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Abstract. This article opens the way for an implementation of Intuitionistic Fuzzy Logical  
Programming (IFLP) based on Intuitionistic Fuzzy Sets (IFS), as defined by Atanassov [1]. 
The proposed system suggests defining intuitionistic fuzzy certainty measures over programs 
clauses – facts and rules. An implementation of an IFL system would be a convenient tool for 
development of expert systems using uncertain or incomplete information and expert 
knowledge. 
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1. Introduction 
 
Logical programming is a widely applied and convenient paradigm for development of rule-
based expert production systems. Implementations of an expert system based on uncertain or 
incomplete information needs an extension of the PROLOG language that uses fuzzy logic. 
 
Existing researches on fuzzy logical programming explore the theoretical aspects of PROLOG 
language implementations based on fuzzy logic [2]. Such implementations allow fuzzification 
of the program facts or rules and produce the truth values of the derivations in the interval 
[0,1] or subintervals of [0,1], applying the laws of Fuzzy Logic or Interval Valued Fuzzy 
Logic, respectively. 
 
This paper proposes a version of the logical programming capable of dealing with uncertain 
facts and rules, evaluated by independent degrees of truthfulness and falsity, i.e. intuitionistic 
fuzzy truth values. Intuitionistic fuzzy logic (IFL) [1] is chosen to be the underlying logical 
system of the Intuitionistic Fuzzy Logical Programming (IFLP). This work is a continuation 
and extension of previous researches on IFL bases logical programming. 
 
The following sections propose a simple extension of the syntax of the PROLOG language 
and present the procedural semantics of Intuitionistic Fuzzy (IF) PROLOG. The purpose of 
this research is to open a way for an implementation of IF PROLOG interpreter. 
 
 



2. Syntax of the Intuitionistic Fuzzy Logical Programs 
 
This section proposes the syntax of IFL programs. We assume that the reader is familiar with 
the syntax of the PROLOG programming language.  
 
As in the standard logical programming, an IFL program is comprised of facts, rules, and 
queries. The new element in the IFL programs, which opens the way of the Intuitionistic 
Fuzzy semantics, is the certainty measure of the database clauses - the facts and rules. In 
contrast to the standard logical programs, where all the clauses are absolutely true formulas, 
the certainty measure defines the IF truth value of the clauses of the IFL programs.  
 
The certainty measure is then defined by the degree of truthfulness and the degree of 
untruthfulness of the clause, not necessarily summing up to 100%. We will write the certainty 
measure in square brackets ahead of all clauses of the program, omitting those only that are 
100% true and 0% untrue. Let us consider the following program 
 

   male(john). 
   female(mary). 
[0.90,0.10] loves(john,wine). 
[0.30,0.50] loves(john,lemonade). 
   
[0.80,0.20] loves(X,Y):-male(X),female(Y). 
[0.70,0.20] dreams(X,Y):-loves(X,Y). 

 
The program describes a world in which people dream about the objects of their affection in 
the 70% of the cases, does not in the 20% of the cases, and we cannot tell anything about 10% 
of the cases. 
 
Let us assume that there are no two clauses in the program which depend on each other, i.e. 
every clause is a separate assertion. In classical logical programming clauses are connected by 
a conjunction. In order to resemble probabilistic reasoning, we will combine the certainty 
measures of the clauses by the IF multiplication operation (.), defined as follows: 
 

2121212211 .,.,., bbbbaababa −+=  
However, we will regard the preconditions within a single rule connected by the ordinary IF 
conjunction (I ): 

),max(),,min(,, 21212211 bbaababa =I  
 
Therefore, in this world it is 63% true and 28% untrue that John dreams about wine and only 
56% true that John dreams about Mary. In this sense we would expect the query: 
 

?-dreams(X,Y). 

 
to produce the following results: 
 

[0.63,0.28] X=john,Y=wine; 
[0.21,0.69] X=john,Y=lemonade; 
[0.56,0.36] X=john,Y=mary; 

 
The next sections discuss the semantics of IFL programs, or how the result and the certainty 
measures of the result are obtained. 
 



3. Procedural semantics of the IFL programs. SLD resolution. 
 
In this section we will present a resolution algorithm for IFL programs similar to the standard 
SLD resolution used in PROLOG. The new elements of the algorithm will be the means to 
obtain the certainty measure of the obtained result. We assume that the reader is familiar with 
the standard SLD resolution.  
 
