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Abstract: The notion of fuzzy subsets was introduced by Zadeh [19] and it was generalised to 
intuitionistic fuzzy subsets by Atanassov [1]. After the invention of intuitionistic fuzzy subsets, 
many real life problems are studied accurately. The ranking of intuitionistic number plays a 
main role in modeling many real life problems involving intuitionistic fuzzy decision making, 
intuitionistic fuzzy clustering. In this paper, a new method of intuitionistic fuzzy scoring to 
intuitionistic fuzzy number has been introduced and studied. The significance of the proposed 
intuitionistic fuzzy scoring method has been discussed. The aim of this paper is to introduce a 
new technique for clustering based on intuitionistic fuzzy number. The proposed scoring 
method has been applied to clustering problem where the data collected is in terms of 
intuitionistic fuzzy linguistic term which is converted into intuitionistic fuzzy number. The 
intuitionistic fuzzy number is converted to intuitionistic fuzzy scoring using the defined scoring 
method. A distance measure has been applied to intuitionistic fuzzy score and the similarity 
measure can be calculated with the help of obtained distance measure. Now we find that the 
association matrix is tolerance relation. By using the algorithm, the tolerance relation is 
converted to fuzzy equivalence relation. By fixing alpha cut, the data are clustered in to 
different groups. The new intuitionistic fuzzy scoring method has wide application in various 
fields. 
 
 
1 Introduction 
 
Decision making is a most important scientific, social and economic endeavor. In any decision 
process we weigh the information about an issue or outcome and choose among two or more 
alternatives for subsequent action. Let nMMM ,...,, 21  be n  alternatives available and 

mCCC ,...,, 21  be m  criteria’s involved in the measurement of alternative. Let ijA  be the 
performance of alternative iM  with respect to criteria jC  and jw  be the relative importance of 
criteria. Then the decision making problem is the selection of the best alternative with respect 
to criteria. 

In Classical decision making problems, ijA  and jw  are real numbers. In reality,  ijA   and 

jw  are not necessarily real numbers. They may be linguistic terms like good, poor which are 
fuzzy in nature. In [2], [3], [9], a fuzzy version of Saaty’s AHP [11] method was developed by 
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using triangular fuzzy numbers for linguistic terms. In Fuzzy Decision making, the ranking of 
fuzzy numbers play a main role. There are many methods available in literature. Among them 
the ranking of fuzzy numbers by crisp score is introduced by Chen and Hwang in [2]. There are 
many real life problems in which ijA  are fuzzy linguistic terms with hesitation like good with 
little hesitation, bad with strong hesitation. Those problems can be studied by intuitionistic 
fuzzy decision making. The ranking of intuitionistic fuzzy numbers plays a main role in 
modeling many real life problems involving intuitionistic fuzzy decision making, intuitionistic 
fuzzy clustering. Mitchell introduced a method of ranking intuitionistic fuzzy numbers in [10]. 
In this paper, a new method of intuitionistic fuzzy number that generalizes Chen and Hwang’s 
scoring method has been introduced for ranking of intuitionistic fuzzy numbers and is 
illustrated by an example.  

This paper is organized as follows: In section 2, the preliminaries of fuzzy and intuitionistic 
fuzzy sets, fuzzy number and intuitionistic fuzzy number, Chen and Hwang’s scoring method, 
intuitionistic fuzzy linguistic terms and the conversion of intuitionistic linguistic terms has 
been discussed. In section 3, a new score of fuzzy number is defined which inturn has been 
generalized to intuitionistic fuzzy numbers which involves the scores of both membership and 
non-membership. Some proposition has been defined and proved. In section 4, the significance 
of the proposed scoring method has been discussed. Some results of the proposed scoring 
method and some remarks of the existing scoring method has been discussed. In section 5, the 
proposed scoring method has been applied to clustering problem. Finally in section 6, the 
conclusions are drawn. 

First we give a brief review of preliminaries. 
 
 
2.1 Preliminaries 
 
Definition 2.1.1[4] : A fuzzy number M  is a fuzzy subset of the set of real numbers R  which 
satisfies the following properties 

i. M  must be a normal fuzzy subset of R  
ii. Each α - cut Mα  must be a closed interval for every ( ]1,0∈α  

iii. The support of M  must be bounded. 
 

Definition 2.1.2 [4]: A fuzzy number M  is defined to be a triangular fuzzy number if its 
membership function [ ]1,0: →RMµ  is equal to 
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where cba ≤≤ ; a  and c  stand for the lower and upper values of the support of the fuzzy 
number M  respectively and b  for the modal value. This fuzzy number is denoted by ( )cba ,, . 

