Modifications of the weight-center operator, defined over intuitionistic fuzzy sets. Part 2

Beloslav Riečan ${ }^{1}$, Adrian Ban ${ }^{2}$ and Krassimir Atanassov ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Natural Sciences, Matej Bel University 40 Tajovského Str., SK-97401, Banská Bystrica, Slovakia, and Mathematical Institute of Slovak Academy of Sciences 49 Štefánikova Str., SK-81473, Bratislava, Slovakia
e-mail: riecan@fpv.umb.sk
${ }^{2}$ Department of Mathematics and Informatics, University of Oradea Universităţii 1, 410087 Oradea, Romania e-mail: aiban@uoradea.ro
${ }^{3}$ Department of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria e-mail: krat@bas.bg

Abstract

In [2], K. Atanassov and A. Ban introduced the operator $W(A)$, defined for IFSs over a finite universe E. In [5] the first modifications of the weight-center operator was proposed and studied. In the present paper, the second modification is considered over a countable universe.

Keywords: Intutionistic fuzzy set, Weight-center operator.
AMS Classification: 03E72.

1 Introduction

In the present part of the research, a second modifications of the weight-center operator W, defined over intuitionistic fuzzy sets in [2], will be introduced.

Initially, we give some basic definitions, related to the Intuitionistic Fuzzy Sets (IFSs), following [1].

Let a set E be fixed. An IFS A in E is an object of the following form:

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\},
$$

where the functions $\mu_{A}: E \rightarrow[0,1]$ and $\nu_{A}: E \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$
0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1 .
$$

For every two IFSs A and B a lot of operations, relations and operators are defined (see, e.g. [1]), the most important of which, related to the present research, are:

$$
\begin{array}{lll}
A \subseteq B \quad \text { iff } & (\forall x \in E)\left(\mu_{A}(x) \leq \mu_{B}(x) \& \nu_{A}(x) \geq \nu_{B}(x)\right), \\
A \subset_{\square} B \quad \text { iff } & (\forall x \in E)\left(\mu_{A}(x) \leq \mu_{B}(x)\right), \\
A \subset_{\diamond} B & \text { iff } & (\forall x \in E)\left(\nu_{A}(x) \geq \nu_{B}(x)\right), \\
A=B \quad & \text { iff } & (\forall x \in E)\left(\mu_{A}(x)=\mu_{B}(x) \& \nu_{A}(x)=\nu_{B}(x)\right), \\
\bar{A} & =\quad\left\{\left\langle x, \nu_{A}(x), \mu_{A}(x)\right\rangle \mid x \in E\right\}, \\
C(A) \quad=\quad\{\langle x, K, L\rangle \mid x \in E\}, \\
I(A) & =\quad\{\langle x, k, l\rangle \mid x \in E\}, \\
C_{\nu}(A) \quad=\quad\left\{\left\langle x, \mu_{A}(x), L\right\rangle \mid x \in E\right\}, \\
I_{\mu}(A) \quad=\quad\left\{\left\langle x, k, \nu_{A}(x)\right\rangle \mid x \in E\right\},
\end{array}
$$

where

$$
\begin{aligned}
K & =\sup _{y \in E} \mu_{A}(y), \\
L & =\inf _{y \in E} \nu_{A}(y), \\
k & =\inf _{y \in E} \mu_{A}(y), \\
l & =\sup _{y \in E} \nu_{A}(y) .
\end{aligned}
$$

In [2] we introduced the following operator, defined for IFSs over a finite universe E :

$$
\begin{equation*}
W(A)=\left\{\left.\left\langle x, \frac{\sum_{y \in E} \mu_{A}(y)}{\operatorname{card}(E)}, \frac{\sum_{y \in E} \nu_{A}(y)}{\operatorname{card}(E)}\right\rangle \right\rvert\, x \in E\right\}, \tag{1}
\end{equation*}
$$

where $\operatorname{card}(E)$ is the number of the elements of a finite universe E.
In [1] the operators $H_{\alpha, \beta}$ and $J_{\alpha, \beta}$ are defined by

$$
\begin{aligned}
H_{\alpha, \beta}(A) & =\left\{\left\langle x, \alpha \cdot \mu_{A}(x), \nu_{A}(x)+\beta \cdot \pi_{A}(x)\right\rangle \mid x \in E\right\} \\
J_{\alpha, \beta}(A) & =\left\{\left\langle x, \mu_{A}(x)+\alpha \cdot \pi_{A}(x), \beta \cdot \nu_{A}(x)\right\rangle \mid x \in E\right\} .
\end{aligned}
$$

