20th ICIFS, 2–3 September 2016, Sofia, Bulgaria Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 22, 2016, No. 3, 14–20

New properties of the intuitionistic fuzzy modal operator $\otimes_{\alpha,\beta,\gamma,\delta}$

Vassia Atanassova¹, Gökhan Çuvalcıoğlu², Sinem Yılmaz² and Krassimir Atanassov^{1,3}

¹ Dept. of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering Bulgarian Academy of Sciences 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria e-mail: vassia.atanassova@gmail.com

² Department of Mathematics, University of Mersin Mersin, Turkey e-mails: gcuvalcioglu@gmail.com, sinemnyilmaz@gmail.com

> ³ Intelligent Systems Laboratory Prof. Asen Zlatarov University, Burgas-8010, Bulgaria e-mail: krat@bas.bg

Received: 4 June 2016

Accepted: 29 June 2016

Abstract: Some new properties of the intuitionistic fuzzy modal operator $\otimes_{\alpha,\beta,\gamma,\delta}$ are formulated and proved. Some open problems are formulated. **Keywords:** Intuitionistic fuzzy modal operator, Intuitionistic fuzzy operation. **AMS Classification:** 03E72.

1 Introduction

In the previous papers of the authors [4, 5], a new type of intuitionistic fuzzy modal operator, marked by $\otimes_{\alpha,\beta,\gamma,\delta}$ is introduced and some of its properties are studied. Now, new properties of this operator are studied.

Let a set E be fixed. The Intuitionistic Fuzzy Set (IFS) A in E is defined by (see, e.g., [1]):

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in E \},\$$

where functions $\mu_A : E \to [0, 1]$ and $\nu_A : E \to [0, 1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$0 \le \mu_A(x) + \nu_A(x) \le 1.$$

Different relations, operations and operators are introduced over the IFSs. One of them is the classical neegation, defined by

$$\neg A = \{ \langle x, \nu_A(x), \mu_A(x) \rangle | x \in E \}.$$

For the needs of the present research, we introduce the extended modal operators, defined over IFSs (see, e.g. [1, 2]). Let $\alpha, \beta \in [0, 1]$ and let:

$$\begin{split} F_{\alpha,\beta}(A) &= \{ \langle x, \mu_A(x) + \alpha.\pi_A(x), \nu_A(x) + \beta.\pi_A(x) \rangle | x \in E \}, \text{ where } \alpha + \beta \leq 1, \\ G_{\alpha,\beta}(A) &= \{ \langle x, \alpha.\mu_A(x), \beta.\nu_A(x) \rangle | x \in E \}, \\ H_{\alpha,\beta}(A) &= \{ \langle x, \alpha.\mu_A(x), \nu_A(x) + \beta.\pi_A(x) \rangle | x \in E \}, \\ H_{\alpha,\beta}^*(A) &= \{ \langle x, \alpha.\mu_A(x), \nu_A(x) + \beta.(1 - \alpha.\mu_A(x) - \nu_A(x)) \rangle | x \in E \}, \\ J_{\alpha,\beta}(A) &= \{ \langle x, \mu_A(x) + \alpha.\pi_A(x), \beta.\nu_A(x) \rangle | x \in E \}, \\ J_{\alpha,\beta}^*(A) &= \{ \langle x, \mu_A(x) + \alpha.(1 - \mu_A(x) - \beta.\nu_A(x)), \beta.\nu_A(x) \rangle | x \in E \}. \end{split}$$

These operators are partial cases of the followingg operator (see [2, 3])

$$X_{a,b,c,d,e,f}(A) = \{ \langle x, a.\mu_A(x) + b.(1 - \mu_A(x) - c.\nu_A(x)), \\ d.\nu_A(x) + e.(1 - f.\mu_A(x) - \nu_A(x)) \rangle | x \in E \}$$

where $a, b, c, d, e, f \in [0, 1]$ and there, the following two conditions are given:

$$a + e - e.f \le 1,\tag{1}$$

$$b + d - b.c \le 1,\tag{2}$$

$$b + e \le 1. \tag{3}$$

In [4], we introduced the following new operator from modal type:

$$\otimes_{\alpha,\beta,\gamma,\delta} A = \{ \langle x, \alpha.\mu_A(x) + \gamma.\nu_A(x), \beta.\mu_A(x) + \delta.\nu_A(x) \rangle | x \in E \},\$$

where $\alpha, \beta, \gamma, \delta \in [0, 1]$ and $\alpha + \beta \leq 1, \gamma + \delta \leq 1$.

