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1 Introduction

The present paper gives a methode of solving the following intuitionistic fuzzy problem by means
of the intuitionistic fuzzy Laplace transform.

(
c
gHD

βx(t)
)

= f (t, x(t)) , t ∈ I = [0, T ]

c
gHD

β−1x(0) = x0 ∈ IF1

, (1)

where 0 < β ≤ 1, the operator c
gHD

β denotes the Caputo fractional generalized derivative of
order β, f : I × IF1(R) −→ IF1(R).

Fractional calculus is a mathematical branch investigating the properties of derivatives and
integrals of non-integer orders. It applies in modelling of many physical and chemical processes
and in engineering [3]. Podlubny [12] and Kilbas et al [9] gave the idea of fractional calculus
and consider Riemann–Liouville differentiability to solve FFDEs. Agarwal et al. [1] proposed
the concept of solutions for fractional differential equations with uncertainty.
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Intuitionistic fuzzy sets (IFS) were first formulated by Atanassov (see [4, 5]). An IFS is a
generalization of fuzzy sets introduced by Zadeh [14]. In fuzzy sets, the membership value,
(µ(x)), of x ∈ X (called the universe) is just a single real number, usually in [0, 1] and the non-
membership of x is taken as (1 − µ(x)). But for intuitionistic fuzzy sets the membership value
(µ(x)) as well as the non-membership value (ν(x)) should be taken into account for describing
any x inX such that the sum of membership and non-membership is less than or equal to 1. Thus,
an IFS is expressed by an ordered pair of real numbers (µ(x), ν(x)) and π(x) = 1− µ(x)− ν(x)

is called the hesitancy. There have been several attempts to quantify the uncertainty associated
with fuzzy sets as well as with intuitionistic fuzzy sets [7]. The authors in [8] studied the solution
concept of fractional differential equations with intuitionistic fuzzy initial data under generalized
fuzzy Caputo derivative. In [11] Melliani et al. introduced the extension of Hukuhara difference
in the intuitionistic fuzzy case. Allahviranloo, Armand and Gouyandeh in [2] solve the fuzzy
fractional differential equations under generalized fuzzy Caputo derivative. From this last paper,
we introduce in this paper the concept of generalized intuitionistic fuzzy Caputo derivative and
we will build our ideas and properties in order to solve the fractional equation by means of the
Laplace transform, which is the one of the interesting transforms used for solving intuitionistic
fuzzy differential equations. Using this transform allows reduction of the problem. The advantage
of intuitionistic fuzzy Laplace transform is to solve the problem directly without determining a
general solution.

The present paper investigate the analytic solution of the following problem
∆u(x) = f, x ∈]a, b[

u(a) = A ∈ FT,
u(b) = B ∈ FT,

whereFT is the set of all intuitionistic fuzzy triangular numbers, and f is a function defined from
]a, b[ into FT .

This paper is organized as follows. After this introduction, we recall in Section 2 some con-
cept concerning the fuzzy metric space and generalized Hukuhara’s difference, which inspired
the method of build a fuzzy Banach space. The generalized differentiability takes place in the
later section. We will presented the main result in Section 5 and we end our work by an example
in order to illustrate our results.

2 Preliminaries

In this section we will present some definitions and properties, which we will build our work
upon.

Definition 1. [10] The set of all intuitionistic fuzzy numbers is given by

IF1 = IF1(R) =
{
〈u, v〉 : R −→ [0, 1]2, 0 ≤ u+ v ≤ 1

}
with the following conditions:
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1. For each 〈u, v〉 ∈ IF1 is normal, i.e, ∃x0, x1 ∈ R, such that u(x0) = 1 and v(x1) = 1.

2. For each 〈u, v〉 ∈ IF1 is a convex intuitionistic set, i.e., u is fuzzy convex and v is fuzzy
concave.

3. For each 〈u, v〉 ∈ IF1, u is lower continuous and v is upper continuous.

4.
{
x ∈ R, v(x) ≤ α

}
is bounded.

