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Abstract: In 1965, Fuzzy Set Theory was introduced by Zadeh as an extension of crisp sets
[10]. K. T. Atanassov defined the concept of Intuitionistic Fuzzy Sets, in 1983 [1]. Some opera-
tions and operators on intuitionistic fuzzy sets, like modal operators, level operators, topological
operators, etc., was defined by same author [2]. In later times, new operators were defined on IFSs
and several properties of these operators were studied by different authors [3, 5, 6, 7, 8, 9]. In this
study, we examine some relationships between new modal operators with topological operators.
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1 Introduction

Fuzzy Set Theory was introduced by Zadeh [10] as an extension of crisp sets. Atanassov intro-
duced the concept of Intuitionistic Fuzzy Sets [1], form an extension of fuzzy sets by expanding
the truth value set to the lattice [0, 1] x [0, 1] is defined as following.

Definition 1. Let L = [0,1] then L* = {(z1,73) € [0,1]* : 1 + xy < 1} is a lattice with
(21, 22) < (y1,92) = "1 <Y1 and 3 > Yo

For (z1,41), (z2,y2) € L* the operators A and V on (L*, <) are defined as following;
(1, 91) A (22,92) = (min(z1, 22), max(y1, y2))
(1,91) V (%2, 92) = (max(xy, 22), min(y1, y2))

Foreach J C L*
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sup J = (sup{z : (z,y € [0,1]), ((z,y) € )}, inf{y :(z,y € [0,1])((z,y) € J)}) and
inf J = (inf{z: (z,y € [0,1])((z,y) € J)}, sup{y : (z,y € [0,1])((z,y) € J)}).

Intuitionistic fuzzy modal operators were introduced by Atanassov [1, 2].Then several ex-
tensions of these operators were studied by different authors [2, 8, 5, 6]. Some algebraic and
characteristic properties of these operators were examined by several authors. New modal opera-
tors LZU,,& szﬁ, Sa,5 and T, 3 were defined in [9, 7] and operator ®, g ~,s defined in [3]. In 1986,
Atanassov defined two operators called topological operators and extensions of these operators
defined by same author [1, 2].

2 Preliminaries

Definition 2. [1] An intuitionistic fuzzy set (shortly IFS) on a set X is an object of the form
A= {{z pa(@), vale)) : o € X}

where pia(x),(na © X — [0,1]) is called the “degree of membership of x in A”, vs(x),
(va : X — [0,1]) is called the “ degree of non-membership of x in A”, and where p and
v 4 satisfy the following condition:

pa(x) +va(z) <1, foral x € X.

The class of intuitionistic fuzzy sets on X is denoted by I F'S(X).
The hesitation degree of x is defined by m4(z) =1 — pa(x) — va(x).

Definition 3. [1] An IFS A is said to be contained in an IFS B (notation A T B) if and only if,
forallz € X : pa(z) < pp(x) and vy(z) > vg(x).
Itis clear that A = Bifandonly if AC Band B C A.

Definition 4. [/] Let A € IFS and let A = {{(z, pa(z),va(x)) : © € X} then the following set
is called the complement of A

A® = {(z,va(@), pa(z)) - v € X}
The intersection and the union of two IFSs A and B on X is defined by
AN B = {{z,pa(z) A pup(x),va(z) Vvg(z)) z € X}
AU B = {{z,ua(x) Vug(x),va(x) ANvg(z)) :x € X}
Some special Intuitionistic Fuzzy Sets on X are defined as following;
O ={(z,0,1) :z € X}
X' ={<z,1,0>z€ X}

In 1986, Atanassov introduced topological operators and the extensions of these operators
were defined by same author in 2001 as following,
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Definition 5. [2] Let X be a set and A € IFS(X).

C(A) = {2, K, L) : v € X}

where K = sup pua(y), L = inf va(y) and
yeX yeX

I(A) = {{x, k) : x € X}

where k = inf pa(y), | =supva(y).
yex yeX

Definition 6. [2] Let X be a setand A € IFS(X). Let K, L, k and | be as above forms,
1. Cy(A) = {{z, K,min(1 — K,v4(x))) : z € X}
2. Cy(A) = (. pal). I) - # € X}
3. I(A) ={(z,k,va(x)) :z € X}
4. I,(A) = {{z,min(1 — [, pa(x)),l) : x € X}

Intuitionistic fuzzy modal operators Ly, ; and K, ; defined in [9] and some of their properties
were examined.

Definition 7. [9] Let X be a setand A € IFS(X),a, B,w € [0,1] and o + f < 1.
1. Lg 5(A) = {z,apa(x) + w(l —a),a(l = Brva(z) + af(l —w)) :x € X}
2. K¢ 5(A) = {{z,a(l = B)pa(r) + af(l —w),ava(z) + w(l —a)) : v € X}
In [3], an intuitionistic fuzzy modal operator, represented by ®, 3 +,5, was introduced.

Definition 8. [3] Let X be a setand A € [FS(X),a, B,7,0 € [0,1]]anda+ < 1,7+ < 1.

