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Abstract

Cartesian products of intuitionistic fuzzy sets have been de¯ned using the min-max
and the product-probabilistic sum operations. In this paper we introduce and analyse
the properties of a generalized cartesian product of intuitionistic fuzzy sets using a
general triangular norm and conorm. In particular we investigate the emptiness, the
commutativity, the distributivity, the interaction with respect to generalized unions and
intersections, the distributivity with respect to the di®erence, the monotonicity and the
cutting in terms of level-sets.
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1 Preliminary de¯nitions

Intuitionistic fuzzy sets (IFSs, for short) constitute a generalisation of the notion of a fuzzy
set (FS, for short) and were introduced by K. T. Atanassov in 1983 in [1]. While fuzzy sets
give the degree of membership of an element in a given set, intuitionistic fuzzy sets give
both a degree of membership and a degree of non-membership. As for fuzzy sets, the degree
of membership is a real number between 0 and 1. This is also the case for the degree of
non-membership, and furthermore the sum of these two degrees is not greater than 1. In [2]
intuitionistic fuzzy sets are de¯ned as follows :

De¯nition 1.1 An intuitionistic fuzzy set in a universe E is an object of the form

A = f(x; ¹A(x); ºA(x)) j x 2 Eg;

where ¹A(x) (2 [0; 1]) is called the \degree of membership of x in A",
ºA(x) (2 [0; 1]) is called the \degree of non-membership of x in A",
and where ¹A and ºA satisfy the following condition :

(8x 2 E)(¹A(x) + ºA(x) · 1):

The class of intuitionistic fuzzy sets in a universe E will be denoted IF(E).

Every fuzzy set can be identi¯ed with an intuitionistic fuzzy set for which the degree of
non-membership equals one minus the degree of membership.
On intuitionistic fuzzy sets analogous operators as on ordinary fuzzy sets can be de¯ned.

These analogous operators are backwards compatible with fuzzy sets in the sense that, if
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applied to FSs, the fuzzy operators and their intuitionistic fuzzy counterparts give the same
FS as a result. For instance, the union of two IFSs can be de¯ned using the max-operation
for the degree of membership and the min-operation for the degree of non-membership, and
the result is still an IFS. Other common operators over FSs can directly be extended to IFSs,
and the result of the operation is again an IFS. The set-theoretical properties that these
operators establish for fuzzy sets generally still hold in the case of intuitionistic fuzzy sets. In
[2] these operators and new operators which do not exist for ordinary fuzzy sets are described
and their properties are investigated.
In this paper we will discuss the cartesian products of intuitionistic fuzzy sets. Before we

can do so, we ¯rst need a few de¯nitions. We will need level-sets of intuitionistic fuzzy sets
which we de¯ne as follows. Let A be an IFS in E, then :

A® = fx j x 2 E ^ ¹A(x) ¸ ®g;8® 2]0; 1]
A¯ = fx j x 2 E ^ ºA(x) · ¯g; 8¯ 2 [0; 1[
A® = fx j x 2 E ^ ¹A(x) > ®g; 8® 2 [0; 1[
A¯ = fx j x 2 E ^ ºA(x) < ¯g; 8¯ 2]0; 1]
A¯® = fx j x 2 E ^ ¹A(x) ¸ ® ^ ºA(x) · ¯g;8® 2]0; 1]; 8¯ 2 [0; 1[
A¯® = fx j x 2 E ^ ¹A(x) > ® ^ ºA(x) < ¯g; 8® 2 [0; 1[; 8¯ 2]0; 1]

We recall the de¯nition of triangular norms and conorms.

De¯nition 1.2 A triangular norm (t-norm, for short) T is a [0; 1]2 ¡ [0; 1] map which sat-
is¯es :

(T.1) (8x 2 [0; 1]) (T (x; 1) = x),

(T.2) (8(x; y) 2 [0; 1]2) (T (x; y) = T (y; x)),

(T.3) (8(x; y; z) 2 [0; 1]3) (T (x; T (y; z)) = T (T (x; y); z)),

(T.4) (8(x1; y1; x2; y2) 2 [0; 1]4)
(x1 · y1 ^ x2 · y2 ) T (x1; x2) · T (y1; y2)).