Definition 2. [10] For α ∈ [0, 1], we define the upper and lower t-cut by[
〈u, v〉

]
α

=
{
x ∈ R : u(x) ≥ α

}
,[

〈u, v〉
]α

=
{
x ∈ R : v(x) ≤ 1− α

}
.

Definition 3. The intuitionistic fuzzy zero is an intuitionistic fuzzy set defined by

0̃(x) =

(1, 0) x = 0

(0, 1) x 6= 0
.

Proposition 1. [10] We can write[
〈u, v〉

]
α

=

[[
〈u, v〉

]+
l

(α),
[
〈u, v〉

]+
r

(α)

]
,[

〈u, v〉
]α

=

[[
〈u, v〉

]−
l

(α),
[
〈u, v〉

]−
r

(α)

]
.

Remark 1. In the fuzzy case, we can write
[
〈u, v〉

]
α

= [u]α and
[
〈u, v〉

]α
= [1− v]α.

Proposition 2. [10] For all 〈u, v〉, 〈u′, v′〉 ∈ IF1, we have

〈u, v〉 = 〈u′, v〉 ⇐⇒


[〈u, v〉]α = [〈u′, v〉]α

∀t ∈ [0, 1]

[〈u, v〉]α = [〈u′, v〉]α
.

We define two operations on IF1 by

〈u, v〉 ⊕ 〈u′, v〉 = 〈u ∨ v, u′ ∧ v′〉, ∀〈u, v〉, 〈u′, v〉 ∈ IF1,

λ〈u, v〉 = 〈λu, λv〉, ∀λ ∈ R, ∀〈u, v〉 ∈ IF1.

According to Zadeh extension, we have

[〈u, v〉 ⊕ 〈u′, v〉]α = [〈u, v〉]α + [〈u′, v〉]α ,

[〈u, v〉 ⊕ 〈u′, v〉]α = [〈u, v〉]α + [〈u′, v〉]α ,

[λ〈u, v〉]α = λ [〈u, v〉]α ,

[λ〈u, v〉]α = λ [〈u, v〉]α .
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Theorem 1. [10] Let M = {Mα,M
α, α ∈ [0, 1]} be a family of subsets in R satisfying the

following conditions

1. α ≤ s =⇒Ms ⊂Mα and M s ⊂Mα, for each α, s ∈ [0, 1].

2. Mα and Ms are nonempty compact convex sets in R, for each α ∈ [0, 1].

3. For any non-decreasing sequence αi −→ α on [0, 1], we have for each
α ∈ [0, 1]. Mα =

⋂
iMαi

and Mα =
⋂
iM

αi .

We define u and v by

u(x) =

 0, x /∈M0

sup
α∈[0,1]

Mα x ∈M0
,

v(x) =

 1, x /∈M0

1− sup
α∈[0,1]

Mα x ∈M0 .

Then
〈u, v〉 ∈ IF1

with Mα = [〈u, v〉]α and Mα = [〈u, v〉]α.

Remark 2. [10]

1. The family
{

[〈u, v〉]α, [〈u, v〉]α, α ∈ [0, 1]
}

satisfying conditions 1. − 3. of the previous
theorem.

2. For all α ∈ [0, 1],
[〈u, v〉]α ⊂ [〈u, v〉]α

Theorem 2. [10] On IF1 we can define the metric

d∞

(
(u, v), (z, w)

)
=

1

4
sup

0<α≤1

∣∣∣∣[(u, v)
]+
r

(α)−
[
(z, w)

]+
r

(α)

∣∣∣∣
+

1

4
sup

0<α≤1

∣∣∣∣[(u, v)
]+
l

(α)−
[
(z, w)

]+
l

(α)

∣∣∣∣+
1

4
sup

0<α≤1

∣∣∣∣[(u, v)
]−
r

(α)−
[
(z, w)