Rapy0(A) = {{&, apa(®) +wale), Bpalz) + ova(z))}

New intuitionistic fuzzy modal operators 7, g and S, g are defined by the authors as following,

Definition 9. [7] Let X be a setand A € IFS(X),«, B, a+ p € [0,1].

1. Sap(A) = {{z,a(puy(x) + (1 = Bvy(x)), Bry(z) + (1 —a)uy(z) +a)) -z e X}

2. Top(A) = {(z, Blpa(2) + (1 = )y, (2) + ), alv4(2) + (1 = Bluy(2))) - v € X}
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3 Main results

After the definition of new modal operators, some properties of them were studied by authors
[4,7,9]. In this study, we examined properties of new modal operators with topological operators.

Theorem 1. Let A € [FS(X) and o, 3,7,0 € [0,1],a+ < 1,7+ < 1 then
L. ®a,57%5(c(14)) C C<®a,ﬂm5(*’4)>
2. I(®a,p,7.5(A)) E Qapq6(I(A))

Proof. (1) It is clear that
inf v4(y) < supva(y)

yex yeXx
and
inf p14(y) < suppa(y)
yeXx yeX
So
vinfra(y) < ysupra(y)
yeX yeX
= asuppa(y) +yinfva(y) < asuppa(y) + ysupra(y)
yeX yeX yeX yeX
= asuppa(y) +vinf va(y) < sup(apa(y) + yva(y))
yeX yeX yeX
on the other hand
dinfpa(y) < dsuppa(y)
yeX yeX
) ) < g
= 5ylg§<VA(y) + 5ylg)f(uA(y) < Bylg)f(m(y) + 522)1?%@)
=

inf(Bva(y) + opaly)) < Binfva(y) + dsuppa(y)
yeX yeX yeX

S0, ®a,8,7,6(C(A)) E C(®a,p6(A))-
(2) can be prooven in with same way. ]

Theorem 2. Let A € [FS(X) and o, 3,7,0 € [0,1],a+ < 1,7+ < 1 then

L. 1(®a,84,5(A)) E Qaprs(Lu(A))

2. @a,87.5(Cu(A)) E Co(Qa,p4.5(4))

Proof. (1) If we use inequality infra(y) < va(x),forall z € X then
yeX

yinfra(y) < ~va(z) = yinfra(y) + ainf pa(y) < ainf pa(y) + yva(x)
yeX yeX yeX yeX
= infywa(y) + opaly) < ainf ia(y) +yva(z)
yeX yeX
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and also, if we use inf p4(y) < pa(x),forall z € X then
yeX

0 inf NA(y)z + Bra(z) < dpa(z) + Bra(z)
ye

We obtain that 1,(®q.5.+.5(A)) C ®ag,6(L.(A)).

(2) If we use same inequalities then,

infra(y) <wva(z) = yinfra(y) + apa(z) < yva(z) + apa(z)
yeX yeX

and

Hyli )/;LA(y) < palr) = oinfpa(y) + Binfva(y) < opa(z) + finfva(y)

= (6paly) + Bra(y)) < opalz) + Byig)f(m(y)

inf

yeX

SO’®04,B,%5(OV(A)) L Cu<®oz,57%5(A))~

Theorem 3. Let A € [FS(X) and o, ,w € [0,1], a + 5 < 1 then
L L ,(C(A)) = C(L2 ()

2. L2 ,(I(A)) = I(L 4(A))

Proof. (1)
sup (ovpa(y) +w(l — @) = asuppa(y) + w(l — a)
yeX yeX
and
infa(l = Bua(y) + (1 - w) = a(l - §) infra(y) +aB(1 - )
So, Lg 5(C(A)) = C(Lg 5(A)).
(2)
infapa(y) +w(l —a) = ainf pa(y) +w(l —a)
and

Sél)}?&(l — Bvay) + af(l —w) = a(l — 5)82}81/,4(?;) + af(1l —w)
Therefore, Ly 5(1(A)) = I(L% 5(A)).
Theorem 4. Let A € IFS(X) and o, B,w € [0,1], a+ 3 < 1 then
1. KS,B(O(A)) = C(Kg,ﬂ(A))
2. K2 (I(A)) = I(K¥(4)
Theorem 5. Let A € IFS(X) and o, B,w € [0,1], a+ 3 < 1 then
L Lg 5(Cu(A)) = Co(Lg 5(A))
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2. L3 s(1u(A)) = Lu(Lg 5(A))

Proof. (1)

yeX

CuLzs(A) = { (s amalo) + (1 = o) jufall = vy(s) + Bl —w) Yo € x|
>:xeX}

- {<x7auA($) +(1—a),a(l = ) nfraly) + aB(1 — )
—I2,(C(A)
(2)
L) = {(oinf(anal) + (1 - a)).al1 = A o) +adll ~w) o e X |

_ {<x,a;£)f(MA(y) 4wl —a),a(l = B)v,(x) + aB(l - w)> e X}
= Ly 5(1,(4))

Theorem 6. Let A € [FS(X) and o, B,w € [0,1], a + 5 < 1 then
L K5 5(Cu(A)) = Cu (K3 5(A))
2. K3 5(1.(A)) = LI.(K5 5(A))

