On intuitionistic fuzzy modal operators

Sinem Yılmaz and Gökhan Çuvalcıoğlu

Mersin University Faculty of Arts and Sciences
Department of Mathematics
e-mails: sinemyilmaz@mersin.edu.tr, gcuvalcioglu@mersin.edu.tr

Abstract

In 1965, Fuzzy Set Theory was introduced by Zadeh as an extension of crisp sets [10]. K. T. Atanassov defined the concept of Intuitionistic Fuzzy Sets, in 1983 [1]. Some operations and operators on intuitionistic fuzzy sets, like modal operators, level operators, topological operators, etc., was defined by same author [2]. In later times, new operators were defined on IFSs and several properties of these operators were studied by different authors $[3,5,6,7,8,9]$. In this study, we examine some relationships between new modal operators with topological operators. Keywords: Intuitionistic fuzzy sets, Intuitionistic fuzzy modal operators, Intuitionistic fuzzy topological operators.

AMS Classification: 03E72, 47S40.

1 Introduction

Fuzzy Set Theory was introduced by Zadeh [10] as an extension of crisp sets. Atanassov introduced the concept of Intuitionistic Fuzzy Sets [1], form an extension of fuzzy sets by expanding the truth value set to the lattice $[0,1] \times[0,1]$ is defined as following.

Definition 1. Let $L=[0,1]$ then $L^{*}=\left\{\left(x_{1}, x_{2}\right) \in[0,1]^{2}: x_{1}+x_{2} \leq 1\right\}$ is a lattice with $\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right): \Longleftrightarrow " x_{1} \leq y_{1}$ and $x_{2} \geq y_{2} "$.

For $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in L^{*}$,the operators \wedge and \vee on $\left(L^{*}, \leq\right)$ are defined as following;
$\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right)=\left(\min \left(x_{1}, x_{2}\right), \max \left(y_{1}, y_{2}\right)\right)$
$\left(x_{1}, y_{1}\right) \vee\left(x_{2}, y_{2}\right)=\left(\max \left(x_{1}, x_{2}\right), \min \left(y_{1}, y_{2}\right)\right)$
For each $J \subseteq L^{*}$

```
\(\sup J=(\sup \{x:(x, y \in[0,1]),((x, y) \in J)\}, \inf \{y:(x, y \in[0,1])((x, y) \in J)\})\) and
\(\inf J=(\inf \{x:(x, y \in[0,1])((x, y) \in J)\}, \sup \{y:(x, y \in[0,1])((x, y) \in J)\})\).
```

Intuitionistic fuzzy modal operators were introduced by Atanassov [1, 2].Then several extensions of these operators were studied by different authors [2, 8, 5, 6]. Some algebraic and characteristic properties of these operators were examined by several authors. New modal operators $L_{\alpha, \beta}^{\omega}, K_{\alpha, \beta}^{\omega}, S_{\alpha, \beta}$ and $T_{\alpha, \beta}$ were defined in [9, 7] and operator $\otimes_{\alpha, \beta, \gamma, \delta}$ defined in [3]. In 1986, Atanassov defined two operators called topological operators and extensions of these operators defined by same author [1,2].

2 Preliminaries

Definition 2. [1] An intuitionistic fuzzy set (shortly IFS) on a set X is an object of the form

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle: x \in X\right\}
$$

where $\mu_{A}(x),\left(\mu_{A}: X \rightarrow[0,1]\right)$ is called the "degree of membership of x in A ", $\nu_{A}(x)$, $\left(\nu_{A}: X \rightarrow[0,1]\right)$ is called the " degree of non-membership of x in A ", and where μ_{A} and ν_{A} satisfy the following condition:

$$
\mu_{A}(x)+\nu_{A}(x) \leq 1, \text { for all } x \in X .
$$

The class of intuitionistic fuzzy sets on X is denoted by $\operatorname{IFS}(X)$.
The hesitation degree of x is defined by $\pi_{A}(x)=1-\mu_{A}(x)-\nu_{A}(x)$.
Definition 3. [1] An IFS A is said to be contained in an IFS B (notation $A \sqsubseteq B$) if and only if, for all $x \in X: \mu_{A}(x) \leq \mu_{B}(x)$ and $\nu_{A}(x) \geq \nu_{B}(x)$.