]−
r

(α)

∣∣∣∣
+

1

4
sup

0<α≤1

∣∣∣∣[(u, v)
]−
l

(α)−
[
(z, w)

]−
l

(α)

∣∣∣∣
and

dp (〈u, v〉, 〈u′, v〉) =
(1

4

∫ 1

0

|[〈u, v〉]+l (α)− [〈u′, v〉]+l (α)|dt

+
1

4

∫ 1

0

|[〈u, v〉]+r (α)− [〈u′, v〉]+r (α)|dt+
1

4

∫ 1

0

|[〈u, v〉]−l (α)− [〈u′, v〉]−l (α)|dt

+
1

4

∫ 1

0

|[〈u, v〉]−r (α)− [〈u′, v〉]−r (α)|dt
) 1

p

for p ∈ [1,∞). We have that
(

IF1, dp

)
is a complete metric space.
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2.1 The generalized Hukuhara derivative of an intuitionistic fuzzy-valued
function

The concept of intuitionistic fuzzy Hukuhara difference was introduced by the authors in [11]. In
this paper we will give the definition of generalized Hukuhara difference between two intuition-
istic fuzzy numbers.

Definition 4. The generalized Hukuhara difference of two fuzzy numbers 〈u, v〉 and
〈u′, v〉 ∈ IF1 is defined as follows

〈u, v〉 −gH 〈u′, v〉 = 〈z, w〉 ⇐⇒ 〈u, v〉 = 〈u′, v〉 ⊕ 〈z, w〉.

Note that the α-level representation of a fuzzy-valued function f : (0, T ] −→ IF1 expressed
by
[f ]α = [fα,l, fα,r] and [f ]α =

[
fα,l, fα,r

]
.

Definition 5. The generalized Hukuhara derivative of an intuitionistic fuzzy-valued function f :

(0, T ] −→ IF1 at t0 is defined as

f ′gH(t0) = lim
t→t0

f(t)−gH f(t0)

t− t0
.

if f ′gH(t0) ∈ IF1, we say that f is generalized Hukuhara differentiable at t0

Also we say that f is [(i)− gH]-differentiable at t0 if
(
f ′gH
)
α

= [(fα,l)
′, (fα,r)

′](
f ′gH
)α

=
[
(fα,l)′, (fα,r)′

]
and that f is [(ii)− gH]-differentiable at t0 if

(
f ′gH
)
α

= [(fα,r)
′, (fα,l)

′](
f ′gH
)α

=
[
(fα,r)′, (fα,l)′

] .

We can define the generalized derivative of higher order byf (0) = f

f
(n)
gH =

(
f (n−1))′

gH
, ∀n ∈ N

. (2)

Definition 6. Let f : (0, T ) −→ IF1. We say that f of class Cm, m ∈ N, if f (m)
gh exists and

continues, with respect to metric d∞.

Now if the α-levels of f : (0, T ] −→ IF1, are given by [f ]α =
[
fα,l, fα,r

]
and

[f ]α =
[
fα,l, fα,r

]
and fα,l, fα,r, fα,l, fα,r are Riemann integrable on (0, T ].

Since the family {[
fα,l, fα,r

]
,
[
fα,l, fα,r

]}
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built an intuitionistic fuzzy element and the integral preserves the monotony, then by Theorem 1
the family {[∫

(0,T ]

fα,l,

∫
(0,T ]

fα,r

]
,
[ ∫

(0,T ]

fα,l,

∫
(0,T ]

fα,r
]}

defines an intuitionistic fuzzy element, which is the integral of f on (0, T ], we denote
∫
(0,T ]

f .

Definition 7. Let f : (0, T ] −→ IF1 be a intuitionistic fuzzy-valued function. We say that f is
integrable on (0, T ] if fα,l, fα,r, fα,l, fα,r defined in the previous are integrable on (0, T ]

Remark 3. By the same method we can extended this definition in order to define the impropre
intuitionistic fuzzy Riemann integral.