De¯nition 1.3 A triangular conorm (t-conorm, for short) S is a [0; 1]2 ¡ [0; 1] map which
satis¯es :

(S.1) (8x 2 [0; 1]) (S(x; 0) = x),

(S.2) (8(x; y) 2 [0; 1]2) (S(x; y) = S(y; x)),

(S.3) (8(x; y; z) 2 [0; 1]3) (S(x; S(y; z)) = S(S(x; y); z)),

(S.4) (8(x1; y1; x2; y2) 2 [0; 1]4)
(x1 · y1 ^ x2 · y2 ) S(x1; x2) · S(y1; y2)).

We de¯ne for further usage the following t-norm Z and t-conorm Z¤ :

Z(x; y) =

½
min(x; y) if max(x; y) = 1;
0 if max(x; y)6= 1;
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Z¤(x; y) =

½
max(x; y) if min(x; y) = 0;
1 if min(x; y)6= 0;

and the following t-norm Z® and t-conorm Z¤¯, where ® 2 [0; 1[ and ¯ 2 ]0; 1] :

Z®(x; y) =

8<: min(x; y) if max(x; y) = 1;
® if ® · min(x; y) · max(x; y) < 1;
0 else;

Z¤¯(x; y) =

8<: max(x; y) if min(x; y) = 0;
¯ if 0 < min(x; y) · max(x; y) · ¯;
1 else:

2 Cartesian products

In [2] a number of cartesian products is de¯ned, amongst which the following two. Let A
and B be intuitionistic fuzzy sets in E1 and E2 respectively. Then the following cartesian
products are de¯ned :

A£3 B = f((x; y); ¹A(x)¹B(y); ºA(x) + ºB(y)¡ ºA(x)ºB(y)) j x 2 E1 ^ y 2 E2g;
A£4 B = f((x; y);min(¹A(x); ¹B(y));max(ºA(x); ºB(y)) j x 2 E1 ^ y 2 E2g:

We see that in the ¯rst case the product ¢ is used for the degree of membership and the
probabilistic sum +̂ for the degree of non-membership. In the second case the minimum-
function is used for the degree of membership and the maximum for the degree of non-
membership. In both cases a t-norm is used for the degree of membership and a t-conorm
for the degree of non-membership. We can thus generalize the above cartesian products as
follows.

De¯nition 2.1 Let A and B be intuitionistic fuzzy sets in E1 and E2 respectively. Then the
generalized cartesian product A£T;S B is de¯ned as follows :

A£T;S B = f((x; y); T (¹A(x); ¹B(y)); S(ºA(x); ºB(y)) j x 2 E1 ^ y 2 E2g;
where T is a t-norm and S is a t-conorm.

For instance, the above examples can be written as £3 = £:;+̂ and £4 = £min;max.
The generalized cartesian product A£T;SB will be an intuitionistic fuzzy set in E1£E2 if

T (¹A(x); ¹B(y)) + S(ºA(x); ºB(y)) · 1. Since A and B are IFSs, we have ºA(x) · 1¡ ¹A(x)
and ºB(y) · 1 ¡ ¹B(y), and because of (S.4), S(1 ¡ ¹A(x); 1 ¡ ¹B(y)) ¸ S(ºA(x); ºB(y)),
which is equivalent to S¤(¹A(x); ¹B(y)) = 1¡S(1¡¹A(x); 1¡¹B(y)) · 1¡S(ºA(x); ºB(y)),
where equality holds if A and B are fuzzy sets. So, if

(8(x; y) 2 E1 £E2) (T (¹A(x); ¹B(y)) · S¤(¹A(x); ¹B(y))); (1)

then A£T;S B is an intuitionistic fuzzy set.
If (8x 2 E1) (ºA(x) = 1¡ ¹A(x)) and (8y 2 E2) (ºB(y) = 1¡ ¹B(y)), then

T (¹A(x); ¹B(y)) + S(1¡ ¹A(x); 1¡ ¹B(y))
· 1, T (¹A(x); ¹B(y)) · 1¡ S(1¡ ¹A(x); 1¡ ¹B(y)) = S¤(¹A(x); ¹B(y)):

So condition (1) is also necessary for the generalized cartesian product to be an IFS.
Now we investigate the properties of the newly de¯ned cartesian product. First we intro-

duce the following notation : for a certain universe E we de¯ne ;E = f(x; 0; 1) j x 2 Eg.
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2.1 On the emptiness of the generalized cartesian product

Let A 2 IF(E1) and B 2 IF(E2). Then :

A = ;E1 _B = ;E2 ) A£T;S B = ;E1£E2;

and

((9x0 2 A1) (8y 2 B1) (S(ºA(x0); ºB(y)) < 1)
_ (9y0 2 B1) (8x 2 A1) (S(ºA(x); ºB(y0)) < 1))
) (A£T;S B = ;E1£E2 ) A = ;E1 _B = ;E2)