According to this definition, on one hand, the operator reduces by α the degree of membership $\mu_A(x)$ original IFS *A*'s and sums it up with a part of the degree of non-membership $(\gamma.\nu_A(x))$, and in the same time it reduces the original *A*'s degree of non-membership $(\nu_A(x))$ by δ and sums it up with a part of the degree of membership $(\beta.\mu_A(x))$.

As it is mentioned in [4], it is easy to see that

$$\otimes_{1,0,0,1} A = A,$$
$$\otimes_{0,1,1,0} A = \neg A,$$

and the set $\otimes_{\alpha,\beta,\gamma,\delta} A$ is an IFS. There, they are proved also that for every IFS A and for every four real numbers $\alpha, \beta, \gamma, \delta \in [0, 1]$ such that $\alpha + \beta \leq 1, \gamma + \delta \leq 1$

$$\neg \otimes_{\alpha,\beta,\gamma,\delta} \neg A = \otimes_{\delta,\gamma,\beta,\alpha} A$$

In [5] it is proved that for the IFS A and for $a, b, c, d, e, f, g, h \in [0, 1]$, so that $a + b, c + d, e + f, g + h \in [0, 1]$. Then

$$\otimes_{e,f,g,h}(\otimes_{a,b,c,d}(A)) = \otimes_{ae+bg,af+bh,ce+dg,cf+dh}(A).$$

2 Main results

Here, we formulate and prove some new assertions, related to the intuitionistic fuzzy modal operator $\otimes_{\alpha,\beta,\gamma,\delta}$.

First, we mention that in [1, 2] the following five operations are defined for the IFSs

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in E \}$$

and

$$B = \{ \langle x, \mu_B(x), \nu_B(x) \rangle | x \in E \} :$$

$$A \cap B = \{ \langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle | x \in E \},$$

$$A \cup B = \{ \langle x, \max(\mu_A(x), \mu_B(x)), \min(\nu_A(x), \nu_B(x)) \rangle | x \in E \},$$

$$A + B = \{ \langle x, \mu_A(x) + \mu_B(x) - \mu_A(x)\mu_B(x), \nu_A(x)\nu_B(x) \rangle \mid x \in E \},$$

$$A.B = \{ \langle x, \mu_A(x)\mu_B(x), \nu_A(x) + \nu_B(x) - \nu_A(x)\nu_B(x) \rangle \mid x \in E \},$$

$$A@B = \{ \langle x, \frac{\mu_A(x) + \mu_B(x)}{2}, \frac{\nu_A(x) + \nu_B(x)}{2} \rangle | x \in E \}.$$

Theorem 1. Let A be an IFS and let $\alpha, \beta, \gamma, \delta \in [0, 0.25], \varepsilon, \zeta, \eta, \theta \in [0, 1]$. Then

$$J_{1,0}(H_{4\alpha,\varepsilon}A@H_{4\gamma,\zeta}\neg A)@H_{0,1}(J_{\eta,4\beta}\neg A@J_{\theta,4\delta}A) = \otimes_{\alpha,\beta,\gamma,\delta}A.$$
(4)

Proof. Let the IFS A and the real numbers $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta$ satisfy the conditions from Theorem 1. Then

$$J_{1,0}(H_{4\alpha,\varepsilon}A@H_{4\gamma,\zeta}\neg A)@H_{0,1}(J_{\eta,4\beta}\neg A@J_{\theta,4\delta})$$