3 Intuitionistic fuzzy generalized caputo-derivative

Let f : (0, T ] −→ IF1 be an intuitionistic fuzzy-valued integrable function on (0, T ], and
δ ∈ (m− 1,m] and m ∈ N∗.
The lower and upper α-levels of f are defined as follows :
[f ]α = [fα,l, fα,r] and [f ]α =

[
fα,l, fα,r

]
, where fα,l, fα,r, fα,l, fα,r ∈ Cm((0, T ]).

We set

Mα =

[
1

Γ(δ)

∫ t

0

(t− s)δ−m−1(fα,l)(m)(s),
1

Γ(δ)

∫ t

0

(t− s)δ−m−1(fα,r)(m)(s)

]
and

Mα =

[
1

Γ(δ)

∫ t

0

(t− s)δ−m−1(fα,l)(m)(s),
1

Γ(δ)

∫ t

0

(t− s)δ−m−1(fα,r)(m)(s)

]
.

Proposition 3. The family
{
Mβ,M

β, β ∈ [0, 1]
}

defines an intuitionistic fuzzy element.

Proof. Just use Theorem 2.

Definition 8. The intuitionistic fuzzy preceding item is called the generalized Caputo derivative
of f , we denote Dαf .
We say that f is cf [(i)− gH]-differentiable at t0 if[

gHD
δf
]
α

=
[
Dδfα,l, D

δfα,r
]
,

[
gHD

δf
]α

=
[
Dδfα,l, Dδfα,r

]
,

and that f is cf [(ii)− gH]-differentiable at t0 if[
gHD

δf
]
α

=
[
Dδfα,r, D

δfα,l
]
,

[
gHD

δf
]α

=
[
Dδfα,r, Dδfα,l

]
.

As in the previuos definition, we will give the definition of intuitionistic fuzzy fractional
Riemann–Liouville integral. If the α-levels of f : (0, T ] −→ IF1 are given by [f ]α = [fα,l, fα,r]

and [f ]α =
[
fα,l, fα,r

]
and fα,l, fα,r, fα,l, fα,r are Riemann integrable on (0, T ].

Since the family {
[fα,l, fα,r] ,

[
fα,l, fα,r

]}
77



represents an intuitionistic fuzzy element and the integral preserves the monotony, then we have
by Theorem 1 the family {

Aα,Aα, α ∈ [0, 1]
}

where

Aα =

[
1

Γ(δ)

∫
(0,t)

(t− s)δ−1fα,l(s),
1

Γ(δ)

∫
(0,t)

(t− s)δ−1fα,r(s)
]

and

Aα =

[
1

Γ(δ)

∫
(0,t)

(t− s)δ−1fα,l(s), 1

Γ(δ)

∫
(0,t)

(t− s)δ−1fα,r(s)
]

define an intuitionistic fuzzy element, which is the Riemann–Liouville fractional integral of f on

(0, T ), we denote
1

Γ(δ)

∫
(0,t)

(t− s)δ−1f(s)ds.

Definition 9. [9] Let f : (0, T ] −→ IF1 be a continuous function. The Riemann–Liouville frac-
tional integral of f on (0, T ) is defined as

Iδf(t) =
1

Γ(δ)

∫
(0,t)

(t− s)δ−1f(s)ds

where δ ∈ (m− 1,m)

4 Intuitionistic fuzzy generalized Hukuhara
partial differentiation

Throught this paper we denote T F the sets of all triangular intuitionistic fuzzy numbers. We
use the same proof as Bede in [6], we can show that if 〈u, v〉, 〈u′, v〉 ∈ T F , then the difference
〈u, v〉−g 〈u′, v〉 always exists in T F and 〈u, v〉−g 〈u′, v〉 = (−1)(〈u, v〉−g 〈u′, v〉). Thus we get(
FT, ‖.‖p

)
is a Banach space. In this section f : D ⊂ R× R+ → FT is called the two variable

fuzzy-valued function. The parametric representation of the fuzzy-valued function fis expressed
by f(x, t, α−) =

[
f(x, t, α−), f(x, t, α−)

]
and f(x, t, α−) =

[
f(x, t, α+), f(x, t, α+)

]
.

