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Abstract: Neural networks are the tools that can be used for the modelling for many systems. 

Thermoelectric cooling systems (TCS), generated on the basis of Peltier elements, are very 

widely used in the military industry and computing, which require smooth but precise 

thermostating of objects and volumes.  For the estimations between these two systems we use 

intuitionistic fuzzy set. 
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1 Introduction 

Thermoelectric cooling systems 

In the devices and systems used for cooling and thermostating of objects and volumes, the 

thermoelectric energy converters are becoming more and more widely used [9, 11]. In recent 

years, a growth in the study, design and manufacture of thermoelectric modules (TEM) has 

been observed, driven by the increased demand for thermoelectric devices (TED), both for 

specialized and general use. Compared to other cooling systems, TEDs have the following 

advantages: high reliability; no moving parts; unlimited service life, independent of their 

orientation in space; harmless to the environment, etc. 

Thermoelectric cooling systems (TCS), generated on the basis of Peltier elements, are very 

widely used in the military industry and computing [5, 10], which require smooth but precise 
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thermostating of objects and volumes. The need for thermoelectric intelligent systems which 

respond adequately to the rapidly changing processes and working conditions is getting bigger 

and bigger. 

The purpose of this paper is to create a model of intelligent TCS with the help of a neural 

network based on real experimental test results. An experimental setup (Fig. 1) is implemented, 

by which the working mode of Peltier TEM is studied. 

 

Figure 1. Thermoelectric cooling system, where T1 = Tc – temperature of the cold radiator; T2 = Th 

– temperature of the hot radiator; T3 = Tv – temperature in the casing volume; T4 – temperature of 

the outer wall of the casing; T5 – temperature of the inner wall of the casing; T6 – temperature of the 

outside wall of the water container; T7 – ambient temperature (air in the room). 

The constructed TCS provides the necessary thermostabilization. It consists of 

thermoelectric battery and thermostatic casing, composed of double walls, between which a 

thermal insulation layer is integrated. In the casing, it is relied only on natural convection and 

there is no additional ventilation. 

A fundamental unit of TCS is the thermoelectric battery in which a thermoelectric energy 

converter – Peltier module - is integrated [4, 7]. 

For the normal operation of TEM, it is necessary to ensure an efficient heat transfer between its 

hot and cold side. 

In a preliminary experiment has been found the optimal current optI
 
at which maximum 

cold production is reached. Therefore, in the conducted measurements the following direct 

current mode is used:  

 8optI A= ;  11ccU V=  

The synthesized thermoelectric battery uses Peltier TEM: TEC1-12712 YK-0458. The 

catalog data items of the element are presented in Table 1. 

 

Type Umax (V)  Imax (A)  ∆Тmax (С) Qmax (W)  L/W/H (mm)  R (Ω)  

TEC1-12712 15,5 12 55 40,1 40×40×4,6  1,2 

Table 1. Catalog data items of element ТЕС1–12712 
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Artificial Neural Networks 

The artificial neural networks [2, 5] are one of the tools that can be used for object recognition 

and identification. In the first step it have to be learned and after that we can use for the 

recognitions and for predictions of the properties of the materials. Fig. 2 shows in abbreviated 

notation a classic two-layered neural network. 

 

Figure 2. Abbreviated notation of a two layer Multi-Layer Perceptron 

In the two-layered neural networks, one layer’s outputs become inputs for the next one.  

The equations describing this operation are: 

a
2= f

2(w2
f

 1(w1
p+b

1)+b
2), 

where: 

• a
m is the output of the m-th layer of the neural network for m = 1, 2; 

• w
m is a matrix of the weight coefficients of the each of the inputs of the m-th layer; 

• b is neuron’s input bias; 

• f
1  is the transfer function of the 1-st layer; 

• f
2  is the transfer function of the 2-nd layer. 

The neuron in the first layer receives outside inputs р. The neurons’ outputs from the last 

layer determine the neural network’s outputs а. 

Since it belongs to the learning–with–teacher methods, to the algorithm are submitted 

training set (an input value and a target on the network’s output) 

{p1, t1}, {p2 , t2}, ..., {pQ , tQ}, 

where Q ∈ (1, ..., n), n is the subsequent number of the learning couple, where рQ  is the input 

value (on the network input), and tQ is the output’s value corresponding to the target. Every 

network’s input is preliminary established and constant, and the output have to corresponding to 

the target. The difference between the input values and the target is the error e = t – a. 

The “back propagation” algorithm [5, 8] uses mean-quarter error: 

 = e2. 

In learning the neural network, the algorithm recalculates network’s parameters (W and b) 

so to achieve mean-square error. 

The “back propagation” algorithm for i-neuron, for k + 1 iteration use equations: 

; 
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, 

where:  

• α - learning rate for neural network; 

• - relation between changes of square error and changes of the weights; 

• - relation between changes of square error and changes of the biases. 

The overfitting [3] appears in different situations, which effect over trained parameters and 

make worsen output results as shown in Fig. 2.  

There are different methods that can reduce the overfitting – “Early Stopping” and 

“Regularization”. Here we will use Early Stopping [3]. 

When the multilayer neural network is trained, usually the available data has to be divided 

into three subsets. The first subset, named “Training set”, is used for computing the gradient 

and updating the network weighs and biases. The second subset is named “Validation set”. The 

error of the validation set is monitored during the training process. The validation error 

normally decreases during the initial phase of training, as does the training set error. 