Now 
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− are known as left and right legs of the triangular fuzzy number ( )cba ,, . 
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Definition 2.1.3 [17]: The complement cµ  of a fuzzy subset µ of a set X is a fuzzy subset 
given by ( ) ( )xxc µµ −=1 , Xx∈ . 
Note 2.1.1 [17] : Let ( )cbaM ,,=  be a triangular fuzzy number. The complement cM of a 
triangular fuzzy number M  is defined by ( ) ( )xx M

c
M µµ −=1 . Hence  the membership function 

c
Mµ [see fig(i)] is defined by 
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Definition 2.1.4 [4] :  Let maxµ  and minµ be a maximizing fuzzy subset and minimizing fuzzy 
subset of R defined by    
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respectively. Then the right score of a triangular fuzzy number M  can be determined by 
( ) ( ) ( )( )xxMR A maxsup µµ ∧=  and the left score of a triangular fuzzy number  M  can be 

determined by ( ) ( ) ( )( )xxML A minsup µµ ∧= . Then the membership score of the fuzzy number 

M can be computed by ( ) [ ]
2

)(1)( MLMRMT −+
= . 

Equivalently )(MR  is the ordinate of the intersecting point of maxµ  and right leg of Aµ  and 
similarly )(ML  is the ordinate of the intersecting point of minµ  and left leg of Aµ . 

 
Note 2.1.2 [4] : Let ( )cba ,,  be a triangular fuzzy number. Then the total score of  M is given 

by ( ) [ ]
2

)(1)( MLMRMT −+
= , where left score )(ML and right score of  )(MR of this fuzzy 

number are given by 
ab

aML
−+

−
=

1
1)(  and 

bc
cMR
−+

=
1

)( [see fig 2]. 

 
Definition 2.1.5 [1] : Let X  be a nonempty set. An intuitionistic fuzzy set(IFS) A  in X  is 
defined by ( )AAA νµ ,= , where ]1,0[: →XAµ  and ]1,0[: →XAν  with the conditions 

1)()(0 ≤+≤ xx AA νµ , Xx∈∀ . The numbers ( ) ( ) [ ]1,0, ∈xx AA νµ  denote the degree of 
membership and non-membership of  x   to lie in A  respectively. For each intuitionistic fuzzy 
subset A  in X , ( ) ( ) ( )xxx AAA νµπ −−=1  is called hesitancy degree of  x   to lie in A . 
 
Definition 2.1.6 [18] : A mapping ]1,0[)()(: →XIFSxXIFSS  is said to be the similarity 
measure if it satisfies the following properties: 
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S1: 1),(0 ≤≤ BAS , for every )(, XIFSBA ∈   

S2: 1),(, == BASBAIf   

S3: ),(),( ABSBAS =  

S4: If CBA ⊆⊆ , )(,, XIFSCBA ∈  then ),(),( BASCAS ≤  and ),(),( CBSCAS ≤ .  

Definition 2.1.7 [18] : A mapping ]1,0[)()(: →XIFSxXIFSd  is said to be the distance 
measure if ),( BAd  satisfies the following properties: 

D1: 1),(0 ≤≤ BAd  

D2: BAiffBAd == 0),(   

D3: ),(),( ABdBAd =  

D4: If CBA ⊆⊆ , then ),(),( BAdCAd ≥  and ),(),( CBdCAd ≥ . Equivalently  

D5 : If DCBA ⊆⊆⊆ , )(,,, XIFSDCBA ∈ then ),(),( CBdDAd ≥ . 

Definition 2.1.8 [16] : A fuzzy relation R  defined on X  is said to be reflexive if 1),( =xxRµ  
for every Xx∈ . A fuzzy relation R  defined on X  is said to be symmetric if  

),(),( xyyx RR µµ =  for every Xyx ∈, . A fuzzy relation  R  defined on X  is said to be 
transitive if { }),(),,(min),( zyyxzx RRR µµµ ≥  for every Xzyx ∈,, .   

Definition 2.1.9 [21] :   Let )........,2,1( mjAj =  be m  IFSs, then ( )
mmijcC

×
=  is called an 

association matrix, where ( )jiij AAcc ,=  is the association coefficient of iA  and jA , which has 
the following properties: 

(1) 10 ≤≤ ijc , for all mji .......,2,1, = ; 

(2) 1=ijc  if and only if ji AA = ; 

(3) jiij cc = , for all mji .......,2,1, = . 

Note 2.1.3 [16] : A fuzzy relation R  defined on X  is said to be a fuzzy tolerance relation if R  
is reflexive and symmetric. A fuzzy relation R  defined on X  is said to be fuzzy equivalence 
relation if R  is a fuzzy tolerance relation and transitive. 