Definition 10. Let f : D ⊂ R×R+ → IF1 and (x0, t0) ∈ D. Then first generalized Hukuhara par-
tial derivative ([gH − p]-derivative for short) of f with respect to variables x, t are the functions
∂xgHf(x0, t0) and ∂tgHf(x0, t0) given by

lim
h→0

∥∥∥f(x0 + h, t0)−g f(x0, t0)

h
−g ∂xgHf(x0, t0)

∥∥∥ = 0

and

lim
h→0

∥∥∥f(x0, t0 + h)−g f(x0, t0)

h
, ∂xgHf(x0, t0)

∥∥∥ = 0,

provided that ∂xgHf(x0, t0), ∂tgHf(x0, t0) ∈ T F .

Definition 11. Let f(x, t) : D → T F , (x0, t0) ∈ D. f(x, t;α+), f(x, t;α+), f(x, t;α−),
f(x, t;α−) both partial differentiable w.r.t. t at (x0, t0). We say that
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• (1). f(x, t) is [(i)− p]-differentiable w.r.t. t at (x0, t0) if[
∂ti,gHf(x0, t0)

]α
=
[
∂tf(x0, t0;α

−), ∂tf(x0, t0;α
−)
]

[
∂ti,gHf(x0, t0)

]
α

=
[
∂tf(x0, t0;α

+), ∂tf(x0, t0;α
+)
]

• (2). f(x, t) is [(ii)− p]-differentiable w.r.t. t at (x0, t0) if[
∂tii,gHf(x0, t0)

]α
=
[
∂tf(x0, t0;α

−), ∂tf(x0, t0;α
−)
]

[
∂tii,gHf(x0, t0)

]
α

=
[
∂tf(x0, t0;α

+), ∂tf(x0, t0;α
+)
]

Inspired from [13], we present the following definition.

Definition 12. f : R× R+ → T F . We say that the function t = h(x), is switching boundary for
the differentiability of f(x, t) with respect to t, if for all x belonging to the domain of h and for
all t ∈ R+, there exist points t0 < t1 < t2 such that

1. at (x, t1) (1) holds while (2) does not hold and at (x, t2) (2) holds and (1) does not hold,
or

2. at (x, t1) (2) holds while (1) does not hold and at (x, t2) (1) holds and (2) does not hold.

Theorem 3. Consider f : R× R+ → T F and u : R→ E1 are fuzzy-valued functions such that
u(x;α) = [u(x;α), u(x;α)]. Suppose that h : R → R and p : R × R+ → R+ is a differentiable
function w.r.t. t and

∂tp(x, t) =

∂tp(x, t) ≥ 0, h1(t) < x < h2(t);

∂tp(x, t) < 0, h2(t) < x < h3(t)

and f(x, t) = p(x, t)u(x). Then ∂tgHf(x, t) exists and

∂tgHp(x, t) =

∂ti,gHp(x, t) ≥ 0, h1(t) < x < h2(t);

∂tii,gHp(x, t) < 0, h2(t) < x < h3(t)

In fact, the function h2(t) is switching boundary type 1 for differentiability of f(x, t) with respect
to t.