= $J_{1,0}(H_{4\alpha,\varepsilon}\{\langle x,\mu_A(x),\nu_A(x)\rangle|x\in E\}@H_{4\gamma,\zeta}\{\langle x,\nu_A(x),\mu_A(x)\rangle|x\in E\})$
 $@H_{0,1}(J_{\eta,4\beta}\{\langle x,\nu_A(x),\mu_A(x)\rangle|x\in E\}@J_{\theta,4\delta}\{\langle x,\mu_A(x),\nu_A(x)\rangle|x\in E\})$
= $J_{1,0}(\{\langle x,4\alpha\mu_A(x),\nu_A(x)+\varepsilon\pi_A(x)\rangle|x\in E\}@\{\langle x,4\gamma\nu_A(x),\mu_A(x)+\zeta\pi_A(x)\rangle|x\in E\})$

$$\begin{split} @H_{0,1}(\{\langle x, \nu_A(x) + \eta \pi_A(x), 4\beta \mu_A(x) \rangle | x \in E\} @\{\langle x, \mu_A(x) + \theta \pi_A(x), 4\delta \nu_A(x) \rangle | x \in E\}) \\ &= J_{1,0}\{\langle x, 2\alpha \mu_A(x) + 2\gamma \nu_A(x), \frac{\mu_A(x) + \nu_A(x) + (\varepsilon + \zeta)\pi_A(x)}{2} \rangle | x \in E\} \\ @H_{0,1}\{\langle x, \frac{\mu_A(x) + \nu_A(x) + (\eta + \theta)\pi_A(x)}{2}, 2\beta \mu_A(x) + 2\delta \nu_A(x) \rangle | x \in E\} \\ &= \{\langle x, 2\alpha \mu_A(x) + 2\gamma \nu_A(x), 0 | x \in E\} @\{\langle x, 0, 2\beta \mu_A(x) + 2\delta \nu_A(x) \rangle | x \in E\} \\ &= \{\langle x, \alpha \mu_A(x) + \gamma \nu_A(x), \beta \mu_A(x) + \delta \nu_A(x) \rangle | x \in E\} \\ &= \{\langle x, \alpha \mu_A(x) + \gamma \nu_A(x), \beta \mu_A(x) + \delta \nu_A(x) \rangle | x \in E\} \\ &= \otimes_{\alpha, \beta, \gamma, \delta} A. \end{split}$$

Therefore, (4) is valid. So, the Theorem is proved.

Theorem 2. Let A be an IFS and let $\alpha, \beta, \gamma, \delta \in [0, 0.25], \varepsilon, \zeta, \eta, \theta \in [0, 1]$. Then

$$J_{1,0}^*(H_{4\alpha,\varepsilon}A@H_{4\gamma,\zeta}\neg A)@H_{0,1}^*(J_{\eta,4\beta}\neg A@J_{\theta,4\delta}A) = \otimes_{\alpha,\beta,\gamma,\delta}A.$$

The proof is similar to the above one. The same is valid for Theorem 3.

Theorem 3. Let A be an IFS and let $\alpha, \beta, \gamma, \delta \in [0, 0.5]$. Then

$$\otimes_{\alpha,\beta,\gamma,\delta} A = G_{2\alpha,2\gamma} A @ G_{2\beta,2\delta} A.$$

These three theorems give answer to the **Open Problem 1** from [5]: *Can operator* $\otimes_{\alpha,\beta,\gamma,\delta}$ *be represented by the extended modal operators?*

On the other hand, we can check directly that for each IFS A and for $\alpha, \beta \in [0, 1]$,

$$G_{\alpha,\beta}A = \bigotimes_{\alpha,0,0,\beta}A,$$
$$\neg G_{\alpha,\beta}A = \bigotimes_{0,\beta,\alpha,0}A.$$

In [4] it is proved that for every two IFSs A and B and for every four real numbers $\alpha, \beta, \gamma, \delta \in [0, 1]$ such that $\alpha + \beta \leq 1, \gamma + \delta \leq 1$, it holds that

(a)
$$\otimes_{\alpha,\beta,\gamma,\delta} (A \cup B) = \otimes_{\alpha,\beta,\gamma,\delta} A \cup \otimes_{\alpha,\beta,\gamma,\delta} B$$
,
(b) $\otimes_{\alpha,\beta,\gamma,\delta} (A \cap B) = \otimes_{\alpha,\beta,\gamma,\delta} A \cap \otimes_{\alpha,\beta,\gamma,\delta} B$,
(c) $\otimes_{\alpha,\beta,\gamma,\delta} (A + B) = \otimes_{\alpha,\beta,\gamma,\delta} A + \otimes_{\alpha,\beta,\gamma,\delta} B$,
(d) $\otimes_{\alpha,\beta,\gamma,\delta} (A.B) = \otimes_{\alpha,\beta,\gamma,\delta} A \cdot \otimes_{\alpha,\beta,\gamma,\delta} B$.

