The inclusion-exclusion principle for product operations on IF-events

Mária Kuková

Faculty of Natural Sciences, Matej Bel University, Department of Mathematics
Tajovského 40, Banská Bystrica, Slovakia
e-mail: maria.kukova@umb.sk

Abstract

The paper contains an extension of inclusion-exclusion principle published in [3] for a larger set of probabilities. A new method of the proof is presented as well.

Keywords: Inclusion-exclusion principle, IF-events.
AMS Classification: 60A86

1 Introduction

Let us have a finite number of sets $A_{i}, i \in N$. The probability of their union is given by a formula

$$
\mathcal{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathcal{P}\left(A_{i}\right)-\sum_{i<j}^{n} \mathcal{P}\left(A_{i} \cap A_{j}\right)+\ldots+(-1)^{n+1} \mathcal{P}\left(\bigcap_{i=1}^{n} A_{i}\right)
$$

which is also called 'the inclusion-exclusion principle'. As it was shown in [3], after defining the union and intersection, respectively other operations and a probability, we can simply replace the word 'set' by an 'IF-set'. Aim of this paper is to simplify the proof of Grzegorzewski and to generalize the inclusion-exslusion principle for larger set of probabilities.

May (Ω, S) be a measurable space, where Ω is a nonempty set and S is a σ-algebra of subsets of Ω. By IF-set (see [1]) we mean each pair

$$
A=\left(\mu_{A}, \nu_{A}\right),
$$

where $\mu_{A}, \nu_{A}: \Omega \rightarrow[0,1]$ and following condition is satisfied:

$$
\mu_{A}+\nu_{A} \leq 1 .
$$

μ_{A} is called a membership function, ν_{A} is a non-membership function. In addition, if μ_{A} and ν_{A} are Borel measurable, i. e.

$$
I \subset R \text { is an interval } \Rightarrow \mu_{A}^{-1}(I) \in S, \nu_{A}^{-1}(I) \in S,
$$

then A is an IF-event. The union and intersection of IF-sets are defined by this way:

$$
A \cup B=\left(\mu_{A} \vee \mu_{B}, \nu_{A} \wedge \nu_{B}\right), A \cap B=\left(\mu_{A} \wedge \mu_{B}, \nu_{A} \vee \nu_{B}\right)
$$

Let us denote the family of all IF-events by \mathcal{F}. We will use Łukasiewicz connectives for $A, B \in$ \mathcal{F} :

$$
\begin{aligned}
& A \oplus B=\left(\left(\mu_{A}+\mu_{B}\right) \wedge 1,\left(\nu_{A}+\nu_{B}-1\right) \vee 0\right), \\
& A \odot B=\left(\left(\nu_{A}+\nu_{B}-1\right) \vee 0,\left(\mu_{A}+\mu_{B}\right) \wedge 1\right)
\end{aligned}
$$

A partial ordering on \mathcal{F} is defined by the formula

$$
A \leq B \Leftrightarrow \mu_{A} \leq \mu_{B}, \nu_{A} \geq \nu_{B}
$$

Evidently

$$
\begin{aligned}
& \left(0_{\Omega}, 1_{\Omega}\right) \text { is the least element of }(\mathcal{F}, \leq) \\
& \left(1_{\Omega}, 0_{\Omega}\right) \text { is the greatest element of }(\mathcal{F}, \leq) .
\end{aligned}
$$

The following definition comes from quantum theory ([2]).
Definition 1.1. A mapping $m: \mathcal{F} \rightarrow[0,1]$ is called a state of the following properties are satisfied:

1. $m\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=1, m\left(\left(0_{\Omega}, 1_{\Omega}\right)\right)=0$,
2. $A \odot B=\left(0_{\Omega}, 1_{\Omega}\right) \Rightarrow m((A \oplus B))=m(A)+m(B)$,
3. $A_{n} \nearrow A \Rightarrow m\left(A_{n}\right) \nearrow m(A)$,
$\forall A, B, A_{i} \in \mathcal{F}(i=1, \ldots, n)$.
Grzegorzewski ([3]) defined a probability of an IF-event A as an interval

$$
\begin{equation*}
\mathcal{P}(A)=\left[\int_{\Omega} \mu_{A} d P, 1-\int_{\Omega} \nu_{A} d P\right] \tag{1}
\end{equation*}
$$

where P is a probability measure over Ω. More general, axiomatic approach to probability on IF-events was created by Riečan ([5]):

Definition 1.2. A mapping $\mathcal{P}: \mathcal{F} \rightarrow \mathcal{J}$, where $\mathcal{J}=\{[a, b] ; a, b \in R, a \leq b\}$ is called a probability if the following conditions hold:

1. $\mathcal{P}\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=[1,1], \mathcal{P}\left(\left(0_{\Omega}, 1_{\Omega}\right)\right)=[0,0]$,
2. $A \odot B=\left(0_{\Omega}, 1_{\Omega}\right) \Rightarrow \mathcal{P}((A \oplus B))=\mathcal{P}(A)+\mathcal{P}(B)$,
3. $A_{n} \nearrow A \Rightarrow \mathcal{P}\left(A_{n}\right) \nearrow \mathcal{P}(A)$.