Proof. A£T;S B = ;E1£E2 means that for all x 2 E1 and for all y 2 E2 holds

T (¹A(x); ¹B(y)) = 0;

S(ºA(x); ºB(y)) = 1:

Suppose that A = ;E1 (the case B = ;E2 is completely analogous). Then ¹A(x) = 0 and
ºA(x) = 1. Since (8® 2 [0; 1]) (T (®; 0) = 0) and (8® 2 [0; 1]) (S(®; 1) = 1), it follows that

T (¹A(x); ¹B(y)) = T (0; ¹B(y)) = 0; and
S(¹A(x); ¹B(y)) = S(1; ¹B(y)) = 1:

Hence the ¯rst implication holds.
To prove the second implication, we assume that there exists a x0 2 E1 such that ºA(x0) <

1 and such that
(8y 2 E2) (ºB(y) < 1) S(ºA(x0); ºB(y)) < 1): (2)

Then

S(ºA(x); ºB(y)) = 1; 8(x; y) 2 E1 £E2
) S(ºA(x0); ºB(y)) = 1; 8y 2 E2
) ºB(y) = 1; 8y 2 E2; because of (2)

) B = ;E2:

The last implication holds because, if ºB(y) = 1 for some y 2 E2, then necessarily ¹B(y) = 0,
because for each intuitionistic fuzzy set the sum of the two degrees is not greater than 1.
Similarly, if there exists a y0 2 E2 such that ºB(y0) < 1 and such that

(8x 2 E1) (ºA(x) < 1) S(ºA(x); ºB(y0)) < 1); (3)

then A = ;E1 .

2.2 On the commutativity of the generalized cartesian product

Let A 2 IF(E1) and B 2 IF(E2). Then :

A = B ) A£T;S B = B £T;S A

Proof. Assume A = B; x; y 2 E. Then

¹A£T;SB(x; y) = T (¹A(x); ¹B(y)) = T (¹B(x); ¹A(y)) = ¹B£T;SA(x; y);
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and
ºA£T;SB(x; y) = S(¹A(x); ¹B(y)) = S(¹B(x); ¹A(y)) = ºB£T;SA(x; y):

In classical set theory, if the cartesian product of two sets is commutative then the two
sets are equal to each other. In intuitionistic fuzzy set theory this is not the case. It is
possible that the cartesian product of two IFSs is commutative, but that the original IFSs
are di®erent. Consider for instance the IFSs

A = f(x1; a; b); (x2; a; b)g; andB = f(x1; c; d); (x2; c; d)g:

Then 8(i; j) 2 f1; 2g2 :

T (¹A(xi); ¹B(xj)) = T (a; c) = T (¹B(xi); ¹A(xj))

S(ºA(xi); ºB(xj)) = S(b; d) = S(ºB(xi); ºA(xj)):

So we obtain A£T;S B = B £T;S A, but A6= B if a6= c _ b6= d.

2.3 On the distributivity of the generalized cartesian product
with respect to unions and intersections

Let A 2 IF(E1); B;C 2 IF(E2). Then :

A£T;S (B \ C) = (A£T;S B) \ (A£T;S C);
A£T;S (B [ C) = (A£T;S B) [ (A£T;S C):

Proof. For the ¯rst equality, we have to prove that

T (¹A(x);min(¹B(y); ¹C(y)))

= min(T (¹A(x); ¹B(y)); T (¹A(x); ¹C(y))) (4)

and

S(ºA(x);max(ºB(y); ºC(y)))

= max(T (ºA(x); ºB(y)); T (ºA(x); ºC(y))) (5)

hold for (x; y) 2 E1 £E2.
Let ¯rst ¹B(y) · ¹C(y), then the left hand of (4) becomes T (¹A(x); ¹B(y)). Because of

(T.4) we have T (¹A(x); ¹B(y)) · T (¹A(x); ¹C(y)), so that the right hand of (4) also equals
T (¹A(x); ¹B(y)). If ¹B(y) > ¹C(y), we have a similar proof of the validity of (4).
Formula (5) is proved similarly.