Here, we shall continue this sequence of equalities, proving the following theorem.

Theorem 4. Let A and B be two IFS and let $\alpha, \beta, \gamma, \delta \in [0, 1]$, so that $\alpha + \beta \leq 1, \gamma + \delta \leq 1$. Then,

$$\otimes_{\alpha,\beta,\gamma,\delta}(A@B) = \otimes_{\alpha,\beta,\gamma,\delta}A@ \otimes_{\alpha,\beta,\gamma,\delta}B.$$
(5)

Proof. Let the IFSs A and B and the real numbers $\alpha, \beta, \gamma, \delta$ satisfy the conditions from Theorem 3. Then

$$\otimes_{\alpha,\beta,\gamma,\delta} A @ \otimes_{\alpha,\beta,\gamma,\delta} B$$

$$\begin{split} &= \otimes_{\alpha,\beta,\gamma,\delta} \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in E \} @ \otimes_{\alpha,\beta,\gamma,\delta} \{ \langle x, \mu_B(x), \nu_B(x) \rangle | x \in E \} \\ &= \{ \langle x, \alpha.\mu_A(x) + \gamma.\nu_A(x), \beta.\mu_A(x) + \delta.\nu_A(x) \rangle | x \in E \} \\ &= \{ \langle x, \alpha.\mu_B(x) + \gamma.\nu_B(x), \beta.\mu_B(x) + \delta.\nu_A(B) \rangle | x \in E \} \\ &= \{ \langle x, \frac{\alpha.\mu_A(x) + \alpha.\mu_B(x)}{2} + \frac{\gamma.\nu_A(x) + \gamma.\nu_B(x)}{2} \rangle | x \in E \} \\ &= \{ \langle x, \alpha.\frac{\mu_A(x) + \mu_B(x)}{2} + \frac{\delta.\nu_A(x) + \delta.\nu_A(B)}{2} \rangle | x \in E \} \\ &= \{ \langle x, \alpha.\frac{\mu_A(x) + \mu_B(x)}{2} + \delta.\frac{\nu_A(x) + \nu_A(B)}{2} \rangle | x \in E \} \\ &= \otimes_{\alpha,\beta,\gamma,\delta} \{ \langle x, \frac{\mu_A(x) + \mu_B(x)}{2} + \frac{\nu_A(x) + \nu_A(B)}{2} \rangle | x \in E \} \\ &= \otimes_{\alpha,\beta,\gamma,\delta} (A @ B). \end{split}$$

Therefore, (5) is valid. So, the Theorem is proved.

By analogy with Theorem 4, we can prove Theorem 5 below.

Theorem 5. Let A be an IFS, let $\alpha, \beta, \gamma, \delta \in [0, 1]$, so that $\alpha + \beta \leq 1, \gamma + \delta \leq 1$ and let $a, b, c, d, e, f \in [0, 1]$, so that: b, e > 0 and (1) - (3) are vaild. Then

$$X_{a,b,c,d,e,f}(\otimes_{\alpha,\beta,\gamma,\delta}A) = X_{b+a\alpha-b\alpha-bc\beta,b,\frac{b\gamma-a\gamma+bc\delta}{b},e+d\delta-ef\gamma-e\delta,e,\frac{e\beta-d\beta+ef\alpha}{e}}.$$
(6)

Proof. Let the IFS A and real numbers $\alpha, \beta, \gamma, \delta, a, b, c, d, e, f$ satisfying the conditions in the Theorem, are given. Then

Having in mind that

$$X_{p,q,r,s,t,u}(A) = \{ \langle x, p.\mu_A(x) + q.(1 - \mu_A(x) - r.\nu_A(x)), \}$$

$$s.\nu_A(x) + t.(1 - u.\mu_A(x) - \nu_A(x)))|x \in E\},$$

we see that now

$$p - q = a\alpha - b\alpha - bc\beta,$$
$$q = b,$$
$$-qr = a\gamma - b\gamma - bc\delta,$$
$$s - t = d\delta - ef\gamma - e\delta,$$
$$t = e,$$
$$-tu = d\beta - ef\alpha - e\beta.$$

