New properties of the intuitionistic fuzzy modal operator $\otimes_{\alpha, \beta, \gamma, \delta}$

Vassia Atanassova ${ }^{1}$, Gökhan Çuvalcıoğlu ${ }^{2}$, Sinem Yılmaz ${ }^{2}$ and Krassimir Atanassov ${ }^{1,3}$

${ }^{1}$ Dept. of Bioinformatics and Mathematical Modelling
Institute of Biophysics and Biomedical Engineering
Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
e-mail: vassia.atanassova@gmail.com
${ }^{2}$ Department of Mathematics, University of Mersin
Mersin, Turkey
e-mails: gcuvalcioglu@gmail.com, sinemnyilmaz@gmail.com
${ }^{3}$ Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Burgas-8010, Bulgaria
e-mail: krat@bas.bg

Abstract

Some new properties of the intuitionistic fuzzy modal operator $\otimes_{\alpha, \beta, \gamma, \delta}$ are formulated and proved. Some open problems are formulated.

Keywords: Intuitionistic fuzzy modal operator, Intuitionistic fuzzy operation.
AMS Classification: 03E72.

1 Introduction

In the previous papers of the authors [4, 5], a new type of intuitionistic fuzzy modal operator, marked by $\otimes_{\alpha, \beta, \gamma, \delta}$ is introduced and some of its properties are studied. Now, new properties of this operator are studied.

Let a set E be fixed. The Intuitionistic Fuzzy Set (IFS) A in E is defined by (see, e.g., [1]):

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\},
$$

where functions $\mu_{A}: E \rightarrow[0,1]$ and $\nu_{A}: E \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$
0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1
$$

Different relations, operations and operators are introduced over the IFSs. One of them is the classical neegation, defined by

$$
\neg A=\left\{\left\langle x, \nu_{A}(x), \mu_{A}(x)\right\rangle \mid x \in E\right\} .
$$

For the needs of the present research, we introduce the extended modal operators, defined over IFSs (see, e.g. [1, 2]). Let $\alpha, \beta \in[0,1]$ and let:

$$
\begin{aligned}
& F_{\alpha, \beta}(A)=\left\{\left\langle x, \mu_{A}(x)+\alpha \cdot \pi_{A}(x), \nu_{A}(x)+\beta \cdot \pi_{A}(x)\right\rangle \mid x \in E\right\}, \text { where } \alpha+\beta \leq 1, \\
& G_{\alpha, \beta}(A)=\left\{\left\langle x, \alpha \cdot \mu_{A}(x), \beta \cdot \nu_{A}(x)\right\rangle \mid x \in E\right\}, \\
& H_{\alpha, \beta}(A)=\left\{\left\langle x, \alpha \cdot \mu_{A}(x), \nu_{A}(x)+\beta \cdot \pi_{A}(x)\right\rangle \mid x \in E\right\}, \\
& H_{\alpha, \beta}^{*}(A)=\left\{\left\langle x, \alpha \cdot \mu_{A}(x), \nu_{A}(x)+\beta \cdot\left(1-\alpha \cdot \mu_{A}(x)-\nu_{A}(x)\right)\right\rangle \mid x \in E\right\}, \\
& J_{\alpha, \beta}(A)=\left\{\left\langle x, \mu_{A}(x)+\alpha \cdot \pi_{A}(x), \beta \cdot \nu_{A}(x)\right\rangle \mid x \in E\right\}, \\
& J_{\alpha, \beta}^{*}(A)=\left\{\left\langle x, \mu_{A}(x)+\alpha \cdot\left(1-\mu_{A}(x)-\beta \cdot \nu_{A}(x)\right), \beta \cdot \nu_{A}(x)\right\rangle \mid x \in E\right\} .
\end{aligned}
$$

These operators are partial cases of the followingg operator (see $[2,3]$)

$$
\begin{gathered}
X_{a, b, c, d, e, f}(A)=\left\{\left\langlex, a \cdot \mu_{A}(x)+b .\left(1-\mu_{A}(x)-c . \nu_{A}(x)\right),\right.\right. \\
\left.\left.d . \nu_{A}(x)+e .\left(1-f \cdot \mu_{A}(x)-\nu_{A}(x)\right)\right\rangle \mid x \in E\right\}
\end{gathered}
$$

where $a, b, c, d, e, f \in[0,1]$ and there, the following two conditions are given:

$$
\begin{gather*}
a+e-e . f \leq 1 \tag{1}\\
b+d-b . c \leq 1 \tag{2}\\
b+e \leq 1 \tag{3}
\end{gather*}
$$

