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Abstract: In 1965, Fuzzy Set Theory was introduced by Zadeh as an extension of crisp sets
[10]. K. T. Atanassov defined the concept of Intuitionistic Fuzzy Sets, in 1983 [1]. Some opera-
tions and operators on intuitionistic fuzzy sets, like modal operators, level operators, topological
operators, etc., was defined by same author [2]. In later times, new operators were defined on IFSs
and several properties of these operators were studied by different authors [3, 5, 6, 7, 8, 9]. In this
study, we examine some relationships between new modal operators with topological operators.
Keywords: Intuitionistic fuzzy sets, Intuitionistic fuzzy modal operators, Intuitionistic fuzzy
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1 Introduction

Fuzzy Set Theory was introduced by Zadeh [10] as an extension of crisp sets. Atanassov intro-
duced the concept of Intuitionistic Fuzzy Sets [1], form an extension of fuzzy sets by expanding
the truth value set to the lattice [0, 1]× [0, 1] is defined as following.

Definition 1. Let L = [0, 1] then L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1} is a lattice with
(x1, x2) ≤ (y1, y2) :⇐⇒ ”x1 ≤ y1 and x2 ≥ y2”.

For (x1, y1), (x2, y2) ∈ L∗,the operators ∧ and ∨ on (L∗,≤) are defıned as following;
(x1, y1) ∧ (x2, y2) = (min(x1, x2),max(y1, y2))

(x1, y1) ∨ (x2, y2) = (max(x1, x2),min(y1, y2))

For each J ⊆ L∗
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sup J = (sup{x : (x, y ∈ [0, 1]), ((x, y) ∈ J)}, inf{y :( x, y ∈ [0, 1])((x, y) ∈ J)}) and
inf J = (inf{x : (x, y ∈ [0, 1])((x, y) ∈ J)}, sup{y : ( x, y ∈ [0, 1])((x, y) ∈ J)}).

Intuitionistic fuzzy modal operators were introduced by Atanassov [1, 2].Then several ex-
tensions of these operators were studied by different authors [2, 8, 5, 6]. Some algebraic and
characteristic properties of these operators were examined by several authors. New modal opera-
tors Lωα,β, K

ω
α,β , Sα,β and Tα,β were defined in [9, 7] and operator ⊗α,β,γ,δ defined in [3]. In 1986,

Atanassov defined two operators called topological operators and extensions of these operators
defined by same author [1, 2].

2 Preliminaries

Definition 2. [1] An intuitionistic fuzzy set (shortly IFS) on a set X is an object of the form

A = {〈x, µA(x), νA(x)〉 : x ∈ X}

where µA(x), (µA : X → [0, 1]) is called the “degree of membership of x in A”, νA(x),
(νA : X → [0, 1]) is called the “ degree of non-membership of x in A”, and where µA and
νA satisfy the following condition:

µA(x) + νA(x) ≤ 1, for all x ∈ X.

The class of intuitionistic fuzzy sets on X is denoted by IFS(X).
The hesitation degree of x is defined by πA(x) = 1− µA(x)− νA(x).

Definition 3. [1] An IFS A is said to be contained in an IFS B (notation A v B) if and only if,
for all x ∈ X : µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

It is clear that A = B if and only if A v B and B v A.

Definition 4. [1] Let A ∈ IFS and let A = {〈x, µA(x), νA(x)〉 : x ∈ X} then the following set
is called the complement of A

Ac = {〈x, νA(x), µA(x)〉 : x ∈ X}.

The intersection and the union of two IFSs A and B on X is defined by

A uB = {〈x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)〉 : x ∈ X}

A tB = {〈x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)〉 : x ∈ X}

Some special Intuitionistic Fuzzy Sets on X are defined as following;

O∗ = {〈x, 0, 1〉 : x ∈ X}

X∗ = {< x, 1, 0 >: x ∈ X}

In 1986, Atanassov introduced topological operators and the extensions of these operators
were defined by same author in 2001 as following,
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Definition 5. [2] Let X be a set and A ∈ IFS(X).

C(A) = {〈x,K,L〉 : x ∈ X}

where K = sup
y∈X

µA(y), L = inf
y∈X

νA(y) and

I(A) = {〈x, k, l〉 : x ∈ X}

where k = inf
y∈X

µA(y), l = sup
y∈X

νA(y).

Definition 6. [2] Let X be a set and A ∈ IFS(X). Let K,L, k and l be as above forms,

1. Cµ(A) = {〈x,K,min(1−K, νA(x))〉 : x ∈ X}

2. Cν(A) = {〈x, µA(x), L〉 : x ∈ X}

3. Iµ(A) = {〈x, k, νA(x)〉 : x ∈ X}

4. Iν(A) = {〈x,min(1− l, µA(x)), l〉 : x ∈ X}

Intuitionistic fuzzy modal operators Lωα,β and Kω
α,β defined in [9] and some of their properties

were examined.

