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1. Introduction

The central problem of discriminant analysis is that of assigning an object (case, patient,
pattern etc.) into one of several possible categories (classes). The result of any discriminant
procedure is a classifier. Many different single - stage (one step) discriminant procedures
(classifiers) have been described in the literature - statistical (Fukunaga, 1972; Hand, 1981;
McLachlan, 1992), fuzzy (Asparoukhov, 1985; Kissiov and Hadjitodorov, 1992; Pedrycz,
1990), mathematical programming (Freed and Glover, 1986; Glover, 1990; Silva and Stam,
1994). Unfortunately conventional single stage classifiers have some disadvantages:

- usually, for a specific application problem, these classifiers differ in accuracy, but maybe
none of them is totally perfect, or even not as good as expected for practical application;

- only one of the possible combination of object features (variables) is used in the
classification;

-problem arises in case of a large number of variables as it leads to a small sample size and
this is frequently met when the variables are mixed (continuous and categorical), because the
classifiers appropriate for this situation (logistic discrimination, linear and quadratic local
discriminant functions, kernel method - Krzanowski, 1975, 1993; McLachlan, 1992) are not so
effective if the number of variables is large.

In order to overcome these disadvantages multi-stage approaches for classifier design were
proposed: multiclassifiers (Xu et al., 1992; Wernecke, 1992), multi (two) level classifiers
(Jozefczyk, 1986; Kissiov et al.,, 1990; Kuncheva, 1990, 1993; Ng and Abramson, 1992); tree
classifiers (Asparoukhov and Ivanov, 1992; Casey and Nagy, 1984, Kurzynski, 1983;
Landeweed et al, 1983; Li and Dubes, 1986; Lin and Fu, 1983; Mui and Fu, 1980; Shlien, 1988,
1990; Sturt, 1980), tree-structured rules (Brieman et al., 1984; Loh and Vanichsetakul, 1988).

In this paper we propose intuitionistic fuzzy interpretation of the two-level classifier design.

2. One -Stage Discriminant Procedures (Classifiers)
Let us consider a classical problem of discriminant analysis: @,...,®, are m distinct

classes, whose objects are described by an n-component vector of variables x=(x,...,.x.)"
Suppose that we have available a design set of N objects, N, of which are known to have come

from @,, N, from @,,..., N, from @, (N = N+N,+...+N, ). Design set object j from @, is
described by vector x;; consisting of the values of the m variables.
An individual x is classified into the class with the greatest estimated posterior probability

p(w,/x). The posterior probabilities are estimated from the estimated class-conditional
distributions and the prior probabilities via Bayes' theorem. If the prior probabilities are equal

for the c classes, then x is allocated to @, if p(x/w,)=max p(x/@,).
J

There are two types of error rates, characterizing the effectiveness of every concrete
classifier: resubstitution and leave-one-out and they have to be minimized.
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3. Two Level Classifiers

Let us have v statistical classifiers - CL,, CL,,..., Cl,. Generally speaking, the output
information that various classification algorithms supply or are able to supply can be divided
into three levels (Xu et al., 1992):

1) Abstract level - every classifier only outputs a unique class or a subset of classes.

2) Rank level - every classifier ranks all the classes in a queue with the class at the top being
the first choice.

3) Measurement level - every classifier attributes each class a measurement value to address
the degree that the object has this class.

Among the three levels, the measurement level contains the highest amount of information
and if we reduce this information we could rank all classes (rank level) or we can assign a
unique class (abstract level). That is why below we will talk only about measurement level
classifiers. The best developed measurement level classifiers are the statistical classifiers ones
(Fukunaga, 1972; Hand, 1981; McLachlan, 1992). The output of every statistical classifier for a
particular object x; contains a probability for each of m classes (see table 1).

Table 1. Legend: Py(i,j) - the estimated by classifier k probability that an object x; belongs to
class i. The sum of probabilities for every row is equal to 1.

Classifier CLASSES
No a)l a)i a)m
Classifier 1 P,(1,) P,(1,j) P,(m,j)
Classifier k P.(1,) P, (1)) P, (m,))
Classifier v P.(1,) P.(i,)) P (m,j)

The main idea of two level and multi- classifiers is the aggregation at the second level of the
received at the first level object probabilities for every class and the assignment of the object to
the class with greatest aggregated estimate. The main problem is what this aggregation should
beat the second level? There are a lot of types of aggregation (Xu et al., 1992), but all of them
have one disadvantage - they use for every classifier only one value (probability) for a class.