The purpose of this article is to briefly present a way for the implementation of an IFL 
language interpreter, so we will not dig deep into the theoretical aspects of IFL programming. 
We will propose the resolution algorithm by the means of IFL SLD tree, adopting definitions 
and theoretical results from researches on classical SLD resolution. 
 
The clauses of an IFL program are a finite number of IF implications with the additional 
property of their certainty measure. We consider the clauses universally closed. 
 

in
iii

ii AAH ,...,],[ 1←νµ  
 
where i = 1,..n and n is the number of clauses of the program. iH  is called the clause head 
and in

ii AA ,...,1  is called the clause body. The facts are special cases of clauses with empty 
(absolutely true) bodies.  
 
An IFL program, like ordinary logical programs, is a finite conjunction of program clauses. 
The query is a disjunction of negative literals, or a clause with an empty (absolutely false) 
head. The process of obtaining the result of the program is the process of refuting the negation 
of the query, or deriving the empty goal from the program clauses and the negation of the 
query. 
 
A goal is a conjunction of positive literals. Let kBBG ,...,1=  be a goal. A one-step SLD 
resolution of G and a program clause iC  is written as: 
 

GG iC ′→  by θ , 
 
where iC  is a program clause renamed apart of G such that iH  and 1B  are unifiable, 

kn
ii BBAAG i ,...,,..., 21=′  and θ  is the most general unifier of 1B  and iH . 

 
The definition of an IFL SLD tree differs slightly from the definition of the standard SLD 
tree. The nodes of the IFL SLD tree are goals with certainty measures, attached to each of 
their literals. At the start of the resolution algorithm, these certainty measures are not yet 
known. They are calculated after the IFL SLD tree construction completes.  
 
The first part of the resolution algorithm for a given query is like the standard algorithm: 
 

1. At the start of the algorithm, the IFL SLD tree has a single node – its root, containing 
the negated query  as a goal. Proceed with point 2 for the root of the IFL SLD tree. 

2. Let kBBG ,...,1=  be a node of the IFL SLD tree that has no children. If k=0 then the 
algorithm completes successfully.  If there are no program clauses such that their head 
and 1B  are unifiable, then the algorithm fails.  



Let there be k program clauses kpp CC ,..,
1  , kpp >> ...1 , such that kpp HH ,..,

1  

and 1B are unifiable. For each of these clauses, calculate GG iC ′→  and θ  and create 
a child of the tree node connecting it to the node by an arc, labeled by the 
corresponding clause and θ  -  the most general unifier of 1B  and the clause head. Set 
the goal of the child to θG′ . 
 
Proceed with point 2 for all the newly created children, from left to right. Erase those 
for which the algorithm fails. 

 
The presented resolution algorithm creates the complete SLD tree which may be infinite – in 
this case the algorithm will not come to an end. The algorithms applied in common PROLOG 
implementations create only one child of a node at a time, trying another clause only if the 
selected clause fails the algorithm. They stop the first time an empty goal is achieved. 
However, these technical details are not in the focus of this paper.  
 
The final result of the query is achieved by a traversal of the SLD tree by multiplying the 
unifiers that lay on the path from the tree root to some node with an empty goal. The next part 
of our algorithm needs to calculate the certainty measure of all the literals in the goal of the 
root of the IFL SLD tree. 
 
Let us focus on a tree node with an empty goal. Let h be the height of the node, or the number 
of arcs on the path from the root to the node. The algorithm will perform h steps, p=0,.,.h-1, 
beginning from the node with empty goal and going up the IFL SLD tree. On each step the 
certainty measures of all the literals in the goal of the current tree node will be calculated. 
 
At each step p, let kBBG ,...,1=  be the goal in the current node’s parent, iC  and θ  be the 
clause and the unifier that label the arc between the parent and the node. We will provide that 
at each step, all of the uncertainty measures of the current node’s literals are calculated by 
previous steps. Let us consider the following cases: 
 

1. iC  is a fact. Then certainly .1 ←= θBCi  Set the certainty measure of 1B  to the 
certainty measure of the fact iC . 
 

If the node’s parent is the root of the tree, then the algorithm completes, stop.  
Proceed with the algorithm on the node’s parent. 
 