Note 2.1.4 [16] : Every fuzzy equivalence relation is a fuzzy tolerance relation. But the 
converse need not be true. A fuzzy tolerance relation can be extended to a fuzzy equivalence 
relation by the following algorithm.   
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Algorithm 2.1.1 [21] :  Let ( )
mmijcC

×
= be an association matrix, if 

mm
ijcCCC

×

−







== o2 , then 

2C  is called a composition matrix of C , where { }{ }kjikkij ccMinMaxc ,=
−

, mji .......,2,1, = . 

 
2.2  Intuitionistic fuzzy numbers  
 
In this section, the notion of intuitionistic fuzzy numbers are introduced and studied. 

 
Definition 2.2.1 [1]: An intuitionistic fuzzy set ( )AAA νµ ,=  of  R  is said to be an 
intuitionistic fuzzy number if Aµ and Aν  are fuzzy numbers with c

AA µν ≤ , where c
Aµ  denotes 

the complement of Aµ . 
Definition 2.2.2 [17]: A triangular intuitionistic fuzzy number A  is defined by 

( ){ }RxA AA ∈= |,νµ , where Aµ  and Aν  are triangular fuzzy numbers with ( ) ( )xx c
AA µν ≤ . So 

a triangular intuitionistic fuzzy number A  is given by ( ) ( ){ }gfecbaA ,,,,,= with 
( ) ( )ccbagfe ,,,, ≤  i.e., either be ≥  and cf ≥  or af ≤  and bg ≤  where ( )cba ,,  and 
( )gfe ,,  are membership and non-membership fuzzy numbers of A . 
An intuitionistic fuzzy numbers ( ) ( ){ }gfecba ,,,,,  with be ≥ and cf ≥  is shown in fig 3.  
 
2.3 Intuitionistic fuzzy linguistic terms  
 
Whenever we collect data, we can’t study the expert’s exact thinking because he may have 
some hesitancy. It is not possible to consider the non membership grade by his opinion. For 
example a student says that a particular staff can be given 0.6 membership grade for 
punctuality but if we may ask him whether the particular staff can be given 0.4 non-
membership grade for punctuality, then he definitely shows some hesitation. The problem can 
be dealt effectively, if we calculate the non membership grade using hesitation. So in real life 
problems, one can model an expert’s opinion easily by intuitionistic fuzzy subsets. 

 
Definition 2.3.1: An intuitionistic fuzzy linguistic term is given by fuzzy linguistic term along 
the level of hesitation. It is denoted by (linguistic term, level of hesitation), where the level of 
hesitation is also a fuzzy linguistic term. In the above example the student can give his opinion 
as good with little hesitation or good with strong hesitation or good with no hesitation 
according to his hesitation or confidence. This way of approach generalizes ordinary fuzzy 
linguistic terms by giving no hesitation. Some of the possible linguistic terms are (good, little) , 
(good, Moderate) , (Excellent , no hesitation). In this paper, the linguistic terms for the level of 
hesitation are very little, little, moderate, strong and very strong. 
 
2.4 Conversion of intuitionistic linguistic terms 
 
An intuitionistic fuzzy term can be converted into triangular intuitionistic fuzzy number using 
triangular fuzzy numbers. The conversion of linguistics terms for both the membership and 
hesitancy into triangular fuzzy numbers is given by table 3 and 4. 
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3 A new score of fuzzy numbers 
 
In this section, a new method of scoring is introduced and studied. 

 
Definition 3.1 : A right score )(MR  of fuzzy number M  is defined as the ordinate of the 
intersecting point of  minµ  and right leg of Mµ  and a left score )(ML  of fuzzy number M  is 
defined as the ordinate of the intersecting point of  maxµ  and left leg of Mµ . Let ( )cba ,,  be a 

triangular fuzzy number. Then the total score of  M  is given by ( ) [ ]
2

)(1)( MRMLMT −+
= , 

where left score )(ML  and right score of  )(MR  of this fuzzy number are given by 

ab
aML
+−

=
1

)(  and 
bc

cMR
+−

−
=

1
1)(

 
as shown in fig 4.  

 
3.1 Non-membership score of fuzzy numbers 
 
Let ( )cbaM ,,=µ  be a fuzzy number. Then the complement [ ]1,0: →Rc
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Here the lines  

bc
bzy

−
−

=
 
in ],[ cb  and 

ab
azy

−
−

=   in ],[ ba  are called the right and left legs of 
c
Mµ . Now define cR  score and cNL  score are the ordinates of the intersection of maxµ  with the 

right leg of c
Mµ  and left leg of c

Mµ  respectively. Similarly define cNR  score and cL  score are 
the ordinates of the intersection of minµ with the right leg of c

Mµ  and left leg of c
Mµ  

respectively. Define the scores cT  of c
Mµ  by 

( ) ( )
2

,,,,1 cbaLcbaR
T cc

c
+−

=
 

and cNT  by 

( ) ( ) ( )
2

,,,,1
,,

gfeNRgfeNL
gfeNT cc

c
+−

=  . 

