18th Int. Conf. on IFSs, Sofia, 10–11 May 2014 Notes on Intuitionistic Fuzzy Sets ISSN 1310–4926 Vol. 20, 2014, No. 2, 27–30

Note on isohesitant intuitionistic fuzzy sets

Peter Vassilev and Todor Stoyanov

Institute of Biophysics and Biomedical Engineering
Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria

e-mails: peter.vassilev@gmail.com, todor@biomed.bas.bg

Abstract: In the present paper, the class of all intuitionistic fuzzy sets defined over a universe set X, with the same hesitancy distribution is considered. Some properties and notions are defined and studied.

Keywords: Intuitionistic fuzzy sets, Hesitancy function.

AMS Classification: 03E72.

1 Basic definitions and preliminaries

Here we recall some basic definitions and properties:

Definition 1 (cf. [1]). Let $A \subset X$ and $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ are mappings such that for any $x \in X$ the inequality

$$\mu_A(x) + \nu_A(x) < 1 \tag{1}$$

holds. The set $\tilde{A} = \{\langle x, \mu_A(x), \nu_A(x) \rangle | x \in E\}$ is called intuitionistic fuzzy set (or Atanassov set) over E.

The mappings μ_A and ν_A are called membership and non-membership function, respectively. The mapping $\pi_A: X \to [0, 1]$, given by:

$$\pi_A(x) \stackrel{\text{def}}{=} 1 - \mu_A(x) - \nu_A(x),$$

is called hesitancy function.

The class of all intuitionistic fuzzy sets over X is further denoted by IFS(X).

Definition 2. Let $A, B \in IFS(X)$. If we have

$$\min_{x \in X} \pi_A(x) - \pi_B(x) = \max_{x \in X} \pi_A(x) - \pi_B(x) = 0,$$

we say that the sets A and B are isohesitant. The class of all isohesitant IFSs defined over X for a fixed mapping $\tilde{\pi}: X \to [0,1]$ will be further denoted by IFS $(X, \tilde{\pi})$.

Definition 3 (cf. [1]). Let $A, B \in IFS(X)$. We say that A is strictly included in B and we write $A \subset B$ iff for all $x \in X$

$$\begin{cases}
\mu_A(x) \le \mu_B(x) \\
1 - \nu_A(x) \le 1 - \nu_B(X) \\
1 - \nu_A(x) + \mu_A(x) < 1 - \nu_B(x) + \mu_B(x)
\end{cases}$$
(2)

Remark 1. We note that for $A, B \in IFS(X, \tilde{\pi})$ this condition is reduced to

$$\mu_A(x) < \mu_B(x). \tag{3}$$

Definition 4 (cf. [1]). Let $A, B \in IFS(X)$. We say that A is included in B and we write $A \subseteq B$ iff for all $x \in X$

$$\begin{cases} \mu_A(x) \le \mu_B(x) \\ 1 - \nu_A(x) \le 1 - \nu_B(X) \end{cases} \tag{4}$$

Remark 2. We note that for $A, B \in IFS(X, \tilde{\pi})$ this condition is reduced to

$$\mu_A(x) \le \mu_B(x),\tag{5}$$

which coincides with the definition of inclusion for fuzzy sets (FS) [3]. In fact fuzzy sets are a special subclass of the isohesitant intuitionistic fuzzy sets with $\tilde{\pi} \equiv 0$.

2 Some properties of the Isohesitant Intuitionistic Fuzzy Sets

Let X be a universe set and m be a measure chosen such that $0 < m(X) < \infty$. When X is discrete this measure is taken as the counting measure. Further, without loss of generality we will assume that m(X) = 1 (i.e. we will use a modified measure $m^* = \frac{1}{m(X)}m$ but we will keep the denotation m for simplicity).

For any $A, B \in \operatorname{IFS}(X, \tilde{\pi})$ we will assign an Intuitionistic Fuzzy Pair (IFP) for the validity of the inclusion $A \subseteq B$. In order to do so, let us define the following two sets $X_{A \subseteq B}, X_{B \subseteq A}$.

$$X_{A\subseteq B} = \{x | \mu_A(x) \le \mu_B(x)\} \tag{6}$$

$$X_{B \subset A} = \{x | \mu_A(x) > \mu_B(x)\}$$
 (7)

It is obvious that these sets are disjoint (non-overlapping) and that their union is exactly X, i.e. we have

$$m(X_{A\subseteq B})+m(X_{B\subset A})=m(X)=1.$$

Further, let us denote for $A, B \in IFS(X, \tilde{\pi})$ by

$$A \subseteq_{u} B$$

the fact that $V(A \subseteq B) = \langle u, v \rangle$, with $u = m(X_{A \subseteq B}), v = m(X_{B \subseteq A})$ (cf. [2]).