Definition 7. [9] Let X be a set and A ∈ IFS(X), α, β, ω ∈ [0, 1] and α + β ≤ 1.

1. Lωα,β(A) = {〈x, αµA(x) + ω(1− α), α(1− β)νA(x) + αβ(1− ω)〉 : x ∈ X}

2. Kω
α,β(A) = {〈x, α(1− β)µA(x) + αβ(1− ω), ανA(x) + ω(1− α)〉 : x ∈ X}

In [3], an intuitionistic fuzzy modal operator, represented by ⊗α,β,γ,δ, was introduced.

Definition 8. [3] Let X be a set and A ∈ IFS(X), α, β, γ, δ ∈ [0, 1] and α+ β ≤ 1, γ + δ ≤ 1.

⊗α,β,γ,δ(A) = {〈x, αµA(x) + γνA(x), βµA(x) + δνA(x)〉}

New intuitionistic fuzzy modal operators Tα,β and Sα,β are defined by the authors as following,

Definition 9. [7] Let X be a set and A ∈ IFS(X), α, β, α+ β ∈ [0, 1].

1. Sα,β(A) = {〈x, α(µA(x) + (1− β)νA(x)), β(νA(x) + (1− α)µA(x) + α)〉 : x ∈ X}

2. Tα,β(A) = {〈x, β(µA(x) + (1− α)νA(x) + α), α(νA(x) + (1− β)µA(x))〉 : x ∈ X}
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3 Main results

After the definition of new modal operators, some properties of them were studied by authors
[4, 7, 9]. In this study, we examined properties of new modal operators with topological operators.

Theorem 1. Let A ∈ IFS(X) and α, β, γ, δ ∈ [0, 1], α + β ≤ 1, γ + δ ≤ 1 then

1. ⊗α,β,γ,δ(C(A)) v C(⊗α,β,γ,δ(A))

2. I(⊗α,β,γ,δ(A)) v ⊗α,β,γ,δ(I(A))

Proof. (1) It is clear that
inf
y∈X

νA(y) ≤ sup
y∈X

νA(y)

and
inf
y∈X

µA(y) ≤ sup
y∈X

µA(y)

So

γ inf νA(y)
y∈X

≤ γ sup νA(y)
y∈X

⇒ αsup
y∈X

µA(y) + γ inf
y∈X

νA(y) ≤ αsup
y∈X

µA(y) + γsup
y∈X

νA(y)

⇒ αsup
y∈X

µA(y) + γ inf
y∈X

νA(y) ≤ sup
y∈X

(αµA(y) + γνA(y))

on the other hand

δ inf
y∈X

µA(y) ≤ δsup
y∈X

µA(y)

⇒ β inf
y∈X

νA(y) + δ inf
y∈X

µA(y) ≤ β inf
y∈X

νA(y) + δsup
y∈X

µA(y)

⇒ inf
y∈X

(βνA(y) + δµA(y)) ≤ β inf
y∈X

νA(y) + δsup
y∈X

µA(y)

So, ⊗α,β,γ,δ(C(A)) v C(⊗α,β,γ,δ(A)).
(2) can be prooven in with same way.

Theorem 2. Let A ∈ IFS(X) and α, β, γ, δ ∈ [0, 1], α + β ≤ 1, γ + δ ≤ 1 then

1. Iµ(⊗α,β,γ,δ(A)) v ⊗α,β,γ,δ(Iµ(A))

2. ⊗α,β,γ,δ(Cν(A)) v Cν(⊗α,β,γ,δ(A))

Proof. (1) If we use inequality inf νA(y)
y∈X

≤ νA(x), for all x ∈ X then

γ inf νA(y)
y∈X

≤ γνA(x)⇒ γ inf νA(y)
y∈X

+ α inf
y∈X

µA(y) ≤ α inf
y∈X

µA(y) + γνA(x)

⇒ inf
y∈X

γνA(y) + αµA(y) ≤ α inf
y∈X

µA(y) + γνA(x)

30



and also, if we use inf µA(y) ≤
y∈X

µA(x),for all x ∈ X then

δ inf µA(y) + βνA(x) ≤
y∈X

δµA(x) + βνA(x)

We obtain that Iµ(⊗α,β,γ,δ(A)) v ⊗α,β,γ,δ(Iµ(A)).
(2) If we use same inequalities then,

inf νA(y)
y∈X

≤ νA(x)⇒ γ inf νA(y)
y∈X

+ αµA(x) ≤ γνA(x) + αµA(x)

and

inf µA(y) ≤
y∈X

µA(x) ⇒ δ inf
y∈X

µA(y) + β inf
y∈X

νA(y) ≤ δµA(x) + β inf
y∈X

νA(y)

⇒ inf
y∈X

(δµA(y) + βνA(y)) ≤ δµA(x) + β inf
y∈X

νA(y)

So,⊗α,β,γ,δ(Cν(A)) v Cν(⊗α,β,γ,δ(A)).