2.4 On the interaction of the generalized cartesian product with
respect to generalized unions and intersections

Let A 2 IF(E1); B;C 2 IF(E2). In general we cannot obtain any of the following asser-
tions :

A£T;S (B \T 0;S0 C) µ (A£T;S B) \T 0;S0 (A£T;S C);
A£T;S (B [S0;T 0 C) µ (A£T;S B) [S0;T 0 (A£T;S C);
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A£T;S (B \T 0;S0 C) ¶ (A£T;S B) \T 0;S0 (A£T;S C);
A£T;S (B [S0;T 0 C) ¶ (A£T;S B) [S0;T 0 (A£T;S C);

where B \T 0;S0 C = f(y; T 0(¹B(y); ¹C(y)); S0(ºB(y); ºC(y))) j y 2 E2g, and B [S0;T 0 C =
f(y; S 0(¹B(y); ¹C(y)); T 0(ºB(y); ºC(y))) j y 2 E2g. Of course T 0, resp. S0 is an arbitrary
t-norm, resp. t-conorm.
Consider for instance the second and the fourth statement for the case where T = Z and

S = Z¤. Then for an arbitrary x 2 E1 such that 0 < ¹A(x) < 1 and for an arbitrary y 2 E2
such that ¹B(y) = ¹C(y) = 1, we obtain Z(¹A(x); S

0(¹B(y); ¹C(y))) = Z(¹A(x); S
0(1; 1)) =

¹A(x) and S
0(Z(¹A(x); ¹B(y)); Z(¹A(x); ¹C(y))) = S

0(Z(¹A(x); 1); Z(¹A(x); 1)) = S
0(¹A(x);

¹A(x)). Since max is the only idempotent t-conorm, we obtain

Z(¹A(x); S
0(1; 1)) < S 0(Z(¹A(x); 1); Z(¹A(x); 1))

as soon as S 0 6= max, which contradicts the fourth formula.
For arbitrary x 2 E1; y 2 E2 such that 0 < ¹A(x) < ¹B(y) < ¹C(y) < 1 and S0(¹B(y);

¹C(y)) = 1, we ¯nd Z(¹A(x); S
0(¹B(y); ¹C(y))) = ¹A(x) and S

0(Z(¹A(x); ¹B(y)); Z(¹A(x);
¹C(y))) = 0. Under the given conditions, we thus ¯nd that Z(¹A(x); S

0(¹B(y); ¹C(y))) >
S 0(Z(¹A(x); ¹B(y)); Z(¹A(x); ¹C(y))), which contradicts the second formula.
An analogous example shows that the ¯rst and the third inequalities don't hold either in

the general case.

2.5 On the distributivity of the generalized cartesian product
with respect to the di®erence

Let A 2 IF(E1); B;C 2 IF(E2). Then :

A£T;S (B n C) µ (A£T;S B) n (A£T;S C):

If B = f(y; 1; 0) j y 2 E2g, C µ A, T = min and S = max, then equality holds.
Proof. We need to prove

A£T;S (B \ coC) µ (A£T;S B) \ co (A£T;S C):

We prove that

T (¹A(x);min(¹B(y); ºC(y)))

· min(T (¹A(x); ¹B(y)); S(ºA(x); ºC(y))); (6)
and

S(ºA(x);max(ºB(y); ¹C(y)))

¸ max(S(ºA(x); ºB(y)); T (¹A(x); ¹C(y))): (7)

Suppose for (6) that ¹B(y) < ºC(y), then, using (T.4) and the fact that 8(a; b; c) 2 [0; 1]3 :
T (a; b) · min(a; b) · a · max(a; c) · S(a; c), we obtain T (¹A(x); min(¹B(y); ºC(y))) =
T (¹A(x); ¹B(y)) · T (¹A(x); ºC(y)) · ºC(y) · S(ºA(x); ºC(y)). Since the left hand of the
inequality is equal to T (¹A(x); ¹B(y)) and is smaller than S(ºA(x); ºC(y)), it is equal to
min(T (¹A(x); ¹B(y)); S(ºA(x); ºC(y))).
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Suppose on the contrary that ¹B(y) ¸ ºC(y), then T (¹A(x); min(¹B(y); ºC(y))) =
T (¹A(x); ºC(y)) · T (¹A(x); ¹B(y)) and T (¹A(x); min(¹B(y); ºC(y))) · ºC(y) · S(ºA(x);
ºC(y)), so also in this case the left hand of the inequality is less than or equal to the right
hand. Thus (6) holds. The inequality (7) follows in a similar way.
Suppose B = f(y; 1; 0) j y 2 E2g, C µ A, T = min and S = max. Then T (¹A(x);

min(¹B(y); ºC(y))) = T (¹A(x); ºC(y)) = min(¹A(x); ºC(y)), since ¹B(y) = 1. The right hand
of (6) equals min(¹A(x); S(ºA(x); ºC(y))) = min(¹A(x);max(ºA(x); ºC(y))) = min(¹A(x);
ºC(y)), since C µ A. So equality is obtained in (6). In a similar way equality is obtained in
(7) under the given conditions.