Therefore, from b, e > 0 it follows that

$$p = b + a\alpha - b\alpha - bc\beta,$$

$$r = \frac{b\gamma - a\gamma + bc\delta}{b},$$

$$s = e + d\delta - ef\gamma - e\delta,$$

$$u = \frac{e\beta - d\beta + ef\alpha}{e}.$$

Hence, (6) is valid. Now, we must check the validity of conditions (1) - (3) for p, q, r, s, t, u. For condition (1) we see that

$$p + t - t \cdot u = b + a\alpha - b\alpha - bc\beta + e - e \cdot \frac{e\beta - d\beta + ef\alpha}{e}$$
$$= b + a\alpha - b\alpha - bc\beta + e - e\beta + d\beta - ef\alpha$$
$$= b + e + (a - b)\alpha - (e - d)\beta - ef\alpha - bc\beta$$
$$= b + e + (a - b - ef)\alpha + (-e + d - bc)\beta$$

(Because a, b, c, d, e, f satisfy (1) – (3), from (1) we have that $a - ef \le 1 - e$ and from (2) – that $d - bc \le 1 - b$. Therefore,

$$a - b - ef \le 1 - e - b,$$

-e + d - bc \le 1 - b - e.)
$$\le b + e + (1 - b - e)\alpha + (1 - b - e)\beta$$

= b + e + (1 - b - e)(\alpha + \beta)
< b + e + 1 - b - e = 1.

Hence, (1) is checked for p, q, r. By analogy, we check (3) for s, t, u, while the validity of (2) for q and r follows directly from (3).

So, the Theorem is proved.

Theorem 6. Let A be an IFS, let $\alpha, \beta, \gamma, \delta \in [0, 1]$, so that $\alpha + \beta \leq 1, \gamma + \delta \leq 1$ and let $a, b, c, d, e, f \in [0, 1]$, so that: $b\alpha + e\gamma, b\beta + e\delta > 0$ and (1) – (3) are vaild. Then,

$$\otimes_{\alpha,\beta,\gamma,\delta}(X_{a,b,c,d,e,f}(A)) = X_{a\alpha+e\gamma-ef\gamma,b\alpha+e\gamma,\frac{bc\alpha-d\gamma+e\gamma}{b\alpha+e\gamma},b\beta+d\delta-bc\beta,b\beta+e\delta,\frac{b\beta-a\beta+ef\delta}{b\alpha+e\gamma}}.$$

The proof is similar to the above one.

3 Conclusion

In the present paper, new properties of the intuitionistic fuzzy modal operator $\otimes_{\alpha,\beta,\gamma,\delta}$ are given. It is different from the rest modal operators, defined over IFSs. Following [4] we mention that it gives rise to some open problems. The solution of the first of them was given here. The rest two are:

Open Problem 2. Can operator $\bigotimes_{\alpha,\beta,\gamma,\delta}$ be represented by the modal operator $\boxdot_{a,b,c,d,e,f}$? **Open Problem 3.** Can operator $\bigotimes_{\alpha,\beta,\gamma,\delta}$ be used for representation of some type of modal operators?

References

- [1] Atanassov, K. (1999) *Intuitionistic Fuzzy Sets: Theory and Applications*, Springer, Heidelberg.
- [2] Atanassov, K. (2012) On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
- [3] Atanassov, K. (2013) A short remark on intuitionistic fuzzy operators $X_{a,b,c,d,e,f}$ and $x_{a,b,c,d,e,f}$, Notes on Intuitionistic Fuzzy Sets. 19(1), 54–56.
- [4] Atanassov, K., Çuvalcıoğlu, G., & Atanassova, V. (2014) A New Modal Operator over Intuitionistic Fuzzy Sets. *Notes on Intuitionistic Fuzzy Sets*, 20(5), 1–8.
- [5] Atanassov, K., Çuvalıoğlu, Yılmaz, S., Atanassova, V. (2015) Properties of the intuitionistic fuzzy modal operator $\otimes_{\alpha,\beta,\gamma,\delta}$. *Notes on Intuitionistic Fuzzy Sets*, 21(4), 1–5.