Proposition 3.1 : The score cT  and cNT  are the membership scores of  c
Mµ  . Equivalently 

NTTc =  and  TNTc = .  

Let  ( ) ( ){ }gfecbaM ,,,,,=  with ( ) ( )ccbagfe ,,,, ≤  i.e., either be ≥  and cf ≥  or af ≤  
and bg ≤ , then we shall prove the following proposition. 
 
Proposition 3.2 : Let ( ) ( ){ }gfecbaM ,,,,,=  with be ≥  and cf ≥ . The non-membership 
total score cNT  of the non-membership fuzzy number ( )gfe ,,  is less than or equal to the 
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non-membership total score cT  of the membership fuzzy number ( )cba ,,  i.e., 
( ) ( )cbaTgfeNT cc ,,,, <  . 

Proof: By definition, ( ) ( ) ( )
2

,,,,1
,,

gfeNRgfeNL
gfeNT cc

c
+−

=  

                  

           and 
( ) ( )

2
,,,,1 cbaLcbaR

T cc
c

+−
= . 

First we prove the following claim. 
 

Claim: ( ) ( )cbaRgfeR c ,,,, ≥ and ( ) ( )cbaLgfeL c ,,,, ≤  see  fig 5. 
 
Proof of the claim:  

To prove that ( ) ( )cbaT
LRNRNL

gfeNT c
cccc

c ,,
2

1
2

1
,, =

+−
<

+−
=

  

i.e., to prove that 
2

1
1

2
1

1 cccc RLNRNL +−
−<

−+
−  

i.e., to prove that  
2

1
2

1 cccc RLNRNL +−
>

−+
 

i.e., to prove that  
2

1
2

1 cc RLLR +−
>

−+  

i.e., to prove that ( ) ( )cbaRgfeR c ,,,, > and ( ) ( )cbaLgfeL c ,,,, <  

By definition 
cb

cgfeR
−+

−
=

1
1),,(  and ( )

bc
bcbaRc −+

−
=

1
1,, . Since bg ≤  and clearly 

bg −≥− 11 . If bcgf −+≤−+ 11 , by definition 
bc

b
gf −+
≥

−+ 11
1  and hence 

bc
b

gf
g

−+
−

≥
−+

−
1

1
1

1 . Hence ( ) ( )cbaRgfeR c ,,,, ≥ . If bcgf −+≥−+ 11 , we have to prove 

( ) ( )cbaRgfeR c ,,,, ≥ . 
The corresponding abscissa ( )gfeRx ,,  of ),,( gfeR  is given by substituting ),,( gfeR in minµ . 

So ( ) gf
fx gfeR −+

=
1,, . Similarily the corresponding abscissa ( )cbaRc

x ,,  of ),,( cbaRc is given by 

substituting ),,( cbaRc  in maxµ . So ( ) bc
cx cbaRc −+

=
1,, . Since cf ≤  and bcgf −+≥−+ 11 , 

then 
bc

c
gf

f
−+

≥
−+ 11

. Hence ( ) ( )cbaRgfeR c
xx ,,,, ≤ . By the definition of minµ , it is a 

continuous function in [0, 1].  By differentiating 01min <−=
dx

dµ

 
and hence minµ  is 

monotonically decreasing. Hence ( ) ( )cbaRgfeR c ,,,, > .  
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By monotonic increasing property of maxµ  and by corresponding abscissa of  ( )gfeL ,,  and 

( )cbaLc ,, , we can prove that ( )cbaLgfeL c ,,),,( ≤ . By definition 
ef

egfeL
+−

=
1

),,(  and 

( )
ba

bcbaLc +−
=

1
,, . Since be ≤  and if baef +−≥+− 11 then 

baef +−
≤

+− 1
1

1
1  by 

definition 
ba

b
ef

e
+−

≤
+− 11

 and hence ( )cbaLgfeL c ,,),,( < .  Hence the claim is proved. 

Hence ( ) ( )cbaTgfeNT cc ,,,, <  is proved.  
 
Proposition 3.3 : Let ( ) ( ){ }gfecbaM ,,,,,=  with be ≥  and cf ≥ . If T  is the membership 
score of intuitionistic fuzzy number M and cNT  is the non-membership score of intuitionistic 

fuzzy number M , then 
( ) ( )

1
2

,,,,
≤

+ cbaTgfeNTc .  