Proof. Since p is valued in R+ then we can set
[
f(x, t;α)

]α
= p(x, t)

[
u(x;α−), u(x;α−)

]
,[

f(x, t;α)
]
α

= p(x, t)
[
u(x;α+), u(x;α+)

]
, which implies that[

∂tgH

]
= ∂tp(x, t)

[
u(x;α), u(x;α)

]
If h1(t) < x < h2(t) then[

∂tgH

]α
=
[
∂tp(x, t)u(x;α−), ∂tp(x, t)u(x;α−)

]
[
∂tgH

]
α

=
[
∂tp(x, t)u(x;α+), ∂tp(x, t)u(x;α+)

]
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then f(x, t) is [(i)-differentiable] by report at t. In the same manner, if h2(t) < x < h3(t) we get[
∂tgH

]α
=
[
∂tp(x, t)u(x;α−), ∂tp(x, t)u(x;α−)

]
[
∂tgH

]
α

=
[
∂tp(x, t)u(x;α+), ∂tp(x, t)u(x;α+)

]
thus f(x, t) is [(ii)-differentiable] with respect to the second variable t.

5 Intuitionistic fuzzy Dirichlet problem in one dimension

In this section, we will investigade the following problem
∆u(x) = f, x ∈ [a, b]

u(a) = A ∈ T F
u(b) = B ∈ T F

where f is a suitable function.
We introduce the auxiliary function v verifying u′ = v and v′ = f .

Proposition 4. A mapping u : [a, b] → T F is a solution of (3) if only if v is a solution of the
following problem: 

v′(x) = f x ∈ [a, b]

u(a) = A ∈ T F
u(b) = B ∈ T F

if u is (i)-diff and v is (i)-diff or if u is (ii)-diff and v is (ii)-diff.
And A mapping u : [a, b] → T F is a solution of (3) if only if v is a solution of the following
problem: 

v′(x) = −gHf x ∈ [a, b]

u(a) = A ∈ T F
u(b) = B ∈ T F

if u is (i)-diff and v is (ii)-diff or if u is (ii)-diff and v is (i)-diff.

Proof. Since u, v and f are at values in IF1, we put u = 〈u1, u2〉, v = 〈v1, v2〉 and f = 〈f1, f2〉.
We will discuss four cases.

1. If u is (i)-diff and v is (i)-diff.
In this case we have[

〈u′1, u′2〉
]α

=
[
〈v1, v2〉

]α and
[
〈u′1, u′2〉

]
α

=
[
〈v1, v2〉

]
α
,

which implies that[
〈v′1, v′2〉

]α
=
[
〈f1, f2〉

]α
, and

[
〈v′1, v′2〉

]
α

=
[
〈f1, f2〉

]
α
.

Using Theorem 2, we get v′ = f .

80



2. If u is (ii)-diff and v is (ii)-diff.
In this case we have[

〈u′1, u′2〉
]α

=
[
〈v2, v1〉

]α
, and

[
〈u′1, u′2〉

]
α

=
[
〈v2, v1〉

]
α
.

Which implies that [
〈v′1, v′2〉

]α
=
[
〈u′′1, u′′2〉

]α
=
[
〈f1, f2〉

]α
,

in the same [
〈v′1, v′2〉

]
α

=
[
〈f1, f2〉

]
α
.

Using Theorem 2 we get v′ = f .

3. If u is (i)-diff and v is (ii)-diff.
In this case we have [

〈u′1, u′2〉
]α

=
[
〈v1, v2〉

]α
,

and [
〈u′1, u′2〉

]
α

=
[
〈v1, v2〉

]
α
,

which implies that [
〈v′1, v′2〉

]α
=
[
〈u′′2, u′′1〉

]α
=
[
〈f2, f1〉

]α
,

in the same [
〈v′1, v′2〉

]
α

=
[
〈f2, f1〉

]
α
.

Also by Theorem 2 we get v′ = −gHf .

4. If u is (ii)-diff and v is (i)-diff.
In this case we have [

〈u′1, u′2〉
]α

=
[
〈v2, v1〉

]α
,

and [
〈u′1, u′2〉

]
α

=
[
〈v2, v1〉

]
α
,

which implies that [
〈v′1, v′2〉

]α
=
[
〈u′′2, u′′1〉

]α
=
[
〈f2, f1〉

]α
,

in the same [
〈v′1, v′2〉

]
α

=
[
〈f2, f1〉

]
α
.