Theorem 3. Let A ∈ IFS(X) and α, β, ω ∈ [0, 1], α + β ≤ 1 then

1. Lωα,β(C(A)) = C(Lωα,β(A))

2. Lωα,β(I(A)) = I(Lωα,β(A))

Proof. (1)
sup
y∈X

(αµA(y) + ω(1− α)) = αsup
y∈X

µA(y) + ω(1− α)

and
inf
y∈X

α(1− β)νA(y) + αβ(1− ω) = α(1− β) inf
y∈X

νA(y) + αβ(1− ω)

So, Lωα,β(C(A)) = C(Lωα,β(A)).

(2)
inf
y∈X

αµA(y) + ω(1− α) = α inf
y∈X

µA(y) + ω(1− α)

and
sup
y∈X

α(1− β)νA(y) + αβ(1− ω) = α(1− β)sup
y∈X

νA(y) + αβ(1− ω)

Therefore, Lωα,β(I(A)) = I(Lωα,β(A)).

Theorem 4. Let A ∈ IFS(X) and α, β, ω ∈ [0, 1], α + β ≤ 1 then

1. Kω
α,β(C(A)) = C(Kω

α,β(A))

2. Kω
α,β(I(A)) = I(Kω

α,β(A))

Theorem 5. Let A ∈ IFS(X) and α, β, ω ∈ [0, 1], α + β ≤ 1 then

1. Lωα,β(Cν(A)) = Cν(L
ω
α,β(A))
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2. Lωα,β(Iµ(A)) = Iµ(L
ω
α,β(A))

Proof. (1)

Cν(L
ω
α,β(A)) =

{〈
x, αµA(x) + ω(1− α), inf

y∈X
α(1− β)νA(y) + αβ(1− ω)

〉
: x ∈ X

}
=

{〈
x, αµA(x) + ω(1− α), α(1− β) inf

y∈X
νA(y) + αβ(1− ω)

〉
: x ∈ X

}
= Lωα,β(Cν(A))

(2)

Iµ(L
ω
α,β(A)) =

{〈
x, inf
y∈X

(αµA(y) + ω(1− α)), α(1− β)νA(x) + αβ(1− ω)
〉

: x ∈ X
}

=

{〈
x, α inf

y∈X
µA(y) + ω(1− α), α(1− β)νA(x) + αβ(1− ω)

〉
: x ∈ X

}
= Lωα,β(Iµ(A))

Theorem 6. Let A ∈ IFS(X) and α, β, ω ∈ [0, 1], α + β ≤ 1 then

1. Kω
α,β(Cν(A)) = Cν(K

ω
α,β(A))

2. Kω
α,β(Iµ(A)) = Iµ(K

ω
α,β(A))

Theorem 7. Let A ∈ IFS(X) and α, β, ω ∈ [0, 1], α + β ≤ 1 then

1. Lωα,β(Iν(A)) v Iν(L
ω
α,β(A))

2. Kω
α,β(Iν(A)) v Iν(K

ω
α,β(A))

Proof. (1)

Lωα,β(Iν(A)) =

{〈
x, αmin (1−sup

y∈X
νA(y), µA(x)) + ω(1− α),

α(1− β) sup
y∈X

νA(y) + αβ(1− ω)
〉

: x ∈ X
}

and

Iν(L
ω
α,β(A)) =

{〈
x,min (1− α(1− β) sup

y∈X
νA(y)− αβ(1− ω), αµA(x) + ω(1− α)),

α(1− β) sup
y∈X

νA(y) + αβ(1− ω)
〉

: x ∈ X
}
.

Let us call min(α− α sup νA(y) + ω(1− α)
y∈X

, αµA(x) + ω(1− α)) = min(a, c) and

min(1− α(1− β)sup νA(y)
y∈X

− αβ(1− ω), αµA(x) + ω(1− α)) = min(b, c).

If min(b, c) = b
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α + αβ ≤ 1⇒ α(1− ω) + αβ(1− ω) ≤ 1− ω
⇒ α + ω(1− α) ≤ 1 + αβsup

y∈X
νA(y)− αβ + αβω

⇒ α− αsup
y∈X

νA(y) + ω(1− α) ≤ 1− α(1− β)sup
y∈X

νA(y)− αβ(1− ω)

then we obtain that a ≤ b so, min(a, c) = a.