Of course, $\mathcal{P}(A)$ is an interval on R, let us denote it by

$$
\mathcal{P}(A)=\left[\mathcal{P}^{b}(A), \mathcal{P}^{\sharp}(A)\right] .
$$

It is easy to see, that the following proposition holds:

Proposition 1.3. Let $\mathcal{P}: \mathcal{F} \rightarrow \mathcal{J}$ be defined by $\mathcal{P}(A)=\left[\mathcal{P}^{b}(A), \mathcal{P}^{\sharp}(A)\right]$. Then \mathcal{P} is a probability if and only if $\mathcal{P}^{b}, \mathcal{P}^{\sharp}: \mathcal{F} \rightarrow[0,1]$ are states.

Hence, we will be interested in states in this paper. In [2], Ciungu and Riečan have proved the following theorem (see also [6]):

Theorem 1.4. For any state $m: \mathcal{F} \rightarrow[0,1]$ there exist probability measures $P, Q: S \rightarrow[0,1]$ and $\alpha \in[0,1]$ such that

$$
m\left(\left(\mu_{A}, \nu_{A}\right)\right)=\int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d Q\right)
$$

This Theorem will be used as a main idea of our proof.

Corollary 1.5. If

$$
\begin{aligned}
& \mathcal{P}^{b}(A)=\int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d Q\right), \\
& \mathcal{P}^{\sharp}(A)=\int_{\Omega} \mu_{A} d R+\beta\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d S\right)
\end{aligned}
$$

and we put $Q=R=S, \alpha=0$ and $\beta=1$, we obtain the Grzegorzewski definition of probability.

2 The inclusion-exclusion principle

It is natural to start with a probability of an union and intersection of IF-events, but this was already done in [3] and [4]. We will only summarize the main results without proofs here.

Theorem 2.1. Let A_{i} be IF-events, $A_{i}=\left(\mu_{A_{i}}, \nu_{A_{i}}\right), i=1, \ldots, n$. Let m be a state and $m\left(\left(\mu_{A}, \nu_{A}\right)\right)=\int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d Q\right) \forall A \in \mathcal{F}$. Then m satisfies the inclusionexclusion principle, i. e.

$$
m\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} m\left(A_{i}\right)-\sum_{i<j}^{n} m\left(A_{i} \cap A_{j}\right)+\ldots+(-1)^{n+1} m\left(\bigcap_{i=1}^{n} A_{i}\right) .
$$

The proof can be found in [4].
Corollary 2.2. From (1.3) and (2.1) we get the assertion

$$
\mathcal{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathcal{P}\left(A_{i}\right)-\sum_{i<j}^{n} \mathcal{P}\left(A_{i} \cap A_{j}\right)+\ldots+(-1)^{n+1} \mathcal{P}\left(\bigcap_{i=1}^{n} A_{i}\right) .
$$

Further, we will work with so called product operations between IF-events:

$$
\begin{aligned}
A+B & =\left(\mu_{A}+\mu_{B}-\mu_{A} \mu_{B}, \nu_{A} \nu_{B}\right) \\
A \cdot B & =\left(\mu_{A} \mu_{B}, \nu_{A}+\nu_{B}-\nu_{A} \nu_{B}\right)
\end{aligned}
$$

We will use a notation:

$$
\sum_{i=1}^{n} A_{i}=A_{1}+A_{2}+\ldots+A_{n}
$$

$$
\prod_{i=1}^{n} A_{i}=A_{1} \cdot A_{2} \cdot \ldots \cdot A_{n}
$$

Then the following theorem holds:
Theorem 2.3. Let A_{i} be IF-events, $A_{i}=\left(\mu_{A_{i}}, \nu_{A_{i}}\right), i=1, \ldots, n$. Let m be a state and $m\left(\left(\mu_{A}, \nu_{A}\right)\right)=\int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d Q\right) \forall A \in \mathcal{F}$. Then m satisfies the inclusionexclusion principle, i. e.

$$
m\left(\sum_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} m\left(A_{i}\right)-\sum_{i<j}^{n} m\left(A_{i} \cdot A_{j}\right)+\ldots+(-1)^{n+1} m\left(\prod_{i=1}^{n} A_{i}\right) .
$$