It is clear that $A=B$ if and only if $A \sqsubseteq B$ and $B \sqsubseteq A$.
Definition 4. [1] Let $A \in I F S$ and let $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle: x \in X\right\}$ then the following set is called the complement of A

$$
A^{c}=\left\{\left\langle x, \nu_{A}(x), \mu_{A}(x)\right\rangle: x \in X\right\} .
$$

The intersection and the union of two IFSs A and B on X is defined by

$$
\begin{aligned}
& A \sqcap B=\left\{\left\langle x, \mu_{A}(x) \wedge \mu_{B}(x), \nu_{A}(x) \vee \nu_{B}(x)\right\rangle: x \in X\right\} \\
& A \sqcup B=\left\{\left\langle x, \mu_{A}(x) \vee \mu_{B}(x), \nu_{A}(x) \wedge \nu_{B}(x)\right\rangle: x \in X\right\}
\end{aligned}
$$

Some special Intuitionistic Fuzzy Sets on X are defined as following;

$$
\begin{aligned}
O^{*} & =\{\langle x, 0,1\rangle: x \in X\} \\
X^{*} & =\{\langle x, 1,0>: x \in X\}
\end{aligned}
$$

In 1986, Atanassov introduced topological operators and the extensions of these operators were defined by same author in 2001 as following,

Definition 5. [2] Let X be a set and $A \in I F S(X)$.

$$
C(A)=\{\langle x, K, L\rangle: x \in X\}
$$

where $K=\sup _{y \in X} \mu_{A}(y), L=\inf _{y \in X} \nu_{A}(y)$ and

$$
I(A)=\{\langle x, k, l\rangle: x \in X\}
$$

where $k=\inf _{y \in X} \mu_{A}(y), l=\sup _{y \in X} \nu_{A}(y)$.
Definition 6. [2] Let X be a set and $A \in I F S(X)$. Let K, L, k and l be as above forms,

1. $C_{\mu}(A)=\left\{\left\langle x, K, \min \left(1-K, \nu_{A}(x)\right)\right\rangle: x \in X\right\}$
2. $C_{\nu}(A)=\left\{\left\langle x, \mu_{A}(x), L\right\rangle: x \in X\right\}$
3. $I_{\mu}(A)=\left\{\left\langle x, k, \nu_{A}(x)\right\rangle: x \in X\right\}$
4. $I_{\nu}(A)=\left\{\left\langle x, \min \left(1-l, \mu_{A}(x)\right), l\right\rangle: x \in X\right\}$

Intuitionistic fuzzy modal operators $L_{\alpha, \beta}^{\omega}$ and $K_{\alpha, \beta}^{\omega}$ defined in [9] and some of their properties were examined.

Definition 7. [9] Let X be a set and $A \in \operatorname{IFS}(X), \alpha, \beta, \omega \in[0,1]$ and $\alpha+\beta \leq 1$.

1. $L_{\alpha, \beta}^{\omega}(A)=\left\{\left\langle x, \alpha \mu_{A}(x)+\omega(1-\alpha), \alpha(1-\beta) \nu_{A}(x)+\alpha \beta(1-\omega)\right\rangle: x \in X\right\}$
2. $K_{\alpha, \beta}^{\omega}(A)=\left\{\left\langle x, \alpha(1-\beta) \mu_{A}(x)+\alpha \beta(1-\omega), \alpha \nu_{A}(x)+\omega(1-\alpha)\right\rangle: x \in X\right\}$

In [3], an intuitionistic fuzzy modal operator, represented by $\otimes_{\alpha, \beta, \gamma, \delta}$, was introduced.
Definition 8. [3] Let X be a set and $A \in \operatorname{IFS}(X), \alpha, \beta, \gamma, \delta \in[0,1]$ and $\alpha+\beta \leq 1, \gamma+\delta \leq 1$.

$$
\otimes_{\alpha, \beta, \gamma, \delta}(A)=\left\{\left\langle x, \alpha \mu_{A}(x)+\gamma \nu_{A}(x), \beta \mu_{A}(x)+\delta \nu_{A}(x)\right\rangle\right\}
$$

New intuitionistic fuzzy modal operators $T_{\alpha, \beta}$ and $S_{\alpha, \beta}$ are defined by the authors as following,
Definition 9. [7] Let X be a set and $A \in I F S(X), \alpha, \beta, \alpha+\beta \in[0,1]$.

