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1 Introduction

In 1965, Fuzzy Set Theory was defined by L. Zadeh [1]. Then K. T. Atanassov generalized fuzzy
sets into Intuitionistic Fuzzy Set in 1986 [2]. Intuitionistic fuzzy set is one of the extensions of
fuzzy sets. Intuitionistic Fuzzy Theory are widely used in algebraic structures,robotics, agricul-
ture,control systems, computer, economy and many engineering fields. Furthermore the notion
of Intuitionistic Fuzzy Operators (IFO) was introduced first by K. T. Atanassov [2]. Several op-
erators are defined in the Intuitionistic Fuzzy Sets Theory. They are classified in three groups:
modal, topological and level operators. The notion of modal operator � , ♦ introduced on in-
tuitionistic fuzzy sets were defined by K.Atanassov in 1986 [2]. Modal operators � , ♦ defined
over the set of all IFS’s transform every IFS into a FS. They are similar to the operators ‘necessity’
and ‘possibility’ defined in some modal logics. Then U intuitionistic fuzzy topological operator
was defined by Krassimir T.Atanassov in 2016 [4]. This operator is called ”Uniformly expanding
intuitionistic fuzzy operator”.

Definition 1. [1]. Let X be a nonempty set. A fuzzy set A drawn from X is defined as
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A = {〈x, µA(x)〉| x ∈ X} , where µA(x) : X → [0, 1] is the membership function of the fuzzy
set A.

Definition 2. [2]. Let X be a nonempty set. An intuitionistic fuzzy set A in X is an object having
the form

A = {〈x, µA(x), νA(x)〉| x ∈ X} ,

where the functions
µA(x), νA(x) : X → [0, 1]

define respectively, the degree of membership and degree of nonmembership of the element
x ∈ X, to the set A, which is a subset of X , and for every element x ∈ X,

0 ≤ µA(x) + νA(x) ≤ 1.

Definition 3. [2, 3]. Let A and B ∈ X be IFS. For every two IFS’s A and B the following
operations and relations are defined.

A@B = {〈x, µA(x)+µB(x)
2

, νA(x)+νB(x)
2

〉 | x ∈ X}

A→ B = {〈x,max(νA(x), µB(x)),min(µA(x), νB(x))〉| x ∈ X}

A ∩B = {〈x,min(µA(x), µB(x)),max(νA(x), νB(x))〉| x ∈ X}

A ∪B = {〈x,max(µA(x), µB(x)),min(νA(x), νB(x))〉| x ∈ X}

A⊕B = {〈x, µA(x) + µB(x)− µA(x).µB(x), νA(x).νB(x)〉| x ∈ X}

A⊗B = {〈x, µA(x).µB(x), νA(x) + νB(x)− νA(x).νB(x)〉| x ∈ X}

A $ B = {〈x,
√
µA(x).µB(x),

√
νA(x).νB(x)〉| x ∈ X}

A # B = {〈x, 2µA(x).µB(x)
µA(x) + µB(x)

,
2νA(x).νB(x)

νA(x) + νB(x)
〉| x ∈ X}

A ∗B = {〈x, µA(x) + µB(x)

2(µA(x)µB(x) + 1)
,

νA(x) + νB(x)

2(νA(x)νB(x) + 1)
〉| x ∈ X}

Definition 4. [4]. Let us define the operator U over the IFS A by

sup
y
µA(y) > inf

y
µA(y)

sup
y
νA(y) > inf

y
νA(y)

U(A) = {〈
µA(x)−inf

y
µA(y)

sup
y
µA(y)−inf

y
µA(y)

,
νA(x)−inf

y
νA(y)

sup
y
νA(y)−inf

y
νA(y)

〉|x ∈ X}
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Definition 5. [2]. Let X be a nonempty set. If A and B are an IFS drawn from X , then;

�A = {〈x, µA(x), 1− µA(x)〉| x ∈ X}
♦A = {〈x, 1− νA(x), νA(x)〉| x ∈ X} [1]

Theorem 1. [4]. Let X be a nonempty set. For every IFS A in X:
(a) U(�A) = �U(A)

(b) U(♦A) = ♦U(A)

2 Main result

In this section, new equalities were obtained and proved with U topological operator [4] by using
equalities that were obtained by K. Atanassov in [2, 3] and by us in [5].

Theorem 2. [2, 3]. Let X be a nonempty set. For every IFS A in X;

(a) ��A = �A

(b) �♦A = ♦A

(c) ♦�A = �A

(d) ♦♦A = ♦A

Theorem 3. Let X be a nonempty set. For every IFS A in X;

(a) U(��A) = �U(A)

(b) U(♦♦A) = ♦U(A)

(c) U(�♦A) = ♦U(A)

(d) U(♦�A) = �U(A)

Proof. The proof is obtained thanks to Theorem 2.