Proof. To make the notation more simple, let us denote

$$
\begin{gathered}
a \boxplus b=a+b-a b . \\
a \boxtimes b=a b, \forall a, b \in \mathbb{R} .
\end{gathered}
$$

Hence, we can write

$$
\begin{gathered}
A+B=\left(\mu_{A} \boxplus \mu_{B}, \nu_{A} \boxtimes \nu_{B}\right), \\
A \cdot B=\left(\mu_{A} \boxtimes \mu_{B}, \nu_{A} \boxplus \nu_{B}\right) .
\end{gathered}
$$

Moreover, operations \boxplus and \square are both associative, so for a finite number of IF-sets A_{1}, \ldots, A_{n} we can write

$$
\begin{aligned}
& \sum_{i=1}^{n} A_{i}=\left(\boxplus_{i=1}^{n} \mu_{A_{i}}, \square_{i=1}^{n} \nu_{A_{i}}\right), \\
& \prod_{i=1}^{n} A_{i}=A_{i}\left(\square_{i=1}^{n} \mu_{A_{i}}, \boxplus_{i=1}^{n} \nu_{A_{i}}\right) .
\end{aligned}
$$

One can easily see, that there holds

$$
\begin{gather*}
\boxplus_{i=1}^{n} a_{i}=\sum_{i=1}^{n} a_{i}-\sum_{i<j}^{n} a_{i} \boxtimes a_{j}+\ldots(-1)^{n+1} \boxplus_{i=1}^{n} a_{i}, \tag{2}\\
\oplus_{i=1}^{n} a_{i}=\sum_{i=1}^{n} a_{i}-\sum_{i<j}^{n} a_{i} \boxplus a_{j}+\ldots(-1)^{n+1} \boxplus_{i=1}^{n} a_{i}, \tag{3}\\
\forall a_{i} \in \mathbb{R}, i=1, \ldots, n, n \in \mathbb{N} .
\end{gather*}
$$

Seeing that the values of the membership and non-membership function are real numbers too, we can use the formulas (2) and (3) for them as well.

We will need the following equality:

$$
0=(1-1)^{n}=\binom{n}{0}-\binom{n}{1}+\ldots+(-1)^{n}\binom{n}{n},
$$

and hence

$$
1=\binom{n}{1}-\binom{n}{2}+\ldots+(-1)^{n+1}\binom{n}{n}
$$

That's why we will sometimes write $\binom{n}{1}$ instead of simple n. Let us have a look at individual summands on the right site of the assertion.

$$
\begin{aligned}
\sum_{i=1}^{n} m\left(A_{i}\right) & =\sum_{i=1}^{n} \int_{\Omega} \mu_{A_{i}} d P+\sum_{n=1}^{n} \alpha\left(1-\int_{\Omega}\left(\mu_{A_{i}}+\nu_{A_{i}}\right) d Q\right) \\
\sum_{i=1}^{n} m\left(A_{i}\right) & =\int_{\Omega}\left(\sum_{i=1}^{n} \mu_{A_{i}}\right) d P+\alpha\left(\binom{n}{1}-\int_{\Omega}\left(\sum_{n=1}^{n}\left(\mu_{A_{i}}+\nu_{A_{i}}\right)\right) d Q\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\sum_{i<j}^{n} m\left(A_{i} \cdot A_{j}\right) & =\int_{\Omega}\left(\sum_{i<j}^{n} \mu_{A_{i}} \boxminus \mu_{A_{j}}\right) d P+\alpha\left(\binom{n}{2}-\int_{\Omega}\left(\sum_{i<j}^{n}\left(\mu_{A_{i}} \boxminus \mu_{A_{j}}+\nu_{A_{i}} \boxplus \nu_{A_{j}}\right)\right) d Q\right) \\
\vdots & \\
m\left(\prod_{i=1}^{n} A_{i}\right) & =\int_{\Omega}\left(\square_{i=1}^{n} \mu_{A_{i}}\right) d P+\alpha\left(\binom{n}{n}-\int_{\Omega}\left(\square_{i=1}^{n} \mu_{A_{i}}+\boxplus_{i=1}^{n} \nu_{A_{i}}\right) d Q\right)
\end{aligned}
$$

Put $A=\sum_{i=1}^{n} A_{i}$ and sum the previous equalities, multiplying every second one by -1 (to get the right site of the assertion).