2.6 On the monotonicity of the generalized cartesian product

Let A 2 IF(E1); B;C 2 IF(E2). Then :
B µ C ) A£T;S B µ A£T;S C:

The reverse implication holds under one of the following conditions :

(i) A = f(x; 1; 0) j x 2 E1g

(ii) (8(x; y) 2 E1 £E2) (T (¹A(x); ¹B(y)) < T (¹A(x); ¹C(y))
^ S(ºA(x); ºB(y)) > S(ºA(x); ºC(y))):

Proof. Let B µ C, then
(8y 2 E2) (¹B(y) · ¹C(y) ^ ºB(y) ¸ ºC(y))

From (T.4) it follows that

(8 (x; y) 2 E1 £E2) (T (¹A(x); ¹B(y)) · T (¹A(x); ¹C(y))
^ S(ºA(x); ºB(y)) ¸ S(ºA(x); ºC(y)))

To investigate in which cases the reverse implication holds, we consider the following facts.
From T (a; b) < T (a; c) follows that b · c, since b > c ) T (a; b) ¸ T (a; c). So in general,
from T (a; b) · T (a; c) it does not follow that b · c, unless T (a; b) < T (a; c) or a = 1 (since
then T (a; b) = b and T (a; c) = c). If a6= 1, then from T (a; b) = T (a; c) it cannot be deduced
that b · c nor b ¸ c.
The same assertions hold for S and thus from S(a; b) ¸ S(a; c) we get b ¸ c if a = 0

or S(a; b) > S(a; c). Hence we may conclude that the reverse implication only holds if
A = f(x; 1; 0) j x 2 E1g, or if T (¹A(x); ¹B(y)) < T (¹A(x); ¹C(y)) ^ S(ºA(x); ºB(y)) >
S(ºA(x); ºC(y)).

2.7 On the cutting of the generalized cartesian product

Let A 2 IF(E1) and B 2 IF(E2). Then :
(A£T;S B)® µ A® £B®;8® 2]0; 1] (8)

(A£T;S B)® µ A® £B®;8® 2 [0; 1[ (9)

(A£T;S B)¯ µ A¯ £B¯; 8¯ 2 [0; 1[ (10)

(A£T;S B)¯ µ A¯ £B¯; 8¯ 2]0; 1] (11)

(A£T;S B)¯® µ A¯® £B¯®;8® 2]0; 1];8¯ 2 [0; 1[ (12)

(A£T;S B)¯® µ A¯® £B
¯
®;8® 2 [0; 1[;8¯ 2]0; 1] (13)
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In (8) the equality holds if and only if T ¸ Z®, or if T (®; ®) = ®;
in (9) the equality holds if and only if T > Z®, or if (9V 2 U(®;®)) (8 (x; y) 2 V \ ]®; 1]2) (® <
T (x; y));
in (10) the equality holds if and only if S · Z¤¯, or if S(¯; ¯) = ¯;
in (11) the equality holds if and only if S < Z¤¯, or if (9V 2 U(¯;¯)) (8 (x; y) 2 V \
[0; ¯[2) (S(x; y) < ¯);
in (12) the equality holds if and only if T ¸ Z®^ S · Z¤¯, or if T (®; ®) = ® ^ S(¯; ¯) = ¯;
in (13) the equality holds if and only if T > Z®^ S < Z¤¯, or if (9V1 2 U(®;®)) (8 (x; y) 2
V1 \ ]®; 1]2) (® < T (x; y)) ^ (9V2 2 U(¯;¯)) (8 (x; y) 2 V2 \ [0; ¯[2) (S(x; y) < ¯),
where U(®;®) denotes the class of neighbourhouds of (®; ®).
Proof. Let us ¯rst prove (8). The left hand is equal to

f(x; y) j (x; y) 2 E1 £E2 ^ ¹A£T;SB(x; y) ¸ ®g
= f(x; y) j (x; y) 2 E1 £E2 ^ T (¹A(x); ¹B(y)) ¸ ®g:

The right hand is equal to

f(x; y) j (x; y) 2 E1 £E2 ^ x 2 A® ^ y 2 B®g
= f(x; y) j (x; y) 2 E1 £E2 ^ ¹A(x) ¸ ® ^ ¹B(y) ¸ ®g:

Since T (¹A(x); ¹B(y)) · min(¹A(x); ¹B(y)), we will have ¹A(x) ¸ ® and ¹B(y) ¸ ® as soon
as T (¹A(x); ¹B(y)) ¸ ®.
To obtain equality in (8), we must have ¹A(x) ¸ ® ^ ¹B(y) ¸ ®) T (¹A(x); ¹B(y)) ¸ ®.

