Operation division by n over intuitionistic fuzzy sets

Beloslav Riećan ${ }^{1}$ and Krassimir T. Atanassov ${ }^{2}$
${ }^{1}$ Faculty of Natural Sciences, Matej Bel University
Department of Mathematics
Tajovského 40
97401 Banská Bystrica, Slovakia and
Mathematical Institute of Slovak Acad. of Sciences
Štefá nikova 49
SK-81473 Bratislava
e-mail: riecan@mat.savba.sk, riecan@fpv.umb.sk
${ }^{2}$ Dept. of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, e-mail: krat@bas.bg

The present remark is a continuation of $[1,3]$. In the beginning, the necessary concepts from intuitionistic fuzzy set theory will be given.

Let a set E be fixed. The Intuitionistic Fuzzy Set (IFS) A in E is defined by (see, e.g., [1]):

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\}
$$

where functions $\mu_{A}: E \rightarrow[0,1]$ and $\nu_{A}: E \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$
0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1
$$

Let for every $x \in E$:

$$
\pi_{A}(x)=1-\mu_{A}(x)-\nu_{A}(x) .
$$

Therefore, function π determines the degree of uncertainty.
Let us define the empty IFS, the totally uncertain IFS, and the unit IFS (see [1]) by:

$$
\begin{aligned}
O^{*} & =\{\langle x, 0,1\rangle \mid x \in E\}, \\
U^{*} & =\{\langle x, 0,0\rangle \mid x \in E\},
\end{aligned}
$$

$$
E^{*}=\{\langle x, 1,0\rangle \mid x \in E\} .
$$

Different relations and operations are introduced over the IFSs. Some of them are the following

$$
\begin{aligned}
& A \subset B \quad \text { iff } \quad(\forall x \in E)\left(\mu_{A}(x) \leq \mu_{B}(x) \& \nu_{A}(x) \geq \nu_{B}(x)\right), \\
& A=B \quad \text { iff } \quad(\forall x \in E)\left(\mu_{A}(x)=\mu_{B}(x) \& \nu_{A}(x)=\nu_{B}(x)\right), \\
& \bar{A} \quad=\quad\left\{\left\langle x, \nu_{A}(x), \mu_{A}(x)\right\rangle \mid x \in E\right\}, \\
& A \cap B= \\
& A \cup B=\left\{\left\langle x, \min \left(\mu_{A}(x), \mu_{B}(x)\right), \max \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}, \\
& A+B=\left\{\left\langle x, \max \left(\mu_{A}(x), \mu_{B}(x)\right), \min \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}, \\
& A \cdot B \quad\left\{\left\langle x, \mu_{A}(x)+\mu_{B}(x)-\mu_{A}(x) \cdot \mu_{B}(x), \nu_{A}(x) \cdot \nu_{B}(x)\right\rangle \mid x \in E\right\}, \\
& \left\{\left\langle x, \mu_{A}(x) \cdot \mu_{B}(x), \nu_{A}(x)+\nu_{B}(x)-\nu_{A}(x) \cdot \nu_{B}(x)\right\rangle \mid x \in E\right\} .
\end{aligned}
$$

In [2] Supriya Kumar De, Ranjit Biswas and Akhil Ranjan Roy introduced two operations which are related to the last two above ones:

$$
\begin{aligned}
n . A & =\left\{\left\langle x, 1-\left(1-\mu_{A}(x)\right)^{n},\left(\nu_{A}(x)\right)^{n}\right\rangle \mid x \in E\right\}, \\
A^{n} & =\left\{\left\langle x,\left(\mu_{A}(x)\right)^{n}, 1-\left(1-\nu_{A}(x)\right)^{n}\right\rangle \mid x \in E\right\},
\end{aligned}
$$

where n is a natural number.
In [3] we defined operstor "extraction" over a given IFS. Now, we will introduce a new operator, defined over IFS, that will be an analogous as of operations "extraction" as well as of opertion "multiplication of an IFS with $\frac{1}{n}$ " or "division of an IFS with the natural number n ". It has the form for every IFS A and for every natural number $n \geq 1$:

$$
\frac{1}{n} A=\left\{\left\langle x, 1-\sqrt[n]{1-\mu_{A}(x)}, \sqrt[n]{\nu_{A}(x)}\right\rangle \mid x \in E\right\}
$$

First, we must check that in a result of the operation we obtain an IFS. Really, for given IFS A, for each $x \in E$, and for each $n \geq 1$:

$$
1-\sqrt[n]{1-\mu_{A}(x)}+\sqrt[n]{\nu_{A}(x)} \leq 1
$$

because from $\nu_{A}(x) \leq 1-\mu_{A}(x)$ it follows that

$$
\sqrt[n]{\nu_{A}(x)} \leq \sqrt[n]{1-\mu_{A}(x)}
$$

Obviously, for every natural number $n \geq 1$:

$$
\begin{aligned}
& \frac{1}{n} O^{*}=O^{*}, \\
& \frac{1}{n} U^{*}=U^{*}, \\
& \frac{1}{n} E^{*}=E^{*} .
\end{aligned}
$$

By similar to the above way we can prove the following assertions.