In [4], we introduced the following new operator from modal type:

$$
\otimes_{\alpha, \beta, \gamma, \delta} A=\left\{\left\langle x, \alpha \cdot \mu_{A}(x)+\gamma \cdot \nu_{A}(x), \beta \cdot \mu_{A}(x)+\delta \cdot \nu_{A}(x)\right\rangle \mid x \in E\right\},
$$

where $\alpha, \beta, \gamma, \delta \in[0,1]$ and $\alpha+\beta \leq 1, \gamma+\delta \leq 1$.
According to this definition, on one hand, the operator reduces by α the degree of membership $\mu_{A}(x)$ original IFS A 's and sums it up with a part of the degree of non-membership $\left(\gamma \cdot \nu_{A}(x)\right)$, and in the same time it reduces the original A 's degree of non-membership $\left(\nu_{A}(x)\right)$ by δ and sums it up with a part of the degree of membership $\left(\beta \cdot \mu_{A}(x)\right)$.

As it is mentioned in [4], it is easy to see that

$$
\begin{aligned}
\otimes_{1,0,0,1} A & =A, \\
\otimes_{0,1,1,0} A & =\neg A,
\end{aligned}
$$

and the set $\otimes_{\alpha, \beta, \gamma, \delta} A$ is an IFS. There, they are proved also that for every IFS A and for every four real numbers $\alpha, \beta, \gamma, \delta \in[0,1]$ such that $\alpha+\beta \leq 1, \gamma+\delta \leq 1$

$$
\neg \otimes_{\alpha, \beta, \gamma, \delta} \neg A=\otimes_{\delta, \gamma, \beta, \alpha} A .
$$

In [5] it is proved that for the IFS A and for $a, b, c, d, e, f, g, h \in[0,1]$, so that $a+b, c+d, e+$ $f, g+h \in[0,1]$. Then

$$
\otimes_{e, f, g, h}\left(\otimes_{a, b, c, d}(A)=\otimes_{a e+b g, a f+b h, c e+d g, c f+d h}(A)\right.
$$

2 Main results

Here, we formulate and prove some new assertions, related to the intuitionistic fuzzy modal operator $\otimes_{\alpha, \beta, \gamma, \delta}$.

First, we mention that in $[1,2]$ the following five operations are defined for the IFSs

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\}
$$

and

$$
\begin{gathered}
B=\left\{\left\langle x, \mu_{B}(x), \nu_{B}(x)\right\rangle \mid x \in E\right\}: \\
A \cap B=\left\{\left\langle x, \min \left(\mu_{A}(x), \mu_{B}(x)\right), \max \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}, \\
A \cup B=\left\{\left\langle x, \max \left(\mu_{A}(x), \mu_{B}(x)\right), \min \left(\nu_{A}(x), \nu_{B}(x)\right)\right\rangle \mid x \in E\right\}, \\
A+B=\left\{\left\langle x, \mu_{A}(x)+\mu_{B}(x)-\mu_{A}(x) \mu_{B}(x), \nu_{A}(x) \nu_{B}(x)\right\rangle \mid x \in E\right\}, \\
A . B=\left\{\left\langle x, \mu_{A}(x) \mu_{B}(x), \nu_{A}(x)+\nu_{B}(x)-\nu_{A}(x) \nu_{B}(x)\right\rangle \mid x \in E\right\}, \\
A @ B=\left\{\left.\left\langle x, \frac{\mu_{A}(x)+\mu_{B}(x)}{2}, \frac{\nu_{A}(x)+\nu_{B}(x)}{2}\right\rangle \right\rvert\, x \in E\right\} .
\end{gathered}
$$

Theorem 1. Let A be an IFS and let $\alpha, \beta, \gamma, \delta \in[0,0.25], \varepsilon, \zeta, \eta, \theta \in[0,1]$. Then

$$
\begin{equation*}
J_{1,0}\left(H_{4 \alpha, \varepsilon} A @ H_{4 \gamma, \zeta} \neg A\right) @ H_{0,1}\left(J_{\eta, 4 \beta} \neg A @ J_{\theta, 4 \delta} A\right)=\otimes_{\alpha, \beta, \gamma, \delta} A . \tag{4}
\end{equation*}
$$

