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1 Introduction

In the previous papers of the authors [4, 5], a new type of intuitionistic fuzzy modal operator,
marked by ⊗α,β,γ,δ is introduced and some of its properties are studied. Now, new properties of
this operator are studied.
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Let a set E be fixed. The Intuitionistic Fuzzy Set (IFS) A in E is defined by (see, e.g., [1]):

A = {〈x, µA(x), νA(x)〉|x ∈ E},

where functions µA : E → [0, 1] and νA : E → [0, 1] define the degree of membership and the
degree of non-membership of the element x ∈ E, respectively, and for every x ∈ E:

0 ≤ µA(x) + νA(x) ≤ 1.

Different relations, operations and operators are introduced over the IFSs. One of them is the
classical neegation, defined by

¬A = {〈x, νA(x), µA(x)〉|x ∈ E}.

For the needs of the present research, we introduce the extended modal operators, defined
over IFSs (see, e.g. [1, 2]). Let α, β ∈ [0, 1] and let:

Fα,β(A) = {〈x, µA(x) + α.πA(x), νA(x) + β.πA(x)〉|x ∈ E}, where α + β ≤ 1,

Gα,β(A) = {〈x, α.µA(x), β.νA(x)〉|x ∈ E},

Hα,β(A) = {〈x, α.µA(x), νA(x) + β.πA(x)〉|x ∈ E},

H∗
α,β(A) = {〈x, α.µA(x), νA(x) + β.(1− α.µA(x)− νA(x))〉|x ∈ E},

Jα,β(A) = {〈x, µA(x) + α.πA(x), β.νA(x)〉|x ∈ E},

J∗
α,β(A) = {〈x, µA(x) + α.(1− µA(x)− β.νA(x)), β.νA(x)〉|x ∈ E}.

These operators are partial cases of the followingg operator (see [2, 3])

Xa,b,c,d,e,f (A) = {〈x, a.µA(x) + b.(1− µA(x)− c.νA(x)),

d.νA(x) + e.(1− f.µA(x)− νA(x))〉|x ∈ E}

where a, b, c, d, e, f ∈ [0, 1] and there, the following two conditions are given:

a+ e− e.f ≤ 1, (1)

b+ d− b.c ≤ 1, (2)

b+ e ≤ 1. (3)

In [4], we introduced the following new operator from modal type:

⊗α,β,γ,δA = {〈x, α.µA(x) + γ.νA(x), β.µA(x) + δ.νA(x)〉|x ∈ E},

where α, β, γ, δ ∈ [0, 1] and α + β ≤ 1, γ + δ ≤ 1.
According to this definition, on one hand, the operator reduces by α the degree of membership

µA(x) original IFS A’s and sums it up with a part of the degree of non-membership (γ.νA(x)),
and in the same time it reduces the original A’s degree of non-membership (νA(x)) by δ and sums
it up with a part of the degree of membership (β.µA(x)).
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As it is mentioned in [4], it is easy to see that

⊗1,0,0,1A = A,

⊗0,1,1,0A = ¬A,

and the set⊗α,β,γ,δA is an IFS. There, they are proved also that for every IFS A and for every four
real numbers α, β, γ, δ ∈ [0, 1] such that α + β ≤ 1, γ + δ ≤ 1

¬ ⊗α,β,γ,δ ¬A = ⊗δ,γ,β,αA.

In [5] it is proved that for the IFS A and for a, b, c, d, e, f, g, h ∈ [0, 1], so that a+ b, c+ d, e+
f, g + h ∈ [0, 1]. Then

⊗e,f,g,h(⊗a,b,c,d(A) = ⊗ae+bg,af+bh,ce+dg,cf+dh(A).

2 Main results

Here, we formulate and prove some new assertions, related to the intuitionistic fuzzy modal
operator ⊗α,β,γ,δ.

First, we mention that in [1, 2] the following five operations are defined for the IFSs

A = {〈x, µA(x), νA(x)〉|x ∈ E}

and
B = {〈x, µB(x), νB(x)〉|x ∈ E} :

A ∩B = {〈x,min(µA(x), µB(x)),max(νA(x), νB(x))〉|x ∈ E},

A ∪B = {〈x,max(µA(x), µB(x)),min(νA(x), νB(x))〉|x ∈ E},

A+B = {〈x, µA(x) + µB(x)− µA(x)µB(x), νA(x)νB(x)〉 | x ∈ E},

A.B = {〈x, µA(x)µB(x), νA(x) + νB(x)− νA(x)νB(x)〉 | x ∈ E},

A@B = {〈x, µA(x) + µB(x)

2
,
νA(x) + νB(x)

2
〉|x ∈ E}.