When the algorithm completes, all the literals in the IFL SLD tree root have their certainty 
measure calculated. All that needs to be done at this point is to calculate the certainty measure 
of the conjunction which produces the certainty measure of the query’s answer. 
 
4. Total IFL SLD resolution 
 
In the previous section, we presented an algorithm, which calculates the certainty measure of 
a goal, which has been derived from an IFL program by an SLD resolution. However, a very 
important feature of the algorithm is the requirement for a fixed empty node in the SLD tree, 
from each the algorithm would start. Each such node corresponds to a single derivation of the 
query from the IFL program. Therefore, the certainty measures, which the algorithm 
computes need not be the same for each empty node, although the query is one and the same. 



 
This peculiarity has a simple explanation: the derivation of the query is a proof; when the 
reasons used in the proof (the program clauses) are not fully truthful, then the result is also 
not fully truthful. Moreover, the more uncertain reasons we use, the more uncertain the result 
will be. Therefore, the result, calculated by the algorithm is not the certainty measure of the 
query, with respect to the program, but the certainty measure of the query with respect to a 
given derivation from the program. 
 
A natural question rises: how should we define a certainty measure of the query with respect 
to the whole IFL program? This question is meaningful only for ground goals; for open goals 
different derivations may lead to different answer-substitutions. An intuitive answer is that we 
should consider the most reliable derivation of the query. The sibling nodes in the SLD tree 
are the alternatives for derivation using different clauses. Moreover, all sibling nodes are 
calculated by a one-step resolution with the first literal in the goal of their common parent. 
The algorithm for SLD resolution in the previous section will produce certainty measures for 
the goal for each sibling node. These certainty measures should be combined with an IF 
disjunction (U ) to produce the total certainty measure of the parent node. 
 
Here is a recursive algorithm for total IFL SLD resolution: 
 
Starting from the root SLD node: 
 

Let the current node is a goal kBBG ,...,1= . 
 
Set the certainty measures ],[],...,,[ 11 kk νµνµ  of all literals in G to [0.0,1.0] (absolute 
falsity). 

 
Consider each arc between the current node and its child, labeled iC  and θ  (the clause 
and the unifier): 
 
1. If iC  is a fact, then .1 ←= θBCi  and the child’s goal is kBBG ,...,' 2= . Find 

recursively the certainty measures ]','[],...,','[ 22 kk νµνµ  for G’ and set 
],[],[],[ 1111

ii νµνµνµ U= , where ],[ ii νµ  is the certainty measure of Ci and 
]','[],[],[ jjjjjj νµνµνµ U=  for j = 2,…k. 

2. If in
iii

i AAHC ,...,1←=  is a rule, then iHB =1  and kn
ii BBAAG i ,...,,,...,' 21=  is 

the child’s goal. Find recursively the certainty measures 
]','[],...,','[],'',''[],...,'',''[ 2211 kknn νµνµνµνµ  and set 
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where ],[ ii νµ  is the certainty measure of Ci and ]','[],[],[ jjjjjj νµνµνµ U=  for j = 
2,…k. 

  
The algorithm described above performs depth-first traversal of the SLD tree. It finishes only 
if the tree is finite. However, for infinite trees with infinitely occurring empty nodes, for 



which the obtained certainty measures converge, the total certainty measure of the query can 
also be defined. It would be an infinite disjunction of all certainty measures of the query with 
respect to the infinitely emerging empty nodes. Investigation of converging infinite IF 
PROLOG derivations will be a subject of further research. 
 
5. Conclusions 
 
Intuitionistic fuzzy logical programming (IFLP) is an extension of classical logical 
programming, which supports intuitionistic fuzzy certainty measures of the logical program 
facts and rules. The proposed procedural semantics provides a method for backward chaining 
based on SLD resolution using IF logical operations for estimation of the certainty measure of 
the derived answer of the query. 
 
The research considers an aspect of IFLP, which is not present in classical logical 
programming: the certainty measure of a ground goal with respect to the whole program, as 
opposed to a fixed derivation. 
 
The Fixed-point semantics of IFLP is a target of future works on the topic, as well as the 
implementation of an IFLP interpreter. An implementation of an IFL system would be a 
convenient tool for development of expert systems using uncertain or incomplete information 
and expert knowledge. 
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