Proof. Let the IFS A and the real numbers $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta$ satisfy the conditions from Theorem 1. Then

$$
\begin{gathered}
J_{1,0}\left(H_{4 \alpha, \varepsilon} A @ H_{4 \gamma, \zeta} \neg A\right) @ H_{0,1}\left(J_{\eta, 4 \beta} \neg A @ J_{\theta, 4 \delta}\right) \\
=J_{1,0}\left(H_{4 \alpha, \varepsilon}\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\} @ H_{4 \gamma, \zeta}\left\{\left\langle x, \nu_{A}(x), \mu_{A}(x)\right\rangle \mid x \in E\right\}\right) \\
@ H_{0,1}\left(J_{\eta, 4 \beta}\left\{\left\langle x, \nu_{A}(x), \mu_{A}(x)\right\rangle \mid x \in E\right\} @ J_{\theta, 4 \delta}\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\}\right) \\
=J_{1,0}\left(\left\{\left\langle x, 4 \alpha \mu_{A}(x), \nu_{A}(x)+\varepsilon \pi_{A}(x)\right\rangle \mid x \in E\right\} @\left\{\left\langle x, 4 \gamma \nu_{A}(x), \mu_{A}(x)+\zeta \pi_{A}(x)\right\rangle \mid x \in E\right\}\right)
\end{gathered}
$$

$$
\begin{gathered}
@ H_{0,1}\left(\left\{\left\langle x, \nu_{A}(x)+\eta \pi_{A}(x), 4 \beta \mu_{A}(x)\right\rangle \mid x \in E\right\} @\left\{\left\langle x, \mu_{A}(x)+\theta \pi_{A}(x), 4 \delta \nu_{A}(x)\right\rangle \mid x \in E\right\}\right) \\
=J_{1,0}\left\{\left.\left\langle x, 2 \alpha \mu_{A}(x)+2 \gamma \nu_{A}(x), \frac{\mu_{A}(x)+\nu_{A}(x)+(\varepsilon+\zeta) \pi_{A}(x)}{2}\right\rangle \right\rvert\, x \in E\right\} \\
@ H_{0,1}\left\{\left.\left\langle x, \frac{\mu_{A}(x)+\nu_{A}(x)+(\eta+\theta) \pi_{A}(x)}{2}, 2 \beta \mu_{A}(x)+2 \delta \nu_{A}(x)\right\rangle \right\rvert\, x \in E\right\} \\
=\left\{\left\langle x, 2 \alpha \mu_{A}(x)+2 \gamma \nu_{A}(x), 0\right| x \in E\right\} @\left\{\left\langle x, 0,2 \beta \mu_{A}(x)+2 \delta \nu_{A}(x)\right\rangle \mid x \in E\right\} \\
=\left\{\left\langle x, \alpha \mu_{A}(x)+\gamma \nu_{A}(x), \beta \mu_{A}(x)+\delta \nu_{A}(x)\right\rangle \mid x \in E\right\} \\
=\otimes_{\alpha, \beta, \gamma, \delta} A .
\end{gathered}
$$

Therefore, (4) is valid. So, the Theorem is proved.

Theorem 2. Let A be an IFS and let $\alpha, \beta, \gamma, \delta \in[0,0.25], \varepsilon, \zeta, \eta, \theta \in[0,1]$. Then

$$
J_{1,0}^{*}\left(H_{4 \alpha, \varepsilon} A @ H_{4 \gamma, \zeta} \neg A\right) @ H_{0,1}^{*}\left(J_{\eta, 4 \beta} \neg A @ J_{\theta, 4 \delta} A\right)=\otimes_{\alpha, \beta, \gamma, \delta} A .
$$

The proof is similar to the above one. The same is valid for Theorem 3.

Theorem 3. Let A be an IFS and let $\alpha, \beta, \gamma, \delta \in[0,0.5]$. Then

$$
\otimes_{\alpha, \beta, \gamma, \delta} A=G_{2 \alpha, 2 \gamma} A @ G_{2 \beta, 2 \delta} A .
$$

These three theorems give answer to the Open Problem 1 from [5]: Can operator $\otimes_{\alpha, \beta, \gamma, \delta}$ be represented by the extended modal operators?