Theorem 1. Let A be an IFS and let α, β, γ, δ ∈ [0, 0.25], ε, ζ, η, θ ∈ [0, 1]. Then

J1,0(H4α,εA@H4γ,ζ¬A)@H0,1(Jη,4β¬A@Jθ,4δA) = ⊗α,β,γ,δA. (4)

Proof. Let the IFS A and the real numbers α, β, γ, δ, ε, ζ, η, θ satisfy the conditions from
Theorem 1. Then

J1,0(H4α,εA@H4γ,ζ¬A)@H0,1(Jη,4β¬A@Jθ,4δ)

= J1,0(H4α,ε{〈x, µA(x), νA(x)〉|x ∈ E}@H4γ,ζ{〈x, νA(x), µA(x)〉|x ∈ E})

@H0,1(Jη,4β{〈x, νA(x), µA(x)〉|x ∈ E}@Jθ,4δ{〈x, µA(x), νA(x)〉|x ∈ E})

= J1,0({〈x, 4αµA(x), νA(x) + επA(x)〉|x ∈ E}@{〈x, 4γνA(x), µA(x) + ζπA(x)〉|x ∈ E})
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@H0,1({〈x, νA(x) + ηπA(x), 4βµA(x)〉|x ∈ E}@{〈x, µA(x) + θπA(x), 4δνA(x)〉|x ∈ E})

= J1,0{〈x, 2αµA(x) + 2γνA(x),
µA(x) + νA(x) + (ε+ ζ)πA(x)

2
〉|x ∈ E}

@H0,1{〈x,
µA(x) + νA(x) + (η + θ)πA(x)

2
, 2βµA(x) + 2δνA(x)〉|x ∈ E}

= {〈x, 2αµA(x) + 2γνA(x), 0|x ∈ E}@{〈x, 0, 2βµA(x) + 2δνA(x)〉|x ∈ E}

= {〈x, αµA(x) + γνA(x), βµA(x) + δνA(x)〉|x ∈ E}

= ⊗α,β,γ,δA.

Therefore, (4) is valid. So, the Theorem is proved.

Theorem 2. Let A be an IFS and let α, β, γ, δ ∈ [0, 0.25], ε, ζ, η, θ ∈ [0, 1]. Then

J∗
1,0(H4α,εA@H4γ,ζ¬A)@H∗

0,1(Jη,4β¬A@Jθ,4δA) = ⊗α,β,γ,δA.

The proof is similar to the above one. The same is valid for Theorem 3.

Theorem 3. Let A be an IFS and let α, β, γ, δ ∈ [0, 0.5]. Then

⊗α,β,γ,δA = G2α,2γA@G2β,2δA.

These three theorems give answer to the Open Problem 1 from [5]: Can operator ⊗α,β,γ,δ be
represented by the extended modal operators?

On the other hand, we can check directly that for each IFS A and for α, β ∈ [0, 1],

Gα,βA = ⊗α,0,0,βA,

¬Gα,βA = ⊗0,β,α,0A.

In [4] it is proved that for every two IFSsA andB and for every four real numbers α, β, γ, δ ∈
[0, 1] such that α + β ≤ 1, γ + δ ≤ 1, it holds that

(a)⊗α,β,γ,δ (A ∪B) = ⊗α,β,γ,δA ∪ ⊗α,β,γ,δB,
(b)⊗α,β,γ,δ (A ∩B) = ⊗α,β,γ,δA ∩ ⊗α,β,γ,δB,
(c)⊗α,β,γ,δ (A+B) = ⊗α,β,γ,δA+⊗α,β,γ,δB,
(d)⊗α,β,γ,δ (A.B) = ⊗α,β,γ,δA.⊗α,β,γ,δ B.

Here, we shall continue this sequence of equalities, proving the following theorem.

Theorem 4. Let A and B be two IFS and let α, β, γ, δ ∈ [0, 1], so that α + β ≤ 1, γ + δ ≤ 1.
Then,

⊗α,β,γ,δ(A@B) = ⊗α,β,γ,δA@⊗α,β,γ,δ B. (5)

Proof. Let the IFSs A and B and the real numbers α, β, γ, δ satisfy the conditions from Theorem
3. Then

⊗α,β,γ,δA@⊗α,β,γ,δ B
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= ⊗α,β,γ,δ{〈x, µA(x), νA(x)〉|x ∈ E}@⊗α,β,γ,δ {〈x, µB(x), νB(x)〉|x ∈ E}

= {〈x, α.µA(x) + γ.νA(x), β.µA(x) + δ.νA(x)〉|x ∈ E}

@{〈x, α.µB(x) + γ.νB(x), β.µB(x) + δ.νA(B)〉|x ∈ E}

= {〈x, α.µA(x) + α.µB(x)

2
+
γ.νA(x) + γ.νB(x)

2
,

β.µA(x) + β.µB(x)

2
+
δ.νA(x) + δ.νA(B)

2
〉|x ∈ E}

= {〈x, α.µA(x) + µB(x)

2
+ γ.

νA(x) + νB(x)

2
,

β.
µA(x) + µB(x)

2
+ δ.

νA(x) + νA(B)

2
〉|x ∈ E}

= ⊗α,β,γ,δ{〈x,
µA(x) + µB(x)

2
+
νA(x) + νB(x)

2
,

µA(x) + µB(x)

2
+
νA(x) + νA(B)

2
〉|x ∈ E}

= ⊗α,β,γ,δ(A@B).

Therefore, (5) is valid. So, the Theorem is proved.