1. $S_{\alpha, \beta}(A)=\left\{\left\langle x, \alpha\left(\mu_{A}(x)+(1-\beta) \nu_{A}(x)\right), \beta\left(\nu_{A}(x)+(1-\alpha) \mu_{A}(x)+\alpha\right)\right\rangle: x \in X\right\}$
2. $T_{\alpha, \beta}(A)=\left\{\left\langle x, \beta\left(\mu_{A}(x)+(1-\alpha) \nu_{A}(x)+\alpha\right), \alpha\left(\nu_{A}(x)+(1-\beta) \mu_{A}(x)\right)\right\rangle: x \in X\right\}$

3 Main results

After the definition of new modal operators, some properties of them were studied by authors $[4,7,9]$. In this study, we examined properties of new modal operators with topological operators.

Theorem 1. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta, \gamma, \delta \in[0,1], \alpha+\beta \leq 1, \gamma+\delta \leq 1$ then

1. $\otimes_{\alpha, \beta, \gamma, \delta}(C(A)) \sqsubseteq C\left(\otimes_{\alpha, \beta, \gamma, \delta}(A)\right)$
2. $I\left(\otimes_{\alpha, \beta, \gamma, \delta}(A)\right) \sqsubseteq \otimes_{\alpha, \beta, \gamma, \delta}(I(A))$

Proof. (1) It is clear that

$$
\inf _{y \in X} \nu_{A}(y) \leq \sup _{y \in X} \nu_{A}(y)
$$

and

$$
\inf _{y \in X} \mu_{A}(y) \leq \sup _{y \in X} \mu_{A}(y)
$$

So

$$
\begin{aligned}
\gamma \inf _{y \in X} \nu_{A}(y) & \leq \gamma \sup _{y \in X} \nu_{A}(y) \\
& \Rightarrow \underset{y \in X}{\alpha \sup } \mu_{A}(y)+\gamma \inf _{y \in X} \nu_{A}(y) \leq \underset{y \in X}{\alpha \sup _{A} \mu_{A}(y)+\gamma \sup \nu_{A}(y)} \\
& \Rightarrow \underset{y \in X}{\alpha \sup _{y \in X}} \mu_{A}(y)+\gamma \inf _{y \in X} \nu_{A}(y) \leq \sup _{y \in X}\left(\alpha \mu_{A}(y)+\gamma \nu_{A}(y)\right)
\end{aligned}
$$

on the other hand

$$
\begin{aligned}
\delta \inf _{y \in X} \mu_{A}(y) & \leq \sup _{y \in X} \mu_{A}(y) \\
& \Rightarrow \beta \inf _{y \in X} \nu_{A}(y)+\delta \inf _{y \in X} \mu_{A}(y) \leq \beta \inf _{y \in X} \nu_{A}(y)+\delta \sup _{y \in X} \mu_{A}(y) \\
& \Rightarrow \inf _{y \in X}\left(\beta \nu_{A}(y)+\delta \mu_{A}(y)\right) \leq \beta \inf _{y \in X} \nu_{A}(y)+\delta \sup _{y \in X} \mu_{A}(y)
\end{aligned}
$$

So, $\otimes_{\alpha, \beta, \gamma, \delta}(C(A)) \sqsubseteq C\left(\otimes_{\alpha, \beta, \gamma, \delta}(A)\right)$.
(2) can be prooven in with same way.

