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1 Basic definitions and preliminaries

Here we recall some basic definitions and properties:

Definition 1 (cf. [1]). Let A ⊂ X and µA : X → [0, 1] and νA : X → [0, 1] are mappings such
that for any x ∈ X the inequality

µA(x) + νA(x) ≤ 1 (1)

holds. The set Ã = {〈x, µA(x), νA(x)〉 |x ∈ E} is called intuitionistic fuzzy set (or Atanassov
set) over E.

The mappings µA and νA are called membership and non-membership function, respectively.
The mapping πA : X → [0, 1], given by:

πA(x)
def
= 1− µA(x)− νA(x),

is called hesitancy function.
The class of all intuitionistic fuzzy sets over X is further denoted by IFS(X).

Definition 2. Let A,B ∈ IFS(X). If we have

min
x∈X

πA(x)− πB(x) = max
x∈X

πA(x)− πB(x) = 0,

we say that the sets A and B are isohesitant. The class of all isohesitant IFSs defined over X for
a fixed mapping π̃ : X → [0, 1] will be further denoted by IFS(X, π̃).
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Definition 3 (cf. [1]). Let A,B ∈ IFS(X). We say that A is strictly included in B and we write
A ⊂ B iff for all x ∈ X 

µA(x) ≤ µB(x)

1− νA(x) ≤ 1− νB(X)

1− νA(x) + µA(x) < 1− νB(x) + µB(x)

(2)

Remark 1. We note that for A,B ∈ IFS(X, π̃) this condition is reduced to

µA(x) < µB(x). (3)

Definition 4 (cf. [1]). Let A,B ∈ IFS(X). We say that A is included in B and we write A ⊆ B

iff for all x ∈ X {
µA(x) ≤ µB(x)

1− νA(x) ≤ 1− νB(X)
(4)

Remark 2. We note that for A,B ∈ IFS(X, π̃) this condition is reduced to

µA(x) ≤ µB(x), (5)

which coincides with the definition of inclusion for fuzzy sets (FS) [3]. In fact fuzzy sets are a
special subclass of the isohesitant intuitionistic fuzzy sets with π̃ ≡ 0.

2 Some properties of the Isohesitant
Intuitionistic Fuzzy Sets

Let X be a universe set and m be a measure chosen such that 0 < m(X) < ∞.
When X is discrete this measure is taken as the counting measure. Further, without loss of
generality we will assume that m(X) = 1 (i.e. we will use a modified measure m∗ = 1

m(X)
m but

we will keep the denotation m for simplicity).
For any A,B ∈ IFS(X, π̃) we will assign an Intuitionistic Fuzzy Pair (IFP) for the validity of

the inclusion A ⊆ B. In order to do so, let us define the following two sets XA⊆B, XB⊂A.

XA⊆B = {x|µA(x) ≤ µB(x)} (6)

XB⊂A = {x|µA(x) > µB(x)} (7)

It is obvious that these sets are disjoint (non-overlapping) and that their union is exactly X,
i.e. we have

m(XA⊆B) +m(XB⊂A) = m(X) = 1.

Further, let us denote for A,B ∈ IFS(X, π̃) by

A ⊆u,v B

the fact that V (A ⊆ B) = 〈u, v〉, with u = m(XA⊆B), v = m(XB⊂A) (cf. [2]).
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Let A,B,C ∈ IFS(X, π̃) and let us know that

A ⊆u,v B ⊆u1,v1 C.

Does the above imply A ⊆min(u,u1),max(v,v1) C?
Unfortunately, the answer in general is no.
However, we can still provide some lower and upper bounds for the validity and non-validity

of A ⊆ C based on u, u1, v and v1.

Theorem 1. Let A,B,C ∈ IFS(X, π̃) and let

A ⊆u,v B ⊆u1,v1 C.

If we denote by 〈u2, v2〉 the value of V (A ⊆ C), we have that:

u2 ∈ [max(0, u+ u1 − 1),min(1, 2− v − v1)] (8)

v2 ∈ [max(0, v + v1 − 1),min(1, 2− u− u1)]. (9)

Proof. We have

u = m(XA⊆B), v = m(XB⊂A), u1 = m(XB⊆C), v1 = m(XC⊂B).

Obviously

m(X \ (XB⊂A ∩XC⊂B)) ≥ u2 ≥ m(XA⊆B ∩XB⊆C)

m(X \ (XA⊆B ∩XB⊆C)) ≥ v2 ≥ m(XB⊂A ∩XC⊂B)
(10)

But the left sides of (10) can be rewritten as (recall that we chose m(X) = 1)

m(X)−m(XB⊂A ∩XC⊂B) = 1−m(XB⊂A ∩XC⊂B) ≥ u2

m(X)−m(XA⊆B ∩XB⊆C) = 1−m(XA⊆B ∩XB⊆C) ≥ v2

But for any two sets X1, X2 ⊆ X we have:

m(X) ≥ m(X1 ∪X2) = m(X1) +m(X2)−m(X1 ∩X2),

which can be rewritten as:

m(X1 ∩X2) ≥ m(X1) +m(X2)−m(X), (11)

Hence,
−(m(X1) +m(X2)− 1) + 1 ≥ −m(X1 ∩X2) + 1,

which yields:

2−m(XB⊂A)−m(XC⊂B) ≥ 1−m(XB⊂A ∩XC⊂B) ≥ u2

2−m(XA⊆B)−M(XB⊆C) ≥ 1−m(XA⊆B ∩XB⊆C) ≥ v2.

Now as to the right hand sides of (10), let us again consider (11). We have

u2 ≥ m(XA⊆B ∩XB⊆C) ≥ m(XA⊆B) +m(XB⊆C)− 1,

v2 ≥ m(XB⊂A ∩XC⊂B) ≥ m(XB⊂A) +m(XC⊂B)− 1.

This completes the proof.

29



Remark 3. In the case of continuous universe X, it is possible that

A ⊆〈1,0〉 6≡ A ⊂ B,

i.e. when there is a subset of X with measure zero on which the two sets do not agree. In the case
of discrete universes these two are equivalent.

3 Conclusion

In the present paper, we considered the class of isohesitant intuitionistic fuzzy sets and we studied
a relation of inclusion with IFPs, which although not transitive in the general case, can sometimes
yield sufficient inference, e.g. for a decision making process.
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