If T = Z®, then from ¹A(x) ¸ ® and ¹B(y) ¸ ® follows :

Z®(¹A(x); ¹B(y)) = min(¹A(x); ¹B(y)) ¸ ®;
if max(¹A(x); ¹B(y)) = 1;

Z®(¹A(x); ¹B(y)) = ®; if max(¹A(x); ¹B(y))6= 1:

Since Z® is a t-norm, Z®(a; b) cannot be di®erent from min(a; b) if max(a; b) = 1. Since
otherwise for all x 2 E1 and for all y 2 E2 such that ¹A(x) ¸ ® and ¹B(y) ¸ ® holds that
Z®(¹A(x); ¹B(y)) = ®, we can conclude that Z® is the smallest t-norm for which equality
holds. Moreover, equality also holds for all t-norms T > Z®.
If T (®; ®) = ® (it cannot be greater than ® since for all t-norms T there holds T (a; b) ·

min(a; b);8(a; b) 2 [0; 1]2), then 8(a; b) 2 [0; 1]2 : ® · a ^ ® · b ) ® = T (®; ®) · T (a; b)
because of (T.4). Thus, the condition that T (®; ®) equals ®, is su±cient to have equality in
(8).
The left hand of (9) is equal to

f(x; y) j (x; y) 2 E1 £ E2 ^ ¹A£T;SB(x; y) > ®g
= f(x; y) j (x; y) 2 E1 £E2 ^ T (¹A(x); ¹B(y)) > ®g:

The right hand is equal to

f(x; y) j (x; y) 2 E1 £ E2 ^ x 2 A® ^ y 2 B®g
= f(x; y) j (x; y) 2 E1 £E2 ^ ¹A(x) > ® ^ ¹B(y) > ®g:

Since T (¹A(x); ¹B(y)) · min(¹A(x); ¹B(y)), we will have ¹A(x) > ® and ¹B(y) > ® as soon
as T (¹A(x); ¹B(y)) > ®.
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To have equality in (9), we must have ¹A(x) > ® ^ ¹B(y) > ® ) T (¹A(x); ¹B(y)) > ®.
Since Z® is the smallest t-norm for which a similar statement holds (see above), we can
deduce that equality in (9) will hold for each t-norm T > Z®.
If (9V 2 U(®;®)) (8 (a; b) 2 V \ ]®; 1]2) (® < T (a; b)), then we already have (8 (a; b) 2

V ) (a > ® ^ b > ® ) T (a; b) > ®). If (a; b) 2 ]®; 1]2 n V , then, since there exist an a0 and
a b0 such that (a0; b0) 2 V \ ]®; 1]2, we obtain a0 < a, b0 < b. Because of (T.4) we obtain
T (a; b) > T (a0; b0) > ®. So, for all (a; b) 2 [0; 1]2 the implication a > ®^ b > ®) T (a; b) > ®
holds.
The other properties can be proved similarly.

3 Conclusion

In this paper we de¯ned a generalized cartesian product using t-norms and t-conorms. The
generalized cartesian product thus de¯ned is an IFS if and only if T · S¤, where S¤ denotes
the dual t-norm with respect to S. We have investigated the set-theoretical properties of
the generalized cartesian product and have found that most of them hold under certain
conditions. If at least one of two IFSs is empty, then the generalized cartesian product
of these IFSs is empty. The reverse holds only under certain conditions. The generalized
cartesian product of two IFSs is commutative if they are equal, but from the commutativity
of the generalized cartesian product the equality of the original IFSs cannot be deduced. The
generalized cartesian product is distributive with respect to unions and intersections, but a
general distributivity law or distributivity-like laws cannot be obtained. A distributivity-like
law can be obtained with respect to the di®erence. We have also obtained monotonicity
under certain conditions. At last we have found that the level-set of the generalized cartesian
product of two IFSs is a subset of the classical cartesian product of the level-sets of the
original IFSs.
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