 
Definition 3.2: Let ( ) ( ){ }gfecbaM ,,,,,=  be an intuitionistic triangular fuzzy number. If 

be ≥  and cf ≥ , then the score of the intuitionistic fuzzy number M  is defined by ( )cNTT , , 
where T  is the membership score of M  which is obtained from ( )cba ,,  and cNT  is the non-
membership score of M  which is obtained from ( )gfe ,,  . 

( ) ( ) ( )
2

,,,,1
,,

gfeNRgfeNL
gfeNT cc

c
+−

=  

         
( ) ( )

2
,,,,1 cbaRcbaL −+

=  

         ( )cbaT ,,= . 
 
 
4 Significance of the proposed method 
 

Remarks 4.1: The intuitionistic fuzzy score of the given intuitionistic fuzzy number defined in 
[17] fails to get the score for intuitionistic fuzzy number ( ) ( ){ }1,1,1,0,0,0=M  . The score of 
T  is 0 and the score for cNT  is also 0. 

Remarks 4.2: The ranking method defined in [17] extension of Chen and Hwang fails to rank 
the intuitionistic fuzzy numbers in some situations. So we define the total score T  for 
membership function different from the total score T  defined in section 3. From the defined 
total score, we define the total score cNT  for non-membership function.  

Remarks 4.3: Chen and Hwang’s score are ( ) 25.025.0,25.0,25.0 =T  , 
( ) 2727.035.0,25.0,15.0 =T  and ( ) 2826.04.0,25.0,1.0 =T . Hence 
( ) ( ) ( )4.0,25.0,1.035.0,25.0,15.025.0,25.0,25.0 TTT <<  which contradicts human intuition. 
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But the defined total score for  ( ) 25.025.0,25.0,25.0 =T , ( ) 223.035.0,25.0,15.0 =T  and 
( ) 206.04.0,25.0,1.0 =T  . Hence ( ) ( ) ( )4.0,25.0,1.035.0,25.0,15.025.0,25.0,25.0 TTT >> .  

Remarks 4.4: In Chen and Hwang’s method the crisp score of ( ) 2002.0244.0,2.0,0 =T  and 
( ) 2.02.0,2.0,2.0 =T . Hence ( ) ( )2.0,2.0,2.0244.0,2.0,0 TT >  which is anti-intuitive. Also 

human intuitive says ( ) ( )864.0,864.0,864.00.1,9.0,8.0 TT >  .But in Chen’s 
( ) ( )864.0,864.0,864.0864.0836.00.1,9.0,8.0 TT =<= . But the new total score 

of ( ) 105.0244.0,2.0,0 =T  and ( ) 2.02.0,2.0,2.0 =T  (ie., ) ( ) ( )2.0,2.0,2.0244.0,2.0,0 TT < and 
( ) ( )864.0,864.0,864.0864.0944.00.1,9.0,8.0 TT =>=  which favors human intuition. 

 
4.1 Results of the proposed method 
 
Results 4.1.1 : If cf ≤  and af ≤  and if abef +−≤+− 11  and abgf +−≥−+ 11 , then 

( ) ( )cbaTgfeNTc ,,,, ≤ . 
Results 4.1.2 : If cf ≤  and af ≤  and if abef +−≥+− 11  and abgf +−≥−+ 11 , then 

( ) ( )cbaTgfeNTc ,,,, ≤ . 
Results 4.1.3 : If cf ≥  and af ≥  and if abef +−≥+− 11  and abgf +−≤−+ 11 , then 

( ) ( )cbaTgfeNTc ,,,, ≥ . 
Results 4.1.4 : If cf ≥  and af ≤  and if abef +−≤+− 11  and abgf +−≤−+ 11 , then 
the results cannot be predicted. 
Results 4.1.5 : If cf ≥  and af ≥  and if abef +−≥+− 11  and abgf +−≥−+ 11 , then 

( ) ( )cbaTgfeNTc ,,,, ≥ . 
Results 4.1.6 : If cf ≤  and af ≤  and if abef +−≥+− 11  and abgf +−≤−+ 11 , then 
the results cannot be predicted. 
Results 4.1.7 : If cf ≤  and af ≤  and if abef +−≤+− 11  and abgf +−≤−+ 11 , then 

( ) ( )cbaTgfeNTc ,,,, ≤ . 
Results 4.1.8 : If cf ≥  and af ≥  and if abef +−≤+− 11  and abgf +−≤−+ 11 , then 

( ) ( )cbaTgfeNTc ,,,, ≥ . 
Results 4.1.9 : If cf ≥  and af ≥  and if abef +−≤+− 11  and abgf +−≥−+ 11 , then 

( ) ( )cbaTgfeNTc ,,,, ≥ . 
Results 4.1.10 : If cf ≥  and af ≤  and if abef +−≤+− 11  and abgf +−≥−+ 11 , then 