Obviously, for every IFS X over universe E,

$$
\begin{aligned}
H_{0,0}(X) & =\left\{\left\langle x, 0, \nu_{X}(x)\right\rangle \mid x \in E\right\}, \\
J_{0,0}(X) & =\left\{\left\langle x, \mu_{X}(x), 0\right\rangle \mid x \in E\right\} .
\end{aligned}
$$

Let the IFS $B \neq H_{0,0}(B)$ and $B \neq J_{0,0}(B)$. Therefore,

$$
\sum_{y \in E} \mu_{B}(y)>0
$$

and

$$
\sum_{y \in E} \nu_{B}(y)>0
$$

In [5] we modified the operator W to the form

$$
\begin{equation*}
W_{B}^{1}(A)=\left\{\left.\left\langle x, \frac{\left(\sum_{y \in E} \mu_{A}(y)\right) \cdot \mu_{B}(x)}{\operatorname{card}(E) \sum_{y \in E} \mu_{B}(y)}, \frac{\left(\sum_{y \in E} \nu_{A}(y)\right) \cdot \nu_{B}(x)}{\operatorname{card}(E) \sum_{y \in E} \nu_{B}(y)}\right\rangle \right\rvert\, x \in E\right\}, \tag{2}
\end{equation*}
$$

where $B \neq H_{0,0}(B)$ and $B \neq J_{0,0}(B)$.
It is inspired by papers of Ricardo Alberto Marques Pereira and Rita Almeida Ribeiro [3], and Vania Peneva and Ivan Popchev [4].

2 Second modification of the weight-center operator

Let A and B be two IFSs over the finite universe E.
Now, we introduce "the second modified weight-center operator" over IFSs A and B over the finite universe E.

Let everywhere below, the IFS $B \neq H_{0,0}(B)$ and $B \neq J_{0,0}(B)$, and let $\|A\| \leq\|B\|$. Therefore,

$$
\sum_{y \in E}\left(\mu_{B}(y)+\nu_{B}(y)\right)>0
$$

and

$$
\sum_{y \in E}\left(\mu_{A}(y)+\nu_{A}(y)\right) \leq \sum_{y \in E}\left(\mu_{B}(y)+\nu_{B}(y)\right) .
$$

The new operator has the form

$$
\begin{equation*}
W_{B}^{2}(A)=\left\{\left.\left\langle x, \frac{\left(\sum_{y \in E} \mu_{A}(y)\right) \cdot \mu_{B}(x)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)}, \frac{\left(\sum_{y \in E} \nu_{A}(y)\right) \cdot \nu_{B}(x)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)}\right\rangle \right\rvert\, x \in E\right\} \tag{2}
\end{equation*}
$$

First, we see that the definition is correct, i.e., $W_{B}^{2}(A)$ is an IFS. Really, for every $x \in E$,

$$
\begin{aligned}
& 0 \leq \frac{\left(\sum_{y \in E} \mu_{A}(y)\right) \cdot \mu_{B}(x)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)} \leq \frac{\sum_{y \in E} \mu_{A}(y)+\nu_{A}(y)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)}<1, \\
& 0 \leq \frac{\left(\sum_{y \in E} \nu_{A}(y)\right) \cdot \nu_{B}(x)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)} \leq \frac{\sum_{y \in E} \mu_{A}(y)+\nu_{A}(y)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)}<1,
\end{aligned}
$$

and

$$
\begin{gathered}
\frac{\left(\sum_{y \in E} \mu_{A}(y)\right) \cdot \mu_{B}(x)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)}+\frac{\left(\sum_{y \in E} \nu_{A}(y)\right) \cdot \nu_{B}(x)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)} \\
=\frac{\left(\sum_{y \in E} \mu_{A}(y)\right) \cdot \mu_{B}(x)+\left(\sum_{y \in E} \nu_{A}(y)\right) \cdot \nu_{B}(x)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)} \\
\leq \frac{\sum_{y \in E} \mu_{A}(y)+\sum_{y \in E} \nu_{A}(y)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)} \leq \frac{\sum_{y \in E} \mu_{B}(y)+\sum_{y \in E} \nu_{B}(y)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)} \leq 1 .
\end{gathered}
$$