Theorem 1: For every IFS A and for every natural number $n \geq 1$:
(a) $\frac{1}{n}(n A)=A$,
(b) $n\left(\frac{1}{n} A\right)=A$.

Theorem 2: For every IFS A and for every two natural numbers $m, n \geq 1$:

$$
\frac{1}{m}\left(\frac{1}{n} A\right)=\frac{1}{m n} A=\frac{1}{n}\left(\frac{1}{m} A\right) .
$$

Theorem 3: For every two IFSs A and B and for every natural number $n \geq 1$:
(a) $\frac{1}{n}(A \cap B)=\frac{1}{n} A \cap \frac{1}{n} B$,
(b) $\frac{1}{n}(A \cup B)=\frac{1}{n} A \cup \frac{1}{n} B$.

Proof: We shall prove (a) and (b) is proved analogically.

$$
\begin{aligned}
& \frac{1}{n}(A \cap B)=\frac{1}{n}\left(\left\{\left\langle x, \min \left(\mu_{A}(x), \mu_{B}(x)\right), \max \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}\right) \\
&=\left\{\left\langle x, 1-\sqrt[n]{1-\min \left(\mu_{A}(x), \mu_{B}(x)\right)}, \sqrt[n]{\max \left(\nu_{A}(x), \nu_{B}(x)\right)}\right\rangle \mid x \in E\right\} \\
&=\left\{\left\langle x, 1-\sqrt[n]{\max \left(1-\mu_{A}(x), 1-\mu_{B}(x)\right)}, \max \left(\sqrt[n]{\nu_{A}(x)}, \sqrt{\nu_{B}(x)}\right)\right\rangle \mid x \in E\right\} \\
&=\left\{\left\langle x, 1-\max \left(\sqrt[n]{1-\mu_{A}(x)}, \sqrt{1-\mu_{B}(x)}\right), \max \left(\sqrt[n]{\nu_{A}(x)}, \sqrt{\nu_{B}(x)}\right)\right\rangle \mid x \in E\right\} \\
&=\left\{\left\langle x, \min \left(1-\sqrt[n]{1-\mu_{A}(x)}, 1-\sqrt{1-\mu_{B}(x)}\right), \max \left(\sqrt[n]{\nu_{A}(x)}, \sqrt{\nu_{B}(x)}\right)\right\rangle \mid x \in E\right\} \\
&=\frac{1}{n} A \cap \frac{1}{n} B .
\end{aligned}
$$

Theorem 4: For every two IFSs A and B and for every natural number $n \geq 1$:

$$
\frac{1}{n}(A+B)=\frac{1}{n} A+\frac{1}{n} B
$$

The simplest modal operators defined over IFSs (see, e.g., [1]) are:

$$
\begin{aligned}
& \square A=\left\{\left\langle x, \mu_{A}(x), 1-\mu_{A}(x)\right\rangle \mid x \in E\right\} ; \\
& \diamond A=\left\{\left\langle x, 1-\nu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\} .
\end{aligned}
$$

They are analogous of the modal logic operators "necessity" and "possibility". For them it is valid
Theorem 5: For every IFS A and for every natural number $n \geq 1$:
(a) $\square \frac{1}{n} A=\frac{1}{n} \square A$,
(b) $\diamond \frac{1}{n} A=\frac{1}{n} \diamond A$.

In IFSs theory some level operators are defined. Two of them are:

$$
\begin{aligned}
& P_{\alpha, \beta}(A)=\left\{\left\langle x, \max \left(\alpha, \mu_{A}(x)\right), \min \left(\beta, \nu_{A}(x)\right)\right\rangle \mid x \in E\right\}, \\
& Q_{\alpha, \beta}(A)=\left\{\left\langle x, \min \left(\alpha, \mu_{A}(x)\right), \max \left(\beta, \nu_{A}(x)\right)\right\rangle \mid x \in E\right\},
\end{aligned}
$$

where $\alpha+\beta \leq 1$. For them it is valid
Theorem 6: For every IFS A, for every natural number $n \geq 1$ and for every $\alpha, \beta \in[0,1]$, so that $\alpha+\beta \leq 1$:
(a) $P_{\alpha, \beta}\left(\frac{1}{n} A\right)=\frac{1}{n} P_{1-(1-\alpha)^{n}, \beta^{n}} A$,
(b) $Q_{\alpha, \beta}\left(\frac{1}{n} A\right)=\frac{1}{n} Q_{1-(1-\alpha)^{n}, \beta^{n}} A$.

References

[1] K. Atanassov, Intuitionistic Fuzzy Sets, Springer Physica-Verlag, Berlin, 1999.
[2] S.K. De, R. Biswas and A. R. Roy, Some operations on intuitionistic fuzzy sets, Fuzzy sets and Systems, Vol. 114, 2000, No. 4, 477-484.
[3] R. Riećan and K. Atanassov, n-extraction operation over intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, Vol. 12, 2006, No. 4, 38-40.