Sometimes, when the network begins to overfit the data, the error of the validation set typically 

begins to rise. When the validation error increases for a specified number of iterations, the 

training stops, and the weights and biases at the minimum of the validation error are returned 

[6]. The last subset is named “test set”. The sum of these three sets has to be 100% of the 

learning couples. 

When the validation error eν increases (the amendment deν have positive value) the neural 

network learning stops when: 

deν > 0. 

The classic condition for the learned network is when  

e
2 < Emax, 

where Emax is the maximum square error. 

2 Intuitionistic fuzzy sets 

Intuitionistic fuzzy sets (IFS, [1]) are sets whose elements have degrees of belonging and not 

belonging. They are defined by Krassimir Atanassov (1983) as an extension of fuzzy sets of 

Lotfi A. Zadeh. In the classical theory, element belongs or does not belong to the summary. 

Zadeh defines membership in the interval [0, 1]. The theory of intuitionistic fuzzy sets extends 

above concepts by comparing belonging and not belonging real numbers in the interval [0,1] 

and the sum of these numbers must also belongs to the interval [0,1]. 

Let the universe is E. Let A be a subset of E. Let us construct the set  

 

where . We will call A* an IFS. The functions  and

 set degree of membership and non-membership. The function  is 

defined through , corresponding to the degree of uncertainty. 
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3 Discussion 

For the preparation, we use MATLAB and neural network structure 6:5:1 (6 inputs, 5 neurons 

in hidden layer and one output (Fig. 3). For the inputs data we use  Tc,˚C, Th,˚C, T4,˚C, T5,˚C, 

T6,˚C and T7,˚C. For the output we use Tv,˚C. The target data and output data are shown in 

Fig. 4. 

 

 

 

Figure 2: The learning process Figure 3: The neural network structure 

 

 

Figure 4. Target and output data 

Every measurement system has the error Err. In this paper we also introduce intuitionistic 

fuzzy assessment of the comparison of the data in Fig. 4. 

If Errta >− , the assessment belongs to degree of the affiliations (µ).  If Errta <− , the 

assessment belongs to degree of the nonaffiliations (ν). The estimation belong to the 

uncertainty (π) when the difference between a and t are [−Err, +Err]. The obtained 

information, are represented by ordered pairs 〈µ, ν〉 of real numbers from the set [0,1] × [0,1].   

The degree of uncertainty also represents as a π  = 1 − µ − ν. 
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At the beginning is done statistics of the 31 values (Table 2.) that we used for learning the 

neural network. Initially when still no information has been obtained, all estimations are given 

initial values of 〈0, 0〉. When k ≥ 0, the current (k+1)-st estimation is calculated on the basis of 

the previous estimations according to the recurrence relation 

〈µk+1, νk+1〉  = ,
1 1

k k
k m k n

k k

µ ν+ +

+ +
, 

where 〈µk, νk〉  is the previous estimation, and 〈µ, ν〉 is the estimation of the latest measurement, 

for m, n ∈ [0, 1] and m + n ≤ 1.  

Table 2.  Experimental data from the thermoelectric cooling system 

t. min 0 2 4 6 8 10 12 14 16 18 20 

Tc,˚C 25 10 2,5 −0,5 −3,5 −5 −6 −6,5 −7 −7,1 −7,2 

Th,˚C 25 36 36,1 36,2 36,3 36,4 36,5 36,5 36,5 36,5 36,6 

Tv,˚C 25 23 21 19 17,5 15,5 14,5 14 13,5 13 12,5 

T4,˚C 25 25 25 25 25 25 25 25 25 25 25 

T5,˚C 25 23,5 21,5 21 20 19 18 17 16,5 16 15,7 

T6,˚C 25 25 25 25 25 25 25 25 25 25 25 

T7,˚C 25 25 25 25 25 25 25 25 25 25 25 

 
t. min 22 24 26 28 30 32 34 36 38 40 42 

Tc,˚C −7,3 −7,4 −7,5 −7,6 −7,7 −7,8 −7,9 −8 −8 −8 −8 

Th,˚C 36,7 36,8 36,9 37 37 37 37 37 37 37 37 

Tv,˚C 12,4 12,3 12,3 12,3 12,2 12,1 12 12 12 12 12 

T4,˚C 25 25 25 25 25 25 25 25 25 25 25 

T5,˚C 15,5 15,3 15,1 15 15 15 15 15 15 15 15 

T6,˚C 25 25 25 24,8 24,7 24,6 24,5 24,4 24,3 24,2 24,1 

T7,˚C 25 25 25 25 25 25 25 25 25 25 25 

 
t. min 44 46 48 50 52 54 56 58 60 

 

Tc,˚C −8 −8 −8 −8 −8 −8 −8 −8 −8 

Th,˚C 37 37 37 37 37 37 37 37 37 

Tv,˚C 12 11,9 11,8 11,7 11,6 11,5 11,4 11,3 11,2 

T4,˚C 25 25 25 25 25 25 25 25 25 

T5,˚C 15 15 15 15 15 15 15 15 15 

T6,˚C 24 24 24 24 24 24 24 24 24 

T7,˚C 25 25 25 25 25 25 25 25 25 
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4 Conclusion 

The main goal of the paper is to prepare neural network for modelling the thermoelectric 

cooling systems with Peltier element. We also introduced intuitionistic fuzzy estimation that 

can give us the quality estimation between the output of the neural network and the 

thermoelectric cooling systems. The real experimental data are shown. 
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