Theorem 4. [2, 3]. Let X be a nonempty set. For every IFS A and B in X;

(a) (�A @ �B) = �(A@B)

(b) (♦A @ ♦B) = ♦(A@B)

Theorem 5. Let X be a nonempty set. For every IFS A and B in X;

(a) U(�A @ �B) = �U(A@B)

(b) U(♦A @ ♦B) = ♦U(A@B)

(c) U((�A)c) = (�U(A))c

(d) U((♦A)c) = (♦U(A))c

Proof. (a)
�A @ �B = {〈x, µA(x)+µB(x)

2
, 1−µA(x)+1−µB(x)

2
〉| x ∈ X}

�A @ �B = {〈x, µA(x)+µB(x)
2

, 1− µA(x)+µB(x)
2

〉| x ∈ X}
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U(�A @ �B) = {〈x,
µA(x)+µB(x)

2
− inf(

µA(x)+µB(x)

2
)

sup(
µA(x)+µB(x)

2
) − inf(

µA(x)+µB(x)

2
)
,

1−µA(x)+µB(x)

2
− inf(1−µA(x)+µB(x)

2
)

sup(1−µA(x)+µB(x)

2
) − inf(1−µA(x)+µB(x)

2
)
〉}

= {〈x,
µA(x)+µB(x)

2
− inf(

µA(x)+µB(x)

2
)

sup(
µA(x)+µB(x)

2
) − inf(

µA(x)+µB(x)

2
)
,

1−µA(x)+µB(x)

2
−1 + sup(

µA(x)+µB(x)

2
)

1−inf(
µA(x)+µB(x)

2
) −1+ sup(

µA(x)+µB(x)

2
)
〉}

= {〈x,
µA(x)+µB(x)

2
− inf(

µA(x)+µB(x)

2
)

sup(
µA(x)+µB(x)

2
) − inf(

µA(x)+µB(x)

2
)
, 1−

µA(x)+µB(x)

2
− inf(

µA(x)+µB(x)

2
)

sup(
µA(x)+µB(x)

2
) − inf(

µA(x)+µB(x)

2
)
〉}

U(�A @ �B) = �U(A@B)

Similarly, the other proofs are obvious.

Theorem 6. [5]. Let X be a nonempty set. For every IFS A and B in X:

(a) �[(♦A @ ♦B)c] = [♦(A @ B)]c

(b) (♦A⊕ ♦B)@(♦A⊗ ♦B) = ♦(A@B)

(c) (�A⊕�B)@(�A⊗�B) = �(A@B)

(d) [(�A⊕ ♦B)c @ ((�A)c ⊗ ♦B)] ∪ (�A)c = (�(A))c

(e) [(♦A ⊕ �B) @ ((♦A)c ⊗ �B)] ∪ (♦A) = ♦(A)

(f) [(♦A ⊕�B)c @ (( ♦A)c ⊗�B)] ∪ (♦A)c = (♦(A))c

(g) [(�A ⊗ ♦B)c @ ((�A)c ⊕ ♦B)] ∩ (�A)c = (�(A))c

Theorem 7. Let X be a nonempty set. For every IFS A and B in X:

(a) U(�[(♦A @ ♦B)c]) = [♦U(A @ B)]c

(b) U((♦A⊕ ♦B)@(♦A⊗ ♦B)) = ♦U(A@B)

(c) U((�A⊕�B)@(�A⊗�B)) = �U(A@B)

(d) U([(�A⊕ ♦B)c @ ((�A)c ⊗ ♦B)] ∪ (�A)c) = (�U(A))c

(e) U([(♦A ⊕ �B) @ ((♦A)c ⊗ �B)] ∪ (♦A)) = ♦U(A)

(f) U([(♦A ⊕�B)c @ (( ♦A)c ⊗�B)] ∪ (♦A)c) = (♦U(A))c

(g) U([(�A ⊗ ♦B)c @ ((�A)c ⊕ ♦B)] ∩ (�A)c) = (�U(A))c
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Proof. (a)

♦A @ ♦B =
{
〈x, 1−νA(x)+1−νB(x)

2
, νA(x)+νB(x)

2
〉| x ∈ X

}
♦A @ ♦B =

{
〈x, 1− νA(x)+νB(x)

2
, νA(x)+νB(x)

2
〉| x ∈ X

}
(♦A @ ♦B)c =

{
〈x, νA(x)+νB(x)

2
, 1− νA(x)+νB(x)

2
〉| x ∈ X

}
�[(♦A @ ♦B)c] =

{
〈x, νA(x)+νB(x)

2
, 1− νA(x)+νB(x)

2
〉| x ∈ X

}
U(�[(♦A @ ♦B)c]) = {〈x,

νA(x)+νB(x)

2
− inf(

νA(x)+νB(x)

2
)

sup(
νA(x)+νB(x)

2
) − inf(

νA(x)+νB(x)

2
)
,

1− νA(x)+νB(x)

2
− inf(1− νA(x)+νB(x)

2
)

sup(1− νA(x)+νB(x)

2
) − inf(1− νA(x)+νB(x)

2
)
〉}

= {〈x,
νA(x)+νB(x)

2
− inf(

νA(x)+νB(x)

2
)

sup(
νA(x)+νB(x)

2
) − inf(

νA(x)+νB(x)

2
)
,

1− νA(x)+νB(x)

2
−1 + sup(

νA(x)+νB(x)

2
)

1−inf(
νA(x)+νB(x)

2
) −1+ sup(

νA(x)+νB(x)

2
)
〉}

= {〈x,
νA(x)+νB(x)

2
− inf(

νA(x)+νB(x)

2
)

sup(
νA(x)+νB(x)

2
) − inf(

νA(x)+νB(x)

2
)
, 1−

νA(x)+νB(x)

2
− inf(

νA(x)+νB(x)

2
)

sup(
νA(x)+νB(x)

2
) − inf(

νA(x)+νB(x)

2
)
〉}

U(�[(♦A @ ♦B)c]) = [♦U(A @ B)]c

Similarly, the other proofs are obvious.
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