$$
\begin{gathered}
\sum_{i=1}^{n} m\left(A_{i}\right)-\sum_{i<j}^{n} m\left(A_{i} \cdot A_{i}\right)+\ldots+(-1)^{n+1} m\left(\prod_{i=1}^{n} A_{i}\right)= \\
=\int_{\Omega}\left(\sum_{i=1}^{n} \mu_{A_{i}}-\sum_{i<j}^{n} \mu_{A_{i}} \boxminus \mu_{A_{j}}+\ldots+(-1)^{n+1} \oplus_{i=1}^{n} \mu_{A_{i}}\right) d P+ \\
+\alpha\left(\binom{n}{1}-\binom{n}{2}+\ldots+(-1)^{n+1}\binom{n}{n}-\right. \\
-\int_{\Omega}\left(\sum_{i=1}^{n}\left(\mu_{A_{i}}+\nu_{A_{i}}\right)-\sum_{i<j}^{n}\left(\mu_{A_{i}} 凹 \mu_{A_{i}}+\nu_{A_{i}} \boxplus \nu_{A_{i}}\right)+\ldots+(-1)^{n+1}\left(\oplus_{i=1}^{n} \mu_{A_{i}}+\boxplus_{i=1}^{n} \nu_{A_{i}}\right)\right) d Q= \\
=\int_{\Omega} \mu_{A} d P+\alpha\left(1-\int_{\Omega}\left(\mu_{A}+\nu_{A}\right) d Q\right)=m(A)
\end{gathered}
$$

Corollary 2.4. From (1.3) and (2.3) we get the assertion

$$
\mathcal{P}\left(\sum_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathcal{P}\left(A_{i}\right)-\sum_{i<j}^{n} \mathcal{P}\left(A_{i} \cdot A_{j}\right)+\ldots+(-1)^{n+1} \mathcal{P}\left(\prod_{i=1}^{n} A_{i}\right) .
$$

3 Conclusion

IF-events are a generalization of fuzzy sets, by IF-event A we mean a pair $\left(\mu_{A}, \nu_{A}\right)$, where μ_{A} is a membership function of A, μ_{A} is a non-membership function of A and $\mu_{A}+\nu_{A} \leq 1$. In the classic set theory the well-known inclusion-exclusion principle holds, i. e.

$$
\mathcal{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathcal{P}\left(A_{i}\right)-\sum_{i<j}^{n} \mathcal{P}\left(A_{i} \cap A_{j}\right)+\ldots+(-1)^{n+1} \mathcal{P}\left(\bigcap_{i=1}^{n} A_{i}\right),
$$

where A_{i} are sets and \mathcal{P} is a probability function. There was shown in [3], that the same principle holds for IF-events as well. Moreover, we can replace the union and intersection of IF-sets by the operations

$$
\begin{aligned}
A+B & =\left(\mu_{A}+\mu_{B}-\mu_{A} \mu_{B}, \nu_{A} \nu_{B}\right) \\
A \cdot B & =\left(\mu_{A} \mu_{B}, \nu_{A}+\nu_{B}-\nu_{A} \nu_{B}\right)
\end{aligned}
$$

where $A=\left(\mu_{A}, \nu_{A}\right), B=\left(\mu_{b}, \nu_{B}\right)$ are IF-sets. Then the inclusion-exclusion principle will have a form

$$
\mathcal{P}\left(\sum_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathcal{P}\left(A_{i}\right)-\sum_{i<j}^{n} \mathcal{P}\left(A_{i} \cdot A_{j}\right)+\ldots+(-1)^{n+1} \mathcal{P}\left(\prod_{i=1}^{n} A_{i}\right) .
$$

In this contribution, the mentioned theorems have been proved using a new method and for larger set of probabilities.

References

[1] Atanassov, K. Intuitionistic Fuzzy Sets: Theory and Applications, Springer-Verlag, Heidelberg, 1999.
[2] Ciungu, L., B. Riečan, General form of probabilities on IF-sets. Fuzzy Logic and Applications, Proc. 8th Int. Workshop WILF, Lecture Notes in Artificial Intelligence, 2009, pp. 101-107.
[3] Grzegorzewski, P. The Inclusion-Exclusion Principle for IF - Events, Information Sciences 181 (2011) 536 - 546.
[4] Kuková, M. The Inclusion-Exclusion Principle for IF-events, Information Sciences (submitted)
[5] Riečan, B. Probability theory on IF events, In: Algebraic and Proof-Theoretic Aspects on Non-classical Logics (S. Aguzzolii, et al., eds.), papers in honor of Daniele Mundici on the occasion of his 60th birthday, Lecture Notes on Comput. Sci., Springer, Berlin, 2007, pp. 290-308.
[6] Riečan, B., J. Petrovičová, On the Łukasiewicz Probability Theory on IF-sets, Tatra Mt. Math. Publ. 46 (2010) 125-146.