Theorem 2. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta, \gamma, \delta \in[0,1], \alpha+\beta \leq 1, \gamma+\delta \leq 1$ then

1. $I_{\mu}\left(\otimes_{\alpha, \beta, \gamma, \delta}(A)\right) \sqsubseteq \otimes_{\alpha, \beta, \gamma, \delta}\left(I_{\mu}(A)\right)$
2. $\otimes_{\alpha, \beta, \gamma, \delta}\left(C_{\nu}(A)\right) \sqsubseteq C_{\nu}\left(\otimes_{\alpha, \beta, \gamma, \delta}(A)\right)$

Proof. (1) If we use inequality $\inf _{y \in X} \nu_{A}(y) \leq \nu_{A}(x)$, for all $x \in X$ then

$$
\begin{aligned}
\gamma \inf _{y \in X} \nu_{A}(y) & \leq \gamma \nu_{A}(x) \Rightarrow \gamma \inf _{y \in X} \nu_{A}(y)+\alpha \inf _{y \in X} \mu_{A}(y) \leq \alpha \inf _{y \in X} \mu_{A}(y)+\gamma \nu_{A}(x) \\
& \Rightarrow \inf _{y \in X} \gamma \nu_{A}(y)+\alpha \mu_{A}(y) \leq \alpha \inf _{y \in X} \mu_{A}(y)+\gamma \nu_{A}(x)
\end{aligned}
$$

and also, if we use $\inf _{y \in X} \mu_{A}(y) \leq \mu_{A}(x)$,for all $x \in X$ then

$$
\delta \inf \mu_{A}(y)+\beta \nu_{A}(x) \leq \delta \mu_{A}(x)+\beta \nu_{A}(x)
$$

We obtain that $I_{\mu}\left(\otimes_{\alpha, \beta, \gamma, \delta}(A)\right) \sqsubseteq \otimes_{\alpha, \beta, \gamma, \delta}\left(I_{\mu}(A)\right)$.
(2) If we use same inequalities then,

$$
\inf _{y \in X} \nu_{A}(y) \leq \nu_{A}(x) \Rightarrow \inf _{y \in X} \nu_{A}(y)+\alpha \mu_{A}(x) \leq \gamma \nu_{A}(x)+\alpha \mu_{A}(x)
$$

and

$$
\begin{aligned}
\inf _{y \in X} \mu_{A}(y) \leq \mu_{A}(x) & \Rightarrow \delta \inf _{y \in X} \mu_{A}(y)+\beta \inf _{y \in X} \nu_{A}(y) \leq \delta \mu_{A}(x)+\beta \inf _{y \in X} \nu_{A}(y) \\
& \Rightarrow \inf _{y \in X}\left(\delta \mu_{A}(y)+\beta \nu_{A}(y)\right) \leq \delta \mu_{A}(x)+\beta \inf _{y \in X} \nu_{A}(y)
\end{aligned}
$$

$\mathrm{So}, \otimes_{\alpha, \beta, \gamma, \delta}\left(C_{\nu}(A)\right) \sqsubseteq C_{\nu}\left(\otimes_{\alpha, \beta, \gamma, \delta}(A)\right)$.
Theorem 3. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta, \omega \in[0,1], \alpha+\beta \leq 1$ then

1. $L_{\alpha, \beta}^{\omega}(C(A))=C\left(L_{\alpha, \beta}^{\omega}(A)\right)$
2. $L_{\alpha, \beta}^{\omega}(I(A))=I\left(L_{\alpha, \beta}^{\omega}(A)\right)$

Proof. (1)

$$
\sup _{y \in X}\left(\alpha \mu_{A}(y)+\omega(1-\alpha)\right)=\alpha \sup _{y \in X} \mu_{A}(y)+\omega(1-\alpha)
$$

and

$$
\inf _{y \in X} \alpha(1-\beta) \nu_{A}(y)+\alpha \beta(1-\omega)=\alpha(1-\beta) \inf _{y \in X} \nu_{A}(y)+\alpha \beta(1-\omega)
$$

So, $L_{\alpha, \beta}^{\omega}(C(A))=C\left(L_{\alpha, \beta}^{\omega}(A)\right)$.
(2)

$$
\inf _{y \in X} \alpha \mu_{A}(y)+\omega(1-\alpha)=\alpha \inf _{y \in X} \mu_{A}(y)+\omega(1-\alpha)
$$

and

$$
\sup _{y \in X} \alpha(1-\beta) \nu_{A}(y)+\alpha \beta(1-\omega)=\alpha(1-\beta) \sup _{y \in X} \nu_{A}(y)+\alpha \beta(1-\omega)
$$

