,...,n. Let m be a state and
m((pa,va)) = [opadP + o (1= [(pa+va)dQ) VA € F. Then m satisfies the inclusion-
exclusion principle, i. e.

m (U Ai> => m(A) = > m(AinA)+.. +(=1)""m (ﬂ Ai) .
i=1 i=1 i<j =1
The proof can be found in [4].
Corollary 2.2. From (1.3) and (2.1) we get the assertion
P (U Ai> =Y P(A) =) P(ANA)+...+(-1)"'P (ﬂ Ai> :
i=1 i=1 i<j =1

Further, we will work with so called product operations between IF-events:
A+ B = (pta+ pB — prapis, vavp),

A-B = (jtaptp,Va + Vp — ValB).
We will use a notation:

A=A+ Ayt .+ A,

i=1



[[a=4-4...- A,
=1
Then the following theorem holds:

Theorem 2.3. Let A; be IF-events, A; = (pa,,va,), © = 1,...,n. Let m be a state and

m((pa,va)) = [qpadP + o (1= [ (pa+va)dQ) VA € F. Then m satisfies the inclusion-
exclusion principle, i. e.

(8] = S-S+ (1)
=1 =1 1<J
Proof. To make the notation more simple, let us denote

aBb=a+b— ab.

alJb=ab, Ya,b € R.

Hence, we can write
A+ B = (uaBug,vavg),

A-B=(uaug,vaBug).

Moreover, operations H and [] are both associative, so for a finite number of IF-sets A,..., A,
we can write

ZA z IH’A z 1VAi)7

HA A z 1:uAm lyAi)'

One can easily see, that there holds

nia; = Zal Zal Haj+...(=)"" 7, a, 2)
1<J

" a; = Zal Zal Ba;+...(=)"" 8, a, 3)
1<j

Va, e R, i=1,...,n, n € N.

Seeing that the values of the membership and non-membership function are real numbers too,
we can use the formulas (2) and (3) for them as well.
We will need the following equality:

0_(1_1)n_(g>_(711)+...+(—1)”<2),

and hence



That’s why we will sometimes write ( 7; ) instead of simple n. Let us have a look at individual

summands on the right site of the assertion.
Sl =3 [ paar 3 (1 [ o+ vara)
i=1 i=1 /O n=1 Q

gm(Ai) = /Q (é ,UAZ) dP + o (< | ) —/Q (i(ufxi —FVAi)) dQ)

n=1

Similarly

im(Ai'Aj) = /Q (i“/‘i DMAJ) dP + a (( Z ) —/Q (i(/mi O pia, + va, Eﬂl/A)) dQ)

1<J 1<j 1<j

m (ﬁ Az’) = /Q (L pa,) dP + (( Z ) - /Q (CIy poa, + EB?:luAi)dQ)

Put A = >"" | A; and sum the previous equalities, multiplying every second one by —1 (to
get the right site of the assertion).

Zm(Al) — Zm(AZ . Az) 4+ ...+ (_1)n+1m (HAz) _

1<J

Q \ =1

1<jg

() (5 ) e ()

n

_/ (Z(’MAZ' + VAi) - Z(ILLA'L ol Ha; + Va, H VAz‘) +..+ (_1)n+1(m?:1:uAi + EE‘?l”x‘h)) dQ =
Q

i=1 i<j

= / padP + « (1 — /(,uA + I/A)dQ) =m(A)
Q Q
Corollary 2.4. From (1.3) and (2.3) we get the assertion

p(Sa)- S-Sy oo (fla).

1<j



3 Conclusion

IF-events are a generalization of fuzzy sets, by IF-event A we mean a pair (114, 4), Where fi4 is
a membership function of A, y4 is a non-membership function of A and ps + v4 < 1. In the
classic set theory the well-known inclusion-exclusion principle holds, i. e.

P (U Ai> - iP(Ai) - iP(Ai AA)+ ...+ (~1)Hp (ﬁ Ai> ,

i<j

where A; are sets and P is a probability function. There was shown in [3], that the same principle
holds for IF-events as well. Moreover, we can replace the union and intersection of IF-sets by the
operations

A+ B = (pua+ pp — ptaps, vave),
A-B= (,UA,UB, Vpa+vp — VAVB>»

where A = (pa,v4), B = (m,vp) are IF-sets. Then the inclusion-exclusion principle will have
a form

P (zn: Ai> = zn:P(Ai) - iP(Ai o A N ot ) e > (ﬁ Ai> .

In this contribution, the mentioned theorems have been proved using a new method and for larger
set of probabilities.
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