Let $A, B, C \in IFS(X, \tilde{\pi})$ and let us know that

$$A \subseteq_{u,v} B \subseteq_{u_1,v_1} C$$
.

Does the above imply $A \subseteq_{\min(u,u_1),\max(v,v_1)} C$?

Unfortunately, the answer in general is no.

However, we can still provide some lower and upper bounds for the validity and non-validity of $A \subseteq C$ based on u, u_1, v and v_1 .

Theorem 1. Let $A, B, C \in IFS(X, \tilde{\pi})$ and let

$$A \subseteq_{u,v} B \subseteq_{u_1,v_1} C$$
.

If we denote by $\langle u_2, v_2 \rangle$ the value of $V(A \subseteq C)$, we have that:

$$u_2 \in [\max(0, u + u_1 - 1), \min(1, 2 - v - v_1)]$$
 (8)

$$v_2 \in [\max(0, v + v_1 - 1), \min(1, 2 - u - u_1)].$$
 (9)

Proof. We have

$$u = m(X_{A \subseteq B}), v = m(X_{B \subseteq A}), u_1 = m(X_{B \subseteq C}), v_1 = m(X_{C \subseteq B}).$$

Obviously

$$m(X \setminus (X_{B \subset A} \cap X_{C \subset B})) \ge u_2 \ge m(X_{A \subseteq B} \cap X_{B \subseteq C})$$

$$m(X \setminus (X_{A \subseteq B} \cap X_{B \subseteq C})) \ge v_2 \ge m(X_{B \subset A} \cap X_{C \subset B})$$
(10)

But the left sides of (10) can be rewritten as (recall that we chose m(X) = 1)

$$m(X) - m(X_{B \subset A} \cap X_{C \subset B}) = 1 - m(X_{B \subset A} \cap X_{C \subset B}) \ge u_2$$

$$m(X) - m(X_{A \subseteq B} \cap X_{B \subseteq C}) = 1 - m(X_{A \subseteq B} \cap X_{B \subseteq C}) \ge v_2$$

But for any two sets $X_1, X_2 \subseteq X$ we have:

$$m(X) \ge m(X_1 \cup X_2) = m(X_1) + m(X_2) - m(X_1 \cap X_2),$$

which can be rewritten as:

$$m(X_1 \cap X_2) \ge m(X_1) + m(X_2) - m(X),$$
 (11)

Hence,

$$-(m(X_1) + m(X_2) - 1) + 1 \ge -m(X_1 \cap X_2) + 1,$$

which yields:

$$2 - m(X_{B \subset A}) - m(X_{C \subset B}) \ge 1 - m(X_{B \subset A} \cap X_{C \subset B}) \ge u_2$$
$$2 - m(X_{A \subseteq B}) - M(X_{B \subseteq C}) \ge 1 - m(X_{A \subseteq B} \cap X_{B \subseteq C}) \ge v_2.$$

Now as to the right hand sides of (10), let us again consider (11). We have

$$u_2 \ge m(X_{A \subseteq B} \cap X_{B \subseteq C}) \ge m(X_{A \subseteq B}) + m(X_{B \subseteq C}) - 1,$$

$$v_2 \ge m(X_{B \subseteq A} \cap X_{C \subseteq B}) \ge m(X_{B \subseteq A}) + m(X_{C \subseteq B}) - 1.$$

This completes the proof.

Remark 3. In the case of continuous universe X, it is possible that

$$A \subseteq_{\langle 1,0 \rangle} \not\equiv A \subset B$$
,

i.e. when there is a subset of X with measure zero on which the two sets do not agree. In the case of discrete universes these two are equivalent.

3 Conclusion

In the present paper, we considered the class of isohesitant intuitionistic fuzzy sets and we studied a relation of inclusion with IFPs, which although not transitive in the general case, can sometimes yield sufficient inference, e.g. for a decision making process.

References

- [1] Atanassov, K., On Intuitionistic Fuzzy Sets Theory, Springer, Physica-Verlag, Berlin, 2012.
- [2] Atanassov, K., E. Szmidt, J. Kacprzyk, On intuitionistic fuzzy pairs. *Notes on Intuitionistic Fuzzy Sets*, Vol. 19, 2013, No. 3, 1–13.
- [3] Zadeh, L. A., Fuzzy sets, *Information and Control*, Vol. 8, 1965, 338–353.