Therefore, $L_{\alpha, \beta}^{\omega}(I(A))=I\left(L_{\alpha, \beta}^{\omega}(A)\right)$.
Theorem 4. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta, \omega \in[0,1], \alpha+\beta \leq 1$ then

1. $K_{\alpha, \beta}^{\omega}(C(A))=C\left(K_{\alpha, \beta}^{\omega}(A)\right)$
2. $K_{\alpha, \beta}^{\omega}(I(A))=I\left(K_{\alpha, \beta}^{\omega}(A)\right)$

Theorem 5. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta, \omega \in[0,1], \alpha+\beta \leq 1$ then

1. $L_{\alpha, \beta}^{\omega}\left(C_{\nu}(A)\right)=C_{\nu}\left(L_{\alpha, \beta}^{\omega}(A)\right)$
2. $L_{\alpha, \beta}^{\omega}\left(I_{\mu}(A)\right)=I_{\mu}\left(L_{\alpha, \beta}^{\omega}(A)\right)$

Proof. (1)

$$
\begin{aligned}
C_{\nu}\left(L_{\alpha, \beta}^{\omega}(A)\right) & =\left\{\left\langle x, \alpha \mu_{A}(x)+\omega(1-\alpha), \inf _{y \in X} \alpha(1-\beta) \nu_{A}(y)+\alpha \beta(1-\omega)\right\rangle: x \in X\right\} \\
& =\left\{\left\langle x, \alpha \mu_{A}(x)+\omega(1-\alpha), \alpha(1-\beta) \inf _{y \in X} \nu_{A}(y)+\alpha \beta(1-\omega)\right\rangle: x \in X\right\} \\
& =L_{\alpha, \beta}^{\omega}\left(C_{\nu}(A)\right)
\end{aligned}
$$

(2)

$$
\begin{aligned}
I_{\mu}\left(L_{\alpha, \beta}^{\omega}(A)\right) & =\left\{\left\langle x, \inf _{y \in X}\left(\alpha \mu_{A}(y)+\omega(1-\alpha)\right), \alpha(1-\beta) \nu_{A}(x)+\alpha \beta(1-\omega)\right\rangle: x \in X\right\} \\
& =\left\{\left\langle x, \alpha \inf _{y \in X} \mu_{A}(y)+\omega(1-\alpha), \alpha(1-\beta) \nu_{A}(x)+\alpha \beta(1-\omega)\right\rangle: x \in X\right\} \\
& =L_{\alpha, \beta}^{\omega}\left(I_{\mu}(A)\right)
\end{aligned}
$$

Theorem 6. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta, \omega \in[0,1], \alpha+\beta \leq 1$ then

1. $K_{\alpha, \beta}^{\omega}\left(C_{\nu}(A)\right)=C_{\nu}\left(K_{\alpha, \beta}^{\omega}(A)\right)$
2. $K_{\alpha, \beta}^{\omega}\left(I_{\mu}(A)\right)=I_{\mu}\left(K_{\alpha, \beta}^{\omega}(A)\right)$

Theorem 7. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta, \omega \in[0,1], \alpha+\beta \leq 1$ then

1. $L_{\alpha, \beta}^{\omega}\left(I_{\nu}(A)\right) \sqsubseteq I_{\nu}\left(L_{\alpha, \beta}^{\omega}(A)\right)$
2. $K_{\alpha, \beta}^{\omega}\left(I_{\nu}(A)\right) \sqsubseteq I_{\nu}\left(K_{\alpha, \beta}^{\omega}(A)\right)$