Also by Theorem 2 we get v′ = −gHf .
Finally we obtain v′ = f if u is (i)-diff and v is (i)-diff or if u is (ii)-diff and v is (ii)-diff,
and v′ = −gHf if u is (i)-diff and v is (ii)-diff or if u is (ii)-diff and v is (i)-diff.

Before we turn to the solution, we will give a property of the map v.
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Lemma 1. v is a continuous function.

Proof. We have v(t) = v(a) +
∫ t
a
f(s)ds

x(t) = x(a) +
∫ t
a
v(s)ds

.

Thus

v(a) =
1

b− a

{
B −gH

∫ b

a

∫ t

a

f(τ)dτdt
}
.

Since

B1(α
−)−gH

∫ b

a

∫ t

a

f(τ, α−)dτdt =

∫ b

a

B1(α
−)

b− a
−gH

∫ t

a

f(τ, α−)dτdt

=

∫ b

a

{[ B1(α
−)

(b− a)(t− a)
−gH

∫ t

a

f(τ, α−)
]
dτ
}
dt

The function
[

B1(α)
(b−a)(t−a) −gH

∫ t
a
f(τ, α−)dτ

]
is monotone increasing on I with respect to α,

In the same manner, the we get

B2(α
+)−gH

∫ b

a

∫ t

a

f(τ, α+)dτdt =

∫ b

a

B2(α
+)

b− a
−gH

∫ t

a

f(τ, α+)dτdt

=

∫ b

a

{[ B2(α
+)

(b− a)(t− a)
−gH

∫ t

a

f(τ, α+)
]
dτ
}
dt

The function
[

B2(α+)
(b−a)(t−a) −gH

∫ t
a
f(τ, α+)dτ

]
is monotone decreasing on I with respect to α.

By Theorem 1 we get the following property.

B(α)

(b− a)(t− a)
−gH

∫ t

a

f(τ)dτ ∈ E1.

Thus v is a continuous derivable map on [a, b].

Theorem 4. The solution of (3) is given by

x(t) = A+ (t− a)v(a) +

∫ t

a

∫ s

a

f(τ)dτdt

if x is (i)-diff and x′ is (i)-diff or if x is (ii)-diff and x′ is (ii)-diff.

x(t) = A+ (t− a)v(a)−
∫ t

a

∫ s

a

−gHf(τ)dτdt

if x is (i)-diff and x′ is (ii)-diff or if x is (ii)-diff and x′ is (i)-diff.

Proof. First x is (i)-diff and x′ is (ii)-diff or if x is (ii)-diff and x′ is (i)-diff.
We put

φ(t) = A+ (t− a)v(a) +

∫ t

a

∫ s

a

f(τ)dτdt.
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Since t ≥ a, the map

α→ A1(α) + (t− a)v(a, α−) +

∫ t

a

∫ s

a

f(τ, α−)dτds

is monotone increasing on I with respect to α, and

α→ A2(α) + (t− a)v(a, α+) +

∫ b

a

∫ s

a

f(τ, α+)dτds

is monotone decreasing on I with respect to α.
So

φ(t) ∈ E1, ∀t ∈ [a, b].

We get also

φ′(t) = v(a) +

∫ s

a

f(τ)dτ .

Thus,
φ′(a) = v(a)

and
φ′′(t) = f(t),

which implies that φ is a solution of (3). If x is (i)-diff and x′ is (ii)-diff.
By the same step we get

φ′′ = (−1)⊗
(
−gH f

)
= f.

On the other hand, the problem ∆x(t) = 0, t ∈ [a, b]

x(a) = x(b) = 0̃

has 0̃ as the unique solution.
Thus,

x(t) = A+ (t− a)v(a) +

∫ t

a

∫ s

a

f(τ)dτdt, ∀t ∈ [a, b].
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