( ) ( )cbaTgfeNTc ,,,, ≤ . 
Results 4.1.11 : If cf ≥  and af ≤  and if abef +−≥+− 11  and abgf +−≥−+ 11 , then 
the results cannot be predicted. 
Results 4.1.12 : If cf ≥  and af ≤  and if abef +−≥+− 11  and abgf +−≤−+ 11 , then 
the results cannot be predicted. 
Results 4.1.13 : If cf ≤  and af ≥  and if abef +−≤+− 11  and abgf +−≥−+ 11 , then 
then the results cannot be predicted. 
Results 4.1.14 : If cf ≤  and af ≥  and if abef +−≥+− 11  and abgf +−≥−+ 11 , then 
then the results cannot be predicted. 
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Results 4.1.15 : If cf ≤  and af ≥  and if abef +−≥+− 11  and abgf +−≤−+ 11 , then 
then the results cannot be predicted. 
Results 4.1.16 : If cf ≤  and af ≥  and if abef +−≤+− 11  and abgf +−≤−+ 11 , then 
then the results cannot be predicted. 
 

5 Intuitionistic fuzzy clustering 

The intuitionistic fuzzy clustering is the problem of obtaining the group of clusters from data 
points mXXXX ,.....,,, 321  based on the features npppp ,.....,,, 321  which are intuitionistic 
fuzzy in nature. The data are evaluated by features in terms of intuitionistic fuzzy linguistic 
terms and they are converted into intuitionistic fuzzy scores.  Using the new intuitionistic fuzzy 
distance formula, a tolerance relation is defined and the tolerance relation is converted into 
equivalence relation by using the algorithm [2.2.1]. By reasonable alpha cuts, the data are 
clustered. 
 
5.1 Distance measure  
 
Let ( ) ( ) ),,( Aici xANTxTAA π=  and ( ) ( ) ),,( Bici xBNTxTBB π=  be two intuitionistic fuzzy sets. Let 
TA , TB  be the membership scores of intuitionistic fuzzy numbers corresponding to A  and B . 
Let ANTc , BNTc  be the non - membership scores of intuitionistic fuzzy numbers 
corresponding to A  and B . Let Aπ , Bπ  be the hesitancy scores of intuitionistic fuzzy 
numbers corresponding to A  and B . Distance between A  and B  is given by  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )[ ]∑
=

−+−+−=
n

i
iiicicii xBxAxBNTxANTxTBxTA

n
BAd

1

222

2
1, ππ  

5.2 Similarity measure  

Let ( ) ( ) ),,( AxANTxTAA ici π=  and ( ) ( ) ),,( BxBNTxTBB ici π= be two intuitionistic fuzzy sets. Let 
TA  , ANTc  , Aπ  be the membership , non-membership and hesitancy respectively for the 
intuitionistic fuzzy set for A . Similarly TB  , BNTc  , Bπ  be the membership , non-
membership and hesitancy respectively for the intuitionistic fuzzy set for B . 

The similarity measure between A  and B  is calculated as ( ) ( )BAdBAS ,1, −=  where 
( )BAd ,  is the proposed distance measure. 

5.3 Clustering technique 

The intuitionistic fuzzy clustering is the problem of obtaining the group of clusters from data 
points nAAAA ,.....,,, 321  based on the features mXXXX ,.....,,, 321  which are intuitionistic 
fuzzy in nature. By using similarity measure defined in [ ], the fuzzy tolerance relation is 
obtained. By using algorithm by Zeshui Xu (2008), fuzzy equivalence relation ( )ijrR =  on the 
set of data points nAAAA ,.....,,, 321  can be found where ( )jiij XXSr ,= . By the acceptable 
level of alpha cuts, the data are clustered. 
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5.4 Illustration 

The structure of the typical intuitionistic fuzzy clustering problem considered here consists of 
ten students mXXXX ,.....,,, 321  who give feedback to three teachers 321 ,........,, SSS  based on 
six criteria such as Punctuality, Innovative teaching, Communication skills, Given practical 
examples, Completion of Syllabus, counseling. The students are clustered by taking their skill 
into account based on their psychological opinions on their staff. Let ijA  denote the feedback 

given to the thi  staff based on the thj  criterion which is an intuitionistic fuzzy linguistic term 
(as shown in table 1). The intuitionistic fuzzy linguistic terms are converted to intuitionistic 
fuzzy numbers (as shown in table 2 and 3) which are in turn converted to intuitionistic fuzzy 
score (as shown in table 5) using new technique defined in the section 3. For eg. let the data 
collected from the expert be (Fairly good, Very little). The fuzzy linguistic term fairly good for 
the membership function has the triangular fuzzy numbers (0.6, 0.7, 0.8) as shown in table 2. 
Similarly the fuzzy linguistic term Very little for hesitancy has the triangular fuzzy number 
(0.1, 0.1, 0.2). Now the intuitionistic fuzzy linguistic term (Fairly good, Very little) has the 
intuitionistic fuzzy number ((0.6, 0.7, 0.8), (0.1, 0.1, 0.2)). The intuitionistic fuzzy score for 
(Fairly good, Very little) is (0.722, 0.106). Similarly the intuitionistic fuzzy score for the other 
intuitionistic fuzzy numbers can be found. By using the normalized distance formula for the 
intuitionistic fuzzy score, we get the distance between any pair of students. Distance between 