Theorem 1. For every two IFSs A and $B \neq U^{*}$ over the finite universe E :
(a) $\overline{W_{B}^{2}(\bar{A})}=W_{\bar{B}}^{2}(A)$,
(b) $I\left(W_{B}^{2}(A)\right)=W_{B}^{2}(I(A))$,
(c) $C\left(W_{B}^{2}(A)\right)=W_{B}^{2}(C(A))$,
(d) $I_{\mu}\left(W_{B}^{2}(A)\right)=W_{B}^{2}\left(I_{\mu}(A)\right)$,
(c) $C_{\nu}\left(W_{B}^{2}(A)\right)=W_{B}^{2}\left(C_{\nu}(A)\right)$.

Proof: Let us check the validity of (a) for given IFSs A and $B \neq U^{*}$ over universe E.

$$
\begin{array}{r}
\overline{W_{B}^{2}(\bar{A})}=\overline{W_{B}^{2}\left(\left\{\left\langle x, \nu_{A}(x), \mu_{A}(x)\right\rangle \mid x \in E\right\}\right)} \\
=\left\{\left.\left\langle x, \frac{\left(\sum_{y \in E} \nu_{A}(y)\right) \cdot \mu_{B}(x)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)}, \frac{\left(\sum_{y \in E} \mu_{A}(y)\right) \cdot \nu_{B}(x)}{2 \max \left(\sum_{y \in E} \mu_{B}(y), \sum_{y \in E} \nu_{B}(y)\right)}\right\rangle \right\rvert\, x \in E\right\} \\
=\left\{\left.\left\langle x, \frac{\left(\sum_{y \in E} \mu_{A}(y)\right) \cdot \nu_{B}(x)}{2 \max \left(\sum_{y \in E} \nu_{B}(y), \sum_{y \in E} \mu_{B}(y)\right)}, \frac{\left(\sum_{y \in E} \nu_{A}(y)\right) \cdot \mu_{B}(x)}{2 \max \left(\sum_{y \in E} \nu_{B}(y), \sum_{y \in E} \mu_{B}(y)\right)}\right\rangle \right\rvert\, x \in E\right\}=W_{\bar{B}}^{2}(A) .
\end{array}
$$

(b) - (e) are proved analogously.

Theorem 2. For every two IFSs A and $B \neq U^{*}$ over the finite universe E :

$$
\begin{aligned}
& W_{B}^{1}(A) A \subset_{\square} W_{B}^{2}(A) \\
& W_{B}^{1}(A) A \subset_{\diamond} W_{B}^{2}(A)
\end{aligned}
$$

3 Conclusion

In the next authors' research, we will introduce another new modification of operator W_{B} and will study some of its properties.

References

[1] Atanassov, K. On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
[2] Atanassov, K., A. Ban. On an operator over intuitionistic fuzzy sets. Comptes Rendus de l'Academie bulgare des Sciences, Vol. 53, 2000, No. 5, 39-42.
[3] Marques Pereira, R. A., R. A. Ribeiro. Aggregation with generalized mixture operators using weighting functions. Fuzzy Sets and Systems, Vol. 137, 2003, No. 1, 43-58.
[4] Peneva, V., I. Popchev. Aggregation of fuzzy relations using weighting function. Comptes Rendus de l'Academie bulgare des Sciences, Vol. 60, 2007, No. 10, 1047-1052.
[5] Riečan, B., A. Ban, K. Atanassov. Modifications of the weight-center operator, defined over intuitionistic fuzzy sets. Part 1. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, Vol. 10, 2013, 1-4.