On the other hand, we can check directly that for each IFS A and for $\alpha, \beta \in[0,1]$,

$$
\begin{array}{r}
G_{\alpha, \beta} A=\otimes_{\alpha, 0,0, \beta} A, \\
\neg G_{\alpha, \beta} A=\otimes_{0, \beta, \alpha, 0} A .
\end{array}
$$

In [4] it is proved that for every two IFSs A and B and for every four real numbers $\alpha, \beta, \gamma, \delta \in$ $[0,1]$ such that $\alpha+\beta \leq 1, \gamma+\delta \leq 1$, it holds that
(a) $\otimes_{\alpha, \beta, \gamma, \delta}(A \cup B)=\otimes_{\alpha, \beta, \gamma, \delta} A \cup \otimes_{\alpha, \beta, \gamma, \delta} B$,
(b) $\otimes_{\alpha, \beta, \gamma, \delta}(A \cap B)=\otimes_{\alpha, \beta, \gamma, \delta} A \cap \otimes_{\alpha, \beta, \gamma, \delta} B$,
(c) $\otimes_{\alpha, \beta, \gamma, \delta}(A+B)=\otimes_{\alpha, \beta, \gamma, \delta} A+\otimes_{\alpha, \beta, \gamma, \delta} B$,
(d) $\otimes_{\alpha, \beta, \gamma, \delta}(A . B)=\otimes_{\alpha, \beta, \gamma, \delta} A . \otimes_{\alpha, \beta, \gamma, \delta} B$.

Here, we shall continue this sequence of equalities, proving the following theorem.

Theorem 4. Let A and B be two IFS and let $\alpha, \beta, \gamma, \delta \in[0,1]$, so that $\alpha+\beta \leq 1, \gamma+\delta \leq 1$. Then,

$$
\begin{equation*}
\otimes_{\alpha, \beta, \gamma, \delta}(A @ B)=\otimes_{\alpha, \beta, \gamma, \delta} A @ \otimes_{\alpha, \beta, \gamma, \delta} B . \tag{5}
\end{equation*}
$$

Proof. Let the IFSs A and B and the real numbers $\alpha, \beta, \gamma, \delta$ satisfy the conditions from Theorem 3. Then

$$
\otimes_{\alpha, \beta, \gamma, \delta} A @ \otimes_{\alpha, \beta, \gamma, \delta} B
$$

$$
\begin{gathered}
=\otimes_{\alpha, \beta, \gamma, \delta}\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\} @ \otimes_{\alpha, \beta, \gamma, \delta}\left\{\left\langle x, \mu_{B}(x), \nu_{B}(x)\right\rangle \mid x \in E\right\} \\
=\left\{\left\langle x, \alpha \cdot \mu_{A}(x)+\gamma \cdot \nu_{A}(x), \beta \cdot \mu_{A}(x)+\delta \cdot \nu_{A}(x)\right\rangle \mid x \in E\right\} \\
@\left\{\left\langle x, \alpha \cdot \mu_{B}(x)+\gamma \cdot \nu_{B}(x), \beta \cdot \mu_{B}(x)+\delta \cdot \nu_{A}(B)\right\rangle \mid x \in E\right\} \\
=\left\{\left\langlex, \frac{\alpha \cdot \mu_{A}(x)+\alpha \cdot \mu_{B}(x)}{2}+\frac{\gamma \cdot \nu_{A}(x)+\gamma \cdot \nu_{B}(x)}{2},\right.\right. \\
\left.\left.\quad \frac{\beta \cdot \mu_{A}(x)+\beta \cdot \mu_{B}(x)}{2}+\frac{\delta \cdot \nu_{A}(x)+\delta \cdot \nu_{A}(B)}{2}\right\rangle \mid x \in E\right\} \\
=\left\{\left\langlex, \alpha \cdot \frac{\mu_{A}(x)+\mu_{B}(x)}{2}+\gamma \cdot \frac{\nu_{A}(x)+\nu_{B}(x)}{2},\right.\right. \\
\\
\left.\left.\beta \cdot \frac{\mu_{A}(x)+\mu_{B}(x)}{2}+\delta \cdot \frac{\nu_{A}(x)+\nu_{A}(B)}{2}\right\rangle \mid x \in E\right\} \\
= \\
\otimes_{\alpha, \beta, \gamma, \delta}\left\{\left\langlex, \frac{\mu_{A}(x)+\mu_{B}(x)}{2}+\frac{\nu_{A}(x)+\nu_{B}(x)}{2}\right.\right. \\
\\
\left.\left.\quad \frac{\mu_{A}(x)+\mu_{B}(x)}{2}+\frac{\nu_{A}(x)+\nu_{A}(B)}{2}\right\rangle \mid x \in E\right\} \\
=\otimes_{\alpha, \beta, \gamma, \delta}(A @ B) .
\end{gathered}
$$

Therefore, (5) is valid. So, the Theorem is proved.