Proof. (1)

$$
\begin{gathered}
L_{\alpha, \beta}^{\omega}\left(I_{\nu}(A)\right)=\left\{\left\langlex, \alpha \min \left(1-\sup _{y \in X} \nu_{A}(y), \mu_{A}(x)\right)+\omega(1-\alpha),\right.\right. \\
\left.\left.\alpha(1-\beta) \sup _{y \in X} \nu_{A}(y)+\alpha \beta(1-\omega)\right\rangle: x \in X\right\}
\end{gathered}
$$

and

$$
\begin{gathered}
I_{\nu}\left(L_{\alpha, \beta}^{\omega}(A)\right)=\left\{\left\langlex, \min \left(1-\alpha(1-\beta) \sup _{y \in X} \nu_{A}(y)-\alpha \beta(1-\omega), \alpha \mu_{A}(x)+\omega(1-\alpha)\right),\right.\right. \\
\left.\left.\alpha(1-\beta) \sup _{y \in X} \nu_{A}(y)+\alpha \beta(1-\omega)\right\rangle: x \in X\right\} .
\end{gathered}
$$

Let us call $\min \left(\alpha-\alpha \sup \underset{y \in X}{\nu_{A}(y)}+\omega(1-\alpha), \alpha \mu_{A}(x)+\omega(1-\alpha)\right)=\min (a, c)$ and
$\min \left(1-\alpha(1-\beta) \sup _{y \in X} \nu_{A}(y)-\alpha \beta(1-\omega), \alpha \mu_{A}(x)+\omega(1-\alpha)\right)=\min (b, c)$.
If $\min (b, c)=b$

$$
\begin{aligned}
\alpha+\alpha \beta & \leq 1 \Rightarrow \alpha(1-\omega)+\alpha \beta(1-\omega) \leq 1-\omega \\
& \Rightarrow \alpha+\omega(1-\alpha) \leq 1+\alpha \beta \sup _{y \in X} \nu_{A}(y)-\alpha \beta+\alpha \beta \omega \\
& \Rightarrow \alpha-\alpha \sup _{y \in X} \nu_{A}(y)+\omega(1-\alpha) \leq 1-\alpha(1-\beta) \sup _{y \in X} \nu_{A}(y)-\alpha \beta(1-\omega)
\end{aligned}
$$

then we obtain that $a \leq b$ so, $\min (a, c)=a$.
If $\min (b, c)=c$ then $\min (a, c)=c \vee \min (a, c)=a$.
Therefore, $L_{\alpha, \beta}^{\omega}\left(I_{\nu}(A)\right) \sqsubseteq I_{\nu}\left(L_{\alpha, \beta}^{\omega}(A)\right)$.
(2) It can be proved similarly.

Theorem 8. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta, \omega \in[0,1], \alpha+\beta \leq 1$ then

1. $C_{\mu}\left(L_{\alpha, \beta}^{\omega}(A)\right) \sqsubseteq L_{\alpha, \beta}^{\omega}\left(C_{\mu}(A)\right)$
2. $C_{\mu}\left(K_{\alpha, \beta}^{\omega}(A)\right) \sqsubseteq K_{\alpha, \beta}^{\omega}\left(C_{\mu}(A)\right)$

Proof. (1)

$$
C_{\mu}\left(L_{\alpha, \beta}^{\omega}(A)\right)=\left\{\left\langlex, \sup _{y \in X} \alpha \mu_{A}(y)+\omega(1-\alpha),\right.\right.
$$

$$
\left.\left.\min \left(1-\sup _{y \in X}\left(\alpha \mu_{A}(y)+\omega(1-\alpha)\right), \alpha(1-\beta) \nu_{A}(x)+\alpha \beta(1-\omega)\right)\right\rangle: x \in X\right\}
$$

and

$$
\begin{gathered}
L_{\alpha, \beta}^{\omega}\left(C_{\mu}(A)\right)=\left\{\left\langlex, \alpha \sup _{y \in X} \mu_{A}(y)+\omega(1-\alpha),\right.\right. \\
\left.\left.\alpha(1-\beta) \min \left(1-\sup _{y \in X} \mu_{A}(y), \nu_{A}(x)\right)+\alpha \beta(1-\omega)\right\rangle: x \in X\right\}
\end{gathered}
$$