1X  and 2X  i.e.,  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )[ ]∑
=

−+−+−=
n

i
iiicicii xBxAxBNTxANTxTBxTA

n
XXd

1

222
21 2

1, ππ  

From the obtained distance, we can get the similarity between the corresponding pair of 
students. The similarity measure between 1X  and 2X can be found as 
( ) ( ) 127.0,1, 2121 =−= XXdXXs . The similarity between each pair of students is as follows. 
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Hence the similarity measure for other pair of data is obtained and it seems to be a tolerance 
relation. Applying algorithm [2.1] to the tolerance relation, we get fuzzy equivalence relation. 
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 Now we can fix some reasonable alpha cuts, so that the data are clustered in to different 
groups. At 798.0=α , the data are clustered in to three groups as { }8521 ,,, XXXX  , 
{ }963 ,, XXX  , and { }1074 ,, XXX  as shown below:  
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6 Conclusions 

In this paper, a new intuitionistic fuzzy scoring method has been defined for the intuitionistic 
fuzzy number in which hesitation is greater than membership fuzzy number. Similarly, we can 
study the intuitionistic fuzzy number in which the hesitation is less than membership fuzzy 
number. This new method includes the concept of both membership and non-membership 
function of an intuitionistic fuzzy number. By this defined method, we can study the problems 
of involving hesitation easily. In this paper, the defined intuitionistic fuzzy scoring method has 
been applied to clustering problem. 

Figure: 
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Table 1: Opinions of students about features on staff  in terms of  Intuitionistic linguistic term 

X1 S1 S2 S3 
Punctuality (VG, VL) (FVG, VL) (VG, VL) 
Innovative Teaching (FVG, VL) (VG, M) (FVG, M) 
Communication Skills E (FE, VL) E 
Given Practical Examples (VG, M) E (FE, VL) 
Completion of Syllabus E (VG, L) E 
Counseling (VG, L) E (FVG, M) 
 

X2 S1 S2 S3 
Punctuality (FVG, L) FE E 
Innovative Teaching (VG, VL) E (VG, L) 
Communication Skills E (VG, VL) FE 
Given Practical Examples (FVG, L) (FVG, M) (FVG, VL) 
Completion of Syllabus E (FVG, M) E 
Counseling FE E FE 
 

X3 S1 S2 S3 
Punctuality (N, M) (FG, L) (FG, L) 
Innovative Teaching (G, L) (N, L) (G, M) 
Communication Skills (FG, S) (FG, M) (N, VL) 
Given Practical Examples (N, L) (FVG, M) (FN, VL) 
Completion of Syllabus (FVG, S) (N, VL) L 
Counseling (FG, S) (G, M) (FG, L) 
 

X4 S1 S2 S3 
Punctuality (FN, L) L P 
Innovative Teaching (FN, VL) P (FN, L) 
Communication Skills (FN, VL) P L 
Given Practical Examples L (FN, L) P 
Completion of Syllabus P (FN, VL) P 
Counseling P (FN, L) (FN, VL) 
 

X5 S1 S2 S3 
Punctuality (FG, L) (VG, VL) FE 
Innovative Teaching (FVG, L) (FVG, L) E 
Communication Skills FE (VG, VL) (VG, L) 
Given Practical Examples E FE E 
Completion of Syllabus (VG, L) E (VG, L) 
Counseling E FE (FVG, L) 
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X6 S1 S2 S3 
Punctuality (FG, L) (FVG, M) (FG, L) 
Innovative Teaching (FVG, VL) (G, L) (FVG, L) 
Communication Skills (FG, L) (FG, M) (FG, VL) 
Given Practical Examples (N, L) (G, L) (N, VL) 
Completion of Syllabus (FG, L) (FG, VL) (N, L) 
Counseling (FVG, VL) (N, VL) (FG, M) 
 

X7 S1 S2 S3 
Punctuality P P L 
Innovative Teaching (FN, VL) (N, VL) P 
Communication Skills L L P 
Given Practical Examples P P (FN, VL) 
Completion of Syllabus (N, L) (FN, VL) L 
Counseling L L (N, L) 
 