By analogy with Theorem 4, we can prove Theorem 5 below.

Theorem 5. Let A be an IFS, let $\alpha, \beta, \gamma, \delta \in[0,1]$, so that $\alpha+\beta \leq 1, \gamma+\delta \leq 1$ and let $a, b, c, d, e, f \in[0,1]$, so that: $b, e>0$ and (1) - (3) are vaild. Then

$$
\begin{equation*}
X_{a, b, c, d, e, f}\left(\otimes_{\alpha, \beta, \gamma, \delta} A\right)=X_{b+a \alpha-b \alpha-b c \beta, b, \frac{b \gamma-a \gamma+b c \delta}{b}, e+d \delta-e f \gamma-e \delta, e, \frac{e \beta-d \beta+e f \alpha}{e}} . \tag{6}
\end{equation*}
$$

Proof. Let the IFS A and real numbers $\alpha, \beta, \gamma, \delta, a, b, c, d, e, f$ satisfying the conditions in the Theorem, are given. Then

$$
\begin{gathered}
X_{a, b, c, d, e, f}\left(\otimes_{\alpha, \beta, \gamma, \delta} A\right) \\
=X_{a, b, c, d, e, f}\left(\otimes_{\alpha, \beta, \gamma, \delta}\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\}\right) \\
=X_{a, b, c, d, e, f}\left(\left\{\left\langle x, \alpha \cdot \mu_{A}(x)+\gamma \cdot \nu_{A}(x), \beta \cdot \mu_{A}(x)+\delta \cdot \nu_{A}(x)\right\rangle \mid x \in E\right\}\right) \\
=\left\{\left\langlex, a\left(\alpha \cdot \mu_{A}(x)+\gamma \cdot \nu_{A}(x)\right)+b\left(1-\alpha \cdot \mu_{A}(x)-\gamma \cdot \nu_{A}(x)-c\left(\beta \cdot \mu_{A}(x)+\delta \cdot \nu_{A}(x)\right)\right),\right.\right. \\
\left.\left.d\left(\beta \cdot \mu_{A}(x)+\delta \cdot \nu_{A}(x)\right)+e\left(1-f\left(\alpha \cdot \mu_{A}(x)+\gamma \cdot \nu_{A}(x)\right)-\left(\beta \cdot \mu_{A}(x)+\delta \cdot \nu_{A}(x)\right)\right)\right\rangle \mid x \in E\right\} \\
=\left\{\left\langle x, a \alpha \cdot \mu_{A}(x)+a \gamma \cdot \nu_{A}(x)+b-b \alpha \cdot \mu_{A}(x)-b \gamma \cdot \nu_{A}(x)-b c \beta \cdot \mu_{A}(x)-b c \delta \cdot \nu_{A}(x)\right)\right), \\
\left.\left.\left.\left.\left.d \beta \cdot \mu_{A}(x)+d \delta \cdot \nu_{A}(x)\right)+e-e f \alpha \cdot \mu_{A}(x)-e f \gamma \cdot \nu_{A}(x)\right)-e \beta \cdot \mu_{A}(x)-e \delta \cdot \nu_{A}(x)\right)\right\rangle \mid x \in E\right\} \\
=\left\{\left\langle x, a \alpha \cdot \mu_{A}(x)+a \gamma \cdot \nu_{A}(x)+b-b \alpha \cdot \mu_{A}(x)-b \gamma \cdot \nu_{A}(x)-b c \beta \cdot \mu_{A}(x)-b c \delta \cdot \nu_{A}(x)\right)\right), \\
\left.\left.\left.\left.\left.d \beta \cdot \mu_{A}(x)+d \delta \cdot \nu_{A}(x)\right)+e-e f \alpha \cdot \mu_{A}(x)-e f \gamma \cdot \nu_{A}(x)\right)-e \beta \cdot \mu_{A}(x)-e \delta \cdot \nu_{A}(x)\right)\right\rangle \mid x \in E\right\} .
\end{gathered}
$$

Having in mind that

$$
X_{p, q, r, s, t, u}(A)=\left\{\left\langlex, p . \mu_{A}(x)+q \cdot\left(1-\mu_{A}(x)-r . \nu_{A}(x)\right),\right.\right.
$$

$$
\left.\left.s . \nu_{A}(x)+t .\left(1-u \cdot \mu_{A}(x)-\nu_{A}(x)\right)\right\rangle \mid x \in E\right\},
$$

we see that now

$$
\begin{gathered}
p-q=a \alpha-b \alpha-b c \beta \\
q=b \\
-q r=a \gamma-b \gamma-b c \delta \\
s-t=d \delta-e f \gamma-e \delta \\
t=e \\
-t u=d \beta-e f \alpha-e \beta
\end{gathered}
$$