Let us call

$$
\min \left(\alpha(1-\beta)-\alpha(1-\beta) \sup _{y \in X} \mu_{A}(y)+\alpha \beta(1-\omega), \alpha(1-\beta) \nu_{A}(x)+\alpha \beta(1-\omega)\right)=\min (a, c)
$$

and

$$
\min \left(1-\alpha \sup _{y \in X} \mu_{A}(y)+\omega(1-\alpha), \alpha(1-\beta) \nu_{A}(x)+\alpha \beta(1-\omega)\right)=\min (b, c)
$$

If $\min (b, c)=b$,

$$
\begin{aligned}
\alpha-\alpha \beta \omega & <1+\omega-\alpha \omega \\
& \Rightarrow \alpha-\alpha \beta \omega-\alpha(1-\beta) \sup _{y \in X} \mu_{A}(y) \leq 1+\omega-\alpha \omega-\alpha \underset{y \in X}{\sup } \mu_{A}(y)
\end{aligned}
$$

then we obtain that $a \leq b$ so, $\min (a, c)=a$.
If $\min (b, c)=c$ then $\min (a, c)=c \vee \min (a, c)=a$.
Thus, $C_{\mu}\left(L_{\alpha, \beta}^{\omega}(A)\right) \sqsubseteq L_{\alpha, \beta}^{\omega}\left(C_{\mu}(A)\right)$.
(2) It is straightforward.

Theorem 9. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta \in[0,1], \alpha+\beta \leq 1$ then

1. $S_{\alpha, \beta}(C(A)) \sqsubseteq C\left(S_{\alpha, \beta}(A)\right)$
2. $I\left(S_{\alpha, \beta}(A)\right) \sqsubseteq S_{\alpha, \beta}(I(A))$

Proof. (1) If we use $\inf _{y \in X} \nu_{A}(y) \leq \sup _{y \in X} \nu_{A}(y)$ and $\inf _{y \in X} \mu_{A}(y) \leq \sup _{y \in X} \mu_{A}(y)$ then

$$
\begin{aligned}
\alpha(1-\beta) \inf _{y \in X} \nu_{A}(y) & \leq \alpha(1-\beta) \sup _{y \in X} \nu_{A}(y) \\
& \Rightarrow \alpha \sup _{y \in X} \mu_{A}(y)+\alpha(1-\beta) \inf _{y \in X} \nu_{A}(y) \\
& \leq \sup _{y \in X} \mu_{A}(y)+\alpha(1-\beta) \sup _{y \in X} \nu_{A}(y)
\end{aligned}
$$

and

$$
\begin{aligned}
\beta(1-\alpha) \inf _{y \in X} \mu_{A}(y) & \leq \beta(1-\alpha) \sup _{y \in X} \mu_{A}(y) \\
& \Rightarrow \beta \inf _{y \in X} \nu_{A}(y)+\beta(1-\alpha) \inf _{y \in X} \mu_{A}(y)+\alpha \beta \\
& \leq \beta \inf _{y \in X} \nu_{A}(y)+\beta(1-\alpha) \sup _{y \in X} \mu_{A}(y)+\alpha \beta
\end{aligned}
$$

We obtain $S_{\alpha, \beta}(C(A)) \sqsubseteq C\left(S_{\alpha, \beta}(A)\right)$.
(2) Proved by analogy.

Theorem 10. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta \in[0,1], \alpha+\beta \leq 1$ then

1. $S_{\alpha, \beta}\left(C_{\nu}(A)\right) \sqsubseteq C_{\nu}\left(S_{\alpha, \beta}(A)\right)$
2. $I_{\mu}\left(S_{\alpha, \beta}(A)\right) \sqsubseteq S_{\alpha, \beta}\left(I_{\mu}(A)\right)$

Theorem 11. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta \in[0,1], \alpha+\beta \leq 1$ then

1. $I_{\mu}\left(T_{\alpha, \beta}(A)\right) \sqsubseteq T_{\alpha, \beta}\left(I_{\mu}(A)\right)$
2. $T_{\alpha, \beta}\left(C_{\nu}(A)\right) \sqsubseteq C_{\nu}\left(T_{\alpha, \beta}(A)\right)$