X8 S1 S2 S3 
Punctuality FE E (FVG, L) 
Innovative Teaching E (FVG, L) (VG, L) 
Communication Skills (VG, VL) E E 
Given Practical Examples (FVG, M) (FG, VL) (VG, VL) 
Completion of Syllabus (FE, L) FE (FVG, VL) 
Counseling (VG, VL) (VG, VL) E 
 

X9 S1 S2 S3 
Punctuality (G, L) (N, M) (FG, L) 
Innovative Teaching (N, VL) (G, L) (N, VL) 
Communication Skills (G, L) (FG, L) (G, L) 
Given Practical Examples (FG, L) (N, VL) (FG, L) 
Completion of Syllabus (N, VL) FVG (G, M) 
Counseling (G, L) (G, L) (N, L) 
 

X10 S1 S2 S3 
Punctuality L P (FN, L) 
Innovative Teaching (N, L) L L 
Communication Skills L (FN, L) P 
Given Practical Examples P L L 
Completion of Syllabus L (N, L) (FN, VL) 
Counseling (FN, VL) L P 
 
E –  Excellent          FE –  Fairly Excellent            VG –  Very Good     FVG –  Fairly Very Good 
G –  Good     FG –  Fairly Good      N –  Normal      FN – Fairly Normal    L – Low    P –  Poor 
L – Little     VL – Very Little      M – Moderate      S – Strong         VS – Very Strong 
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Table 2: Conversion of linguistic terms for membership 
Linguistic terms Fuzzy Numbers 
Poor (0.1, 0.1, 0.2) 
Low (0.1, 0.2, 0.3) 
Fairly Normal (0.2, 0.3, 0.4) 
Normal (0.3, 0.4, 0.5) 
Fairly Good  (0.4, 0.5, 0.6) 
Good  (0.5, 0.6, 0.7) 
Fairly Very Good (0.6, 0.7, 0.8) 
Very Good  (0.7, 0.8, 0.9) 
Fairly Excellent (0.8, 0.9, 1.0) 
Excellent (0.9, 0.95, 0.95) 

 
Table 3: Conversion of linguistic terms for hesitancy.  

Linguistic terms Fuzzy Numbers 
Very Little (0.1, 0.1, 0.2) 
Little (0.1, 0.2, 0.3) 
Moderate (0.2, 0.3, 0.4) 
Strong (0.3, 0.4, 0.5) 
Very Strong (0.4, 0.5, 0.6) 

 
Table 4: Opinions of X1 student about features on staff in terms of IFN. 

X1 S1 S2 S3 

Punctuality ((0.7, 0.8, 0.9), (0.1, 0.1, 0.2)) ((0.6, 0.7, 0.8), (0.1, 0.1, 0.2)) ((0.7, 0.8, 0.9), (0.1, 0.1, 0.2))
Innovative Teaching ((0.6, 0.7, 0.8), (0.1, 0.1, 0.2)) ((0.7, 0.8, 0.9), (0.2, 0.3, 0.4)) ((0.6, 0.7, 0.8), (0.2, 0.3, 0.4))
Communication 
Skills ((0.9, 0.95, 0.95), (0, 0, 0)) ((0.8, 0.9, 1.0), (0.1, 0.1, 0.2)) ((0.9, 0.95, 0.95), (0, 0, 0)) 

Given Practical 
Examples ((0.7, 0.8, 0.9), (0.2, 0.3, 0.4)) ((0.9, 0.95, 0.95), (0, 0, 0)) ((0.8, 0.9, 1.0), (0.1, 0.1, 0.2))

Completion of 
Syllabus ((0.9, 0.95, 0.95), (0, 0, 0)) ((0.7, 0.8, 0.9), (0.1, 0.2, 0.3)) ((0.9, 0.95, 0.95), (0, 0, 0)) 

Counseling ((0.7, 0.8, 0.9), (0.1, 0.1, 0.2)) ((0.9, 0.95, 0.95), (0, 0, 0)) ((0.6, 0.7, 0.8), (0.1, 0.2, 0.3))
 
Table 5: Intuitionistic fuzzy scores of X1 using IFN. 

X1 S1 S2 S3 

Punctuality (0.833, 0.106) (0.722, 0.106) (0.833, 0.106) 
Innovative Teaching (0.722, 0.106) (0.833, 0.278) (0.722, 0.278) 
Communication 
Skills (0.95, 0) (0.944, 0.106) (0.95, 0) 

Given Practical 
Examples (0.833, 0.278) (0.95, 0) (0.944, 0.106) 

Completion of 
Syllabus (0.95, 0) (0.833, 0.167) (0.95, 0) 

Counseling (0.833, 0.106) (0.95, 0) (0.722, 0.167) 
 