If min(b, c) = c then min(a, c) = c ∨min(a, c) = a.

Therefore, Lωα,β(Iν(A)) v Iν(L
ω
α,β(A)).

(2) It can be proved similarly.

Theorem 8. Let A ∈ IFS(X) and α, β, ω ∈ [0, 1], α + β ≤ 1 then

1. Cµ(Lωα,β(A)) v Lωα,β(Cµ(A))

2. Cµ(Kω
α,β(A)) v Kω

α,β(Cµ(A))

Proof. (1)

Cµ(L
ω
α,β(A)) =

{〈
x,sup
y∈X

αµA(y) + ω(1− α),

min (1−sup
y∈X

(αµA(y) + ω(1− α)), α(1− β)νA(x) + αβ(1− ω))
〉

: x ∈ X
}

and

Lωα,β(Cµ(A)) =

{〈
x, αsup

y∈X
µA(y) + ω(1− α),

α(1− β)min (1−sup
y∈X

µA(y), νA(x)) + αβ(1− ω)
〉

: x ∈ X
}

Let us call

min(α(1− β)− α(1− β) sup
y∈X

µA(y) + αβ(1− ω), α(1− β)νA(x) + αβ(1− ω)) = min(a, c)

and
min(1− α sup

y∈X
µA(y) + ω(1− α), α(1− β)νA(x) + αβ(1− ω)) = min(b, c).

If min(b, c) = b,

α− αβω < 1 + ω − αω
⇒ α− αβω − α(1− β)sup

y∈X
µA(y) ≤ 1 + ω − αω − αsup

y∈X
µA(y)

then we obtain that a ≤ b so, min(a, c) = a.

If min(b, c) = c then min(a, c) = c ∨min(a, c) = a.

Thus, Cµ(Lωα,β(A)) v Lωα,β(Cµ(A)).

(2) It is straightforward.
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Theorem 9. Let A ∈ IFS(X) and α, β ∈ [0, 1], α + β ≤ 1 then

1. Sα,β(C(A)) v C(Sα,β(A))

2. I(Sα,β(A)) v Sα,β(I(A))

Proof. (1) If we use inf
y∈X

νA(y) ≤ sup
y∈X

νA(y) and inf
y∈X

µA(y) ≤ sup
y∈X

µA(y) then

α(1− β) inf
y∈X

νA(y) ≤ α(1− β)sup
y∈X

νA(y)

⇒ αsup
y∈X

µA(y) + α(1− β) inf
y∈X

νA(y)

≤ αsup
y∈X

µA(y) + α(1− β)sup
y∈X

νA(y)

and

β(1− α) inf
y∈X

µA(y) ≤ β(1− α)sup
y∈X

µA(y)

⇒ β inf
y∈X

νA(y) + β(1− α) inf
y∈X

µA(y) + αβ

≤ β inf
y∈X

νA(y) + β(1− α)sup
y∈X

µA(y) + αβ

We obtain Sα,β(C(A)) v C(Sα,β(A)).

(2) Proved by analogy.

Theorem 10. Let A ∈ IFS(X) and α, β ∈ [0, 1], α + β ≤ 1 then

1. Sα,β(Cν(A)) v Cν(Sα,β(A))

2. Iµ(Sα,β(A)) v Sα,β(Iµ(A))

Theorem 11. Let A ∈ IFS(X) and α, β ∈ [0, 1], α + β ≤ 1 then

1. Iµ(Tα,β(A)) v Tα,β(Iµ(A))

2. Tα,β(Cν(A)) v Cν(Tα,β(A))

Proof. (1) It is clear that inf νA(y)
y∈X

≤ νA(x), for all x ∈ X , so

β(1− α)inf νA(y)
y∈X

≤ β(1− α)νA(x)

⇒ β inf
y∈X

µA(y) + β(1− α) inf
y∈X

νA(y) + αβ

≤ β inf
y∈X

µA(y) + β(1− α)νA(x) + αβ

while on the other hand, inf µA(y) ≤
y∈X

µA(x), for all x ∈ X then,

α(1− β) inf µA(y)
y∈X

≤ α(1− β)µA(x)

⇒ ανA(x) + α(1− β) inf µA(y)
y∈X

≤ ανA(x) + α(1− β)µA(x)
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We show that Iµ(Tα,β(A)) v Tα,β(Iµ(A)).

(2) It is straightforward.

Theorem 12. Let A ∈ IFS(X) and α, β ∈ [0, 1], α + β ≤ 1 then

1. Tα,β(C(A)) v C(Tα,β(A))

2. I(Tα,β(A)) v Tα,β(I(A))

4 Conclusion

In this paper, new relationships between new modal operators with topological operators are
given. Thus, we obtained some properties of the latest modal operators.
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