Proof. (1) It is clear that $\inf _{y \in X} \nu_{A}(y) \leq \nu_{A}(x)$, for all $x \in X$, so

$$
\begin{aligned}
\beta(1-\alpha) \inf \nu_{A \in X}(y) & \leq \beta(1-\alpha) \nu_{A}(x) \\
& \Rightarrow \beta \inf _{y \in X} \mu_{A}(y)+\beta(1-\alpha) \inf _{y \in X} \nu_{A}(y)+\alpha \beta \\
& \leq \beta \inf _{y \in X} \mu_{A}(y)+\beta(1-\alpha) \nu_{A}(x)+\alpha \beta
\end{aligned}
$$

while on the other hand, $\underset{y \in X}{\inf } \mu_{A}(y) \leq \mu_{A}(x)$, for all $x \in X$ then,

$$
\begin{aligned}
\alpha(1-\beta) \inf _{y \in X} \mu_{A}(y) & \leq \alpha(1-\beta) \mu_{A}(x) \\
& \Rightarrow \alpha \nu_{A}(x)+\alpha(1-\beta) \inf _{y \in X} \mu_{A}(y) \\
& \leq \alpha \nu_{A}(x)+\alpha(1-\beta) \mu_{A}(x)
\end{aligned}
$$

We show that $I_{\mu}\left(T_{\alpha, \beta}(A)\right) \sqsubseteq T_{\alpha, \beta}\left(I_{\mu}(A)\right)$.
(2) It is straightforward.

Theorem 12. Let $A \in \operatorname{IFS}(X)$ and $\alpha, \beta \in[0,1], \alpha+\beta \leq 1$ then

1. $T_{\alpha, \beta}(C(A)) \sqsubseteq C\left(T_{\alpha, \beta}(A)\right)$
2. $I\left(T_{\alpha, \beta}(A)\right) \sqsubseteq T_{\alpha, \beta}(I(A))$

4 Conclusion

In this paper, new relationships between new modal operators with topological operators are given. Thus, we obtained some properties of the latest modal operators.

Acknowledgement

Authors are thankful for the support of the Mersin University Scientific Research Projects, Project Code: 2015-TP3-1249.

References

[1] Atanassov, K.T. (1983) Intuitionistic fuzzy sets, VII ITKR's Session, Sofia, 20-23 June 1983. (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1-S6.
[2] Atanassov, K.T. (2012) On Intuitionistic Fuzzy Sets Theory, Series "Studies in Fuzziness and Soft Computing", Springer.
[3] Atanassov, K.T., Çuvalcıoğlu, G., \& Atanassova V. K. (2014) A new modal operator over intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 20(5), 1-8.
[4] Atanassov, K.T., Çuvalcıoğlu, G., Yılmaz, S., \& Atanassova V. K. (2015) Properties of the intuitionistic fuzzy modal operator $\otimes_{\alpha, \beta, \gamma, \delta}$, Notes on Intuitionistic Fuzzy Sets, 21(4), 1-5.
[5] Çuvalcıoğlu, G. (2013) On the diagram of one type modal operators on intuitionistic fuzzy sets: last expanding with $Z_{\alpha, \beta}^{\omega, \theta}$, Iranian Journal of Fuzzy Systems, 10(1), 89-106.
[6] Çuvalcioğlu, G. (2016) One, two and uni-type operators on IFSs Imprecision and Uncertainty in Information Representation and Processing, Angelov, P., Sotirov, S. (Eds.), Springer International Publishing Switzerland, 55-71.
[7] Çuvalcıoğlu, G., \& Yılmaz, S. (2015) On new intuitionistic fuzzy operators: $S_{\alpha, \beta}$ and $T_{\alpha, \beta}$, Kasmera, 43(2), 317-327.
[8] Dencheva, K. (2004) Extension of intuitionistic fuzzy modal operators \boxplus and \boxtimes. Proc.of the Second Int. IEEE Symp. Intelligent systems, Varna, June 22-24, 2004, Vol. 3, 21-22.
[9] Yılmaz, S. \& Bal, A. (2014) Extentsion of intuitionistic fuzzy modal operators diagram with new operators, Notes on Intuitionistic Fuzzy Sets, 20(5), 26-35.
[10] Zadeh, L.A. (1965) Fuzzy Sets, Information and Control, 8, 338-353.