By analogy with Theorem 4, we can prove Theorem 5 below.

Theorem 5. Let A be an IFS, let α, β, γ, δ ∈ [0, 1], so that α + β ≤ 1, γ + δ ≤ 1 and let
a, b, c, d, e, f ∈ [0, 1], so that: b, e > 0 and (1) – (3) are vaild. Then

Xa,b,c,d,e,f (⊗α,β,γ,δA) = Xb+aα−bα−bcβ,b, bγ−aγ+bcδ
b

,e+dδ−efγ−eδ,e, eβ−dβ+efα
e

. (6)

Proof. Let the IFS A and real numbers α, β, γ, δ, a, b, c, d, e, f satisfying the conditions in the
Theorem, are given. Then

Xa,b,c,d,e,f (⊗α,β,γ,δA)

= Xa,b,c,d,e,f (⊗α,β,γ,δ{〈x, µA(x), νA(x)〉|x ∈ E})

= Xa,b,c,d,e,f ({〈x, α.µA(x) + γ.νA(x), β.µA(x) + δ.νA(x)〉|x ∈ E})

= {〈x, a(α.µA(x) + γ.νA(x)) + b(1− α.µA(x)− γ.νA(x)− c(β.µA(x) + δ.νA(x))),

d(β.µA(x) + δ.νA(x)) + e(1− f(α.µA(x) + γ.νA(x))− (β.µA(x) + δ.νA(x)))〉|x ∈ E}

= {〈x, aα.µA(x) + aγ.νA(x) + b− bα.µA(x)− bγ.νA(x)− bcβ.µA(x)− bcδ.νA(x))),

dβ.µA(x) + dδ.νA(x)) + e− efα.µA(x)− efγ.νA(x))− eβ.µA(x)− eδ.νA(x))〉|x ∈ E}

= {〈x, aα.µA(x) + aγ.νA(x) + b− bα.µA(x)− bγ.νA(x)− bcβ.µA(x)− bcδ.νA(x))),

dβ.µA(x) + dδ.νA(x)) + e− efα.µA(x)− efγ.νA(x))− eβ.µA(x)− eδ.νA(x))〉|x ∈ E}.

Having in mind that

Xp,q,r,s,t,u(A) = {〈x, p.µA(x) + q.(1− µA(x)− r.νA(x)),
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s.νA(x) + t.(1− u.µA(x)− νA(x))〉|x ∈ E},

we see that now
p− q = aα− bα− bcβ,

q = b,

−qr = aγ − bγ − bcδ,

s− t = dδ − efγ − eδ,

t = e,

−tu = dβ − efα− eβ.

Therefore, from b, e > 0 it follows that

p = b+ aα− bα− bcβ,

r =
bγ − aγ + bcδ

b
,

s = e+ dδ − efγ − eδ,

u =
eβ − dβ + efα

e
.

Hence, (6) is valid. Now, we must check the validity of conditions (1) – (3) for p, q, r, s, t, u.
For condition (1) we see that

p+ t− t.u = b+ aα− bα− bcβ + e− e.eβ − dβ + efα

e

= b+ aα− bα− bcβ + e− eβ + dβ − efα

= b+ e+ (a− b)α− (e− d)β − efα− bcβ

= b+ e+ (a− b− ef)α + (−e+ d− bc)β

(Because a, b, c, d, e, f satisfy (1) – (3), from (1) we have that a− ef ≤ 1− e and from (2) – that
d− bc ≤ 1− b. Therefore,

a− b− ef ≤ 1− e− b,

−e+ d− bc ≤ 1− b− e.)

≤ b+ e+ (1− b− e)α + (1− b− e)β

= b+ e+ (1− b− e)(α + β)

≤ b+ e+ 1− b− e = 1.

Hence, (1) is checked for p, q, r. By analogy, we check (3) for s, t, u, while the validity of (2)
for q and r follows directly from (3).

So, the Theorem is proved.

Theorem 6. Let A be an IFS, let α, β, γ, δ ∈ [0, 1], so that α + β ≤ 1, γ + δ ≤ 1 and let
a, b, c, d, e, f ∈ [0, 1], so that: bα + eγ, bβ + eδ > 0 and (1) – (3) are vaild. Then,

⊗α,β,γ,δ(Xa,b,c,d,e,f (A)) = Xaα+eγ−efγ,bα+eγ, bcα−dγ+eγ
bα+eγ

,bβ+dδ−bcβ,bβ+eδ, bβ−aβ+efδ
bα+eγ

.

The proof is similar to the above one.
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3 Conclusion

In the present paper, new properties of the intuitionistic fuzzy modal operator ⊗α,β,γ,δ are given.
It is different from the rest modal operators, defined over IFSs. Following [4] we mention that it
gives rise to some open problems. The solution of the first of them was given here. The rest two
are:
Open Problem 2. Can operator ⊗α,β,γ,δ be represented by the modal operator ◦ a,b,c,d,e,f?
Open Problem 3. Can operator ⊗α,β,γ,δ be used for representation of some type of modal opera-
tors?
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