Therefore, from $b, e>0$ it follows that

$$
\begin{gathered}
p=b+a \alpha-b \alpha-b c \beta, \\
r=\frac{b \gamma-a \gamma+b c \delta}{b}, \\
s=e+d \delta-e f \gamma-e \delta, \\
u=\frac{e \beta-d \beta+e f \alpha}{e} .
\end{gathered}
$$

Hence, (6) is valid. Now, we must check the validity of conditions (1) - (3) for p, q, r, s, t, u. For condition (1) we see that

$$
\begin{aligned}
p+t- & t . u=b+a \alpha-b \alpha-b c \beta+e-e . \frac{e \beta-d \beta+e f \alpha}{e} \\
& =b+a \alpha-b \alpha-b c \beta+e-e \beta+d \beta-e f \alpha \\
& =b+e+(a-b) \alpha-(e-d) \beta-e f \alpha-b c \beta \\
& =b+e+(a-b-e f) \alpha+(-e+d-b c) \beta
\end{aligned}
$$

(Because a, b, c, d, e, f satisfy (1) - (3), from (1) we have that $a-e f \leq 1-e$ and from (2) - that $d-b c \leq 1-b$. Therefore,

$$
\begin{gathered}
a-b-e f \leq 1-e-b, \\
-e+d-b c \leq 1-b-e .) \\
\leq b+e+(1-b-e) \alpha+(1-b-e) \beta \\
=b+e+(1-b-e)(\alpha+\beta) \\
\leq b+e+1-b-e=1 .
\end{gathered}
$$

Hence, (1) is checked for p, q, r. By analogy, we check (3) for s, t, u, while the validity of (2) for q and r follows directly from (3).

So, the Theorem is proved.

Theorem 6. Let A be an IFS, let $\alpha, \beta, \gamma, \delta \in[0,1]$, so that $\alpha+\beta \leq 1, \gamma+\delta \leq 1$ and let $a, b, c, d, e, f \in[0,1]$, so that: $b \alpha+e \gamma, b \beta+e \delta>0$ and (1) - (3) are vaild. Then,

$$
\otimes_{\alpha, \beta, \gamma, \delta}\left(X_{a, b, c, d, e, f}(A)\right)=X_{a \alpha+e \gamma-e f \gamma, b \alpha+e \gamma, \frac{b c \alpha-d \gamma+e \gamma}{b \alpha+e \gamma}, b \beta+d \delta-b c \beta, b \beta+e \delta, \frac{b \beta-a \beta+e f \delta}{b \alpha+e \gamma}}
$$

The proof is similar to the above one.

3 Conclusion

In the present paper, new properties of the intuitionistic fuzzy modal operator $\otimes_{\alpha, \beta, \gamma, \delta}$ are given. It is different from the rest modal operators, defined over IFSs. Following [4] we mention that it gives rise to some open problems. The solution of the first of them was given here. The rest two are:
Open Problem 2. Can operator $\otimes_{\alpha, \beta, \gamma, \delta}$ be represented by the modal operator $\square_{a, b, c, d, e, f}$?
Open Problem 3. Can operator $\otimes_{\alpha, \beta, \gamma, \delta}$ be used for representation of some type of modal operators?

References

[1] Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg.
[2] Atanassov, K. (2012) On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
[3] Atanassov, K. (2013) A short remark on intuitionistic fuzzy operators $X_{a, b, c, d, e, f}$ and $x_{a, b, c, d, e, f}$, Notes on Intuitionistic Fuzzy Sets. 19(1), 54-56.
[4] Atanassov, K., Çuvalcıoğlu, G., \& Atanassova, V. (2014) A New Modal Operator over Intuitionistic Fuzzy Sets. Notes on Intuitionistic Fuzzy Sets, 20(5), 1-8.
[5] Atanassov, K., Çuvalıoǧlu, Yılmaz, S., Atanassova, V. (2015) Properties of the intuitionistic fuzzy modal operator $\otimes_{\alpha, \beta, \gamma, \delta}$. Notes on Intuitionistic Fuzzy Sets, 21(4), 1-5.