Theorem 7. Let A € [FS(X) and o, B,w € [0,1], « + 8 < 1 then
L. Lg,ﬁ<IV<A>) I; Il/(Lg,,B(A))

2. Kg5(1,(A)) E L(KZ5(A))

Proof. (1)
L5 (1(4)) = { (v omin (1-supwa(9), () + (1~ ),
a(l = p) sg}gm(y} +af(l— w)> X € X}
and

1(235(4) = { (ovmin (1= (1 = B)supray) — a8(1 — ), (e) + (1 - ),

yeX

a(l —p) 8161)131/14(3/) +af(1l — w)> tx € X} :
Let us call min(a — a:sup VAe()y() +w(l —a),aps(r) +w(l —a)) = min(a, c) and
min(1l — a(1 — ﬂ)sggm(y) —af(l —w),aps(z) +w(l —a)) = min(b, c).

If min(b,c) = b
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ataf < l=aol-w+afl-—w)<1l-w
= a+w(l—a) <14 afsupra(y) —af + afw
yeX

o~ asupray) +w(1 — a) < 1 — a(l - Hsupraly) — aB(l )
yeX yeX

then we obtain that ¢ < b so, min(a, ¢) = a.
If min(b, ¢) = c then min(a, ¢) = ¢V min(a, ¢) = a.
Therefore, LY, 5(1,(A)) E L,(Lg 5(A)).
(2) It can be proved similarly. [

Theorem 8. Let A € IFS(X) and o, B,w € [0,1], a + 8 < 1 then
L Cu(Lg 5(A)) E Lg 5(Cu(A))
2. Cu(KG 5(A)) E K¢ 5(Cu(A))

Proof. (1)
CulEz () = { (zsmpanay) + (1 — o),

yeX

min (1—sup(ap,(y) + w(l —a)), a(l — B)v,(z) + af(1 — w))> s X}

yeX
and
L3 5(Cu(A)) = {<w asggm(y) +w(l—a),
a(l = p) min(l—su)}g,uA(y), V() +ap(l— w)> s X}
ye
Let us call

min(a(l — B) — a(l — B)sup pa(y) + af(l — w),a(l — Bra(z) + af(l —w)) = min(a, ¢)

yeX

and

min(1 — asg; pa(y) +w(l —a),a(l — Bra(x) + af(l — w)) = min(b, c).

If min(b, ¢) = b,

a—afw < l14+w-—aw

= a—afw—a(l—p)supua(y) <14+ w — aw — asupua(y)
yeX yeX

then we obtain that a < b so, min(a, ¢) = a.
If min(b, ¢) = ¢ then min(a, ¢) = ¢ V min(a, ¢) = a.
Thus, (L2 4(4)) © L 5(Co(A)).
(2) It is straightforward. ]
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Theorem 9. Let A € [FS(X) and o, B € [0,1], a + 8 < 1 then
1. Sa5(C(A)) E C(Sas(A))
2. I(S05(A)) S slI(A))

Proof. (1) If we use inf v4(y) < supra(y) and inf pa(y) < suppa(y) then
yeX yeX yeX yeX

a(l = p)infra(y) < ol = F)supra(y)
ye yeX

= asuppa(y) + a(l — B)inf va(y)
yex yeX
<

asuppa(y) + a(l — B)supra(y)
yeX yeX

and

IN

B(1 — a)inf pa(y) B(1 — a)suppa(y)

yeX yeX
= B;g{ valy) + B(1 - Oé)ylg)f(m(y) +ap
<

Binfva(y) + B(1 — a)suppa(y) + af
yex yeX

We obtain S, s(C(A)) T C(S,5(A)).
(2) Proved by analogy.

Theorem 10. Let A € IFS(X) and o, B € [0,1], a + 8 < 1 then
1. So5(C,(A) C C,(Sas(A))
2. 1,(Sap(A)) T Sap(lu(A))

Theorem 11. Let A € IFS(X) and o, B € [0,1], ac+ 8 < 1 then
L I(Top(A) CTop(1,(A))
2. Tos(Cy(A)) C Co(Th5(A))

Proof. (1) Itis clear that infra(y) < wva(zx),forallz € X, so
yeX

B(1 — a)inf yé()gg) < Bl —a)r,(x)

= 5yig)f(MA(y) +B8(1 - a);g)f(m(y) +af
< 5yig<uA(y) +B(1 —a)yy(z) +ap

while on the other hand, inf z14(y) < pa(x), for all z € X then,
yeX

(1= B)infualy) < ol — Buy(x)

yeX
= ava(z) + (1 — B) iH)EMA(?/)

< avu(z) + a(l — B)u,(x)
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We show that [,,(T,, s(A)) C To, s(1.(A)).
(2) It is straightforward. ]

Theorem 12. Let A € [FS(X) and o, B € [0,1], « + 5 < 1 then
L. T, 5(C(A)) T C(Tas(A))

2. I(To,3(A)) E 1o 5(1(A))

4 Conclusion

In this paper, new relationships between new modal operators with topological operators are
given. Thus, we obtained some properties of the latest modal operators.
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