Below, an intuitionistic fuzzy interpretation of the two-level classifier design, that used
more first level information than conventional approaches, is presented.

4. Intuitionistic Fuzzy Interpretation of Two-level Classifiers Design

The output information for object x; of the statistical classifiers CL, for all classes contains
the probabilities P, (1,j),...,P,(i,j),...,P(m,j) and the conventional approaches use in object
aggregation for one class only one value (i.e. probability) from all m values of this classifier.

We propose that in one class object aggregation two values (function of probabilities) per
classifier be involved. For this purpose we define the following functions - degree of
membership, degree of non membership and degree of indeterminacy:

* Definition 1: The degree of membership of an object x; to a class @, according to k-th
classifier Wjk(x;) is equal to the probability Py (1,j).

Definition 2: The degree of non membership of an object x; to a class @, according to k-th

classifier is equal to:
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Vik(xj) = P(max) for i#r
Vlk(x_]) = P(max— 1 fO" i=r

where P (max) 12;‘1} {P,(i,))} =Py(r,j) and P (max-1) ,.g,lmau?ir {PG,))}

Both the degree of membership Ljj(x;) and the degree of non membership vji(x;) belong to

m
the set {P,(i,j), 1= 1, m; ZPk (i,j) =1}, so they are non negative and pjk(x;) + Vik(x;) <1.
i=1

Definition 3: The degree of indeterminacy of an object x; to a class @, according to k-th
classifier Tjj(x;) is equal to:

Tik(x) = 1 - (Rik(x;) + Vik(x))).

How these functions could be interpreted?

The class degree of membership is equal to the class probability and this is a probability
measure that this class is true for the object. The class degree of non membership is equal to the
maximum probability from the other competitive classes, and it is measure that this class is false
for the object. The difference between the measures of truth and falsity is the degree of
indeterminacy and indeed this is measure (again probability one) for uncertainty (doubtfulness).

The functions involved by the definitions 1, 2 and 3 are typical functions for the
Intuitionistic Fuzzy Set Theory (Atanassov, 1986) and its concepts, mathematical actions and
relations could be used for their aggregation and decision making. Here we will turn our
attention to the decision making problem after aggregation.

Let the results of aggregation be denoted by pi(x;), vi(x;) and Tij(x;).

There are three one-function basic criteria:

Criterion 1: Maximum true.

This means that the degree of membership Lj(x;)) must be maximum. The functional of
aggregation is:

Hi(x;) > max .

Criterion 2: Minimum false.

This means that the degree of non membership vj(x;) must be minimum. The functional of
aggregation is:

vi(x) - miin.

Criterion 3: Minimum indeterminacy (doubtfulness).

This means that the degree of indeterminacy 7(x;) must be minimum. It seems that this
criterion is fulfilled if the first two are fulfilled, but it is not difficult to construct an example
where the final decision for object class, derived by the criterion 3 is different from the one
derived by both criteria 1 and 2. The functional of aggregation for the criterion 3 is:

Ti(x)) - m,m

We accept that the product of two or three criteria leads to their simultaneous performance.
There three two criteria product combinations:
Combination 12 of the criteria 1 and 2: The functional of aggregation is:

Hi(x;) - vi(x).— max,, or
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Hi(x)/Vi(x;). — max, if the denominator is always different from zero.

Combination 13 of the criteria 1 and 3: The functional of aggregation is:
Hi(x;) - () = 24(x5) + vi(x)) - 1> max,, or 2uix;) + vj(x;)—> max.

Combination 23 of the criteria 2 and 3: The functional of aggregation for this combination is:
vilx) + mi(x) = 1 - pi(x;)—> miin :

There is only one three criteria combination - combination 123 of the criteria 1, 2 and 3.
The aggregation functional for this combination could have a different form:

mx)  p(x)
Vi(.xj)+7ri(xj) l_ﬂi(xj)

—> max, if uj(x;) # 1, or
{14, 06) = v, (e 1= 7,060} = (i) = v O ) Han () + v, () )} > max, or

#i(x;)—vi(x))
m(x )
Of course there are other possibilities for formulation of the functional of the combination
123, which can not be described here due to the lack of space.
Here we only give a brief description of the idea of an intuitionistic fuzzy interpretation of
two-level classifiers design. This idea is very appropriate for medical diagnostics and we now
investigate it for preoperative prediction of postoperative pulmonary embolism.

=— max, if pj(x)) + vi(x) = 1.
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