21st ICIFS, 22–23 May 2017, Burgas, Bulgaria Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 23, 2017, No. 2, 17–23

H-Intuitionistic fuzzy sets

Sinem Tarsuslu (Yılmaz) and Yelda Yorulmaz

Mersin University, Faculty of Arts and Sciences Department of Mathematics

e-mails: sinemnyilmaz@gmail.com, yeldayorulmaz@gmail.com

Received: 4 February 2017 Revised: 12 April 2017 Accepted: 19 April 2017

Abstract: In this paper, we introduce Heyting valued intuitionistic fuzzy set (H-IFS) using intuitionistic fuzzy Heyting algebra. Some operations and modal operators are defined over H-IFSs.

Keywords: Intuitionistic fuzzy sets, Intuitionistic fuzzy Heyting algebra, Heyting valued intuitionistic fuzzy sets.

AMS Classification: 03E72, 47S40.

1 Introduction

The original concept of fuzzy sets in Zadeh [7] was introduced as an extension of crisp sets by enlarging the truth value set to the real unit interval [0, 1]. In fuzzy set theory, if the membership degree of an element x is $\mu(x)$ then the non-membership degree is $1 - \mu(x)$ and thus it is fixed.

Intuitionistic fuzzy sets introduced by Atanassov in 1983 [1] and form an extension of fuzzy sets by enlarging the truth value set to the lattice $[0, 1] \times [0, 1]$ is defined as following.

Definition 1. Let L = [0, 1] then $L^* = \{(x_1, x_2) \in [0, 1]^2 : x_1 + x_2 \le 1\}$ is a lattice with $(x_1, x_2) \le (y_1, y_2) :\iff ``x_1 \le y_1 \text{ and } x_2 \ge y_2`'.$

For $(x_1, y_1), (x_2, y_2) \in L^*$, the operators \wedge and \vee on (L^*, \leq) are defined as follows:

$$(x_1, y_1) \land (x_2, y_2) = (\min(x_1, x_2), \max(y_1, y_2)),$$

 $(x_1, y_1) \lor (x_2, y_2) = (\max(x_1, x_2), \min(y_1, y_2)).$

For each $J \subseteq L^*$,

$$\sup J = (\sup\{x : (x, y \in [0, 1]), ((x, y) \in J)\}, \inf\{y : (x, y \in [0, 1])((x, y) \in J)\})$$

and

$$\inf J = (\inf\{x : (x, y \in [0, 1])((x, y) \in J)\}, \sup\{y : (x, y \in [0, 1])((x, y) \in J)\}).$$

Definition 2. [1] An intuitionistic fuzzy set (shortly IFS) on a set X is an object of the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

where $\mu_A(x), (\mu_A : X \to [0,1])$ is called the "degree of membership of x in A", $\nu_A(x), (\nu_A : X \to [0,1])$ is called the "degree of non-membership of x in A", and where μ_A and ν_A satisfy the following condition:

$$\mu_A(x) + \nu_A(x) \leq 1$$
, for all $x \in X$.

The hesitation degree of x is defined by $\pi_A(x) = 1 - \mu_A(x) - \nu_A(x)$.

Definition 3. [1] An IFS A is said to be contained in an IFS B (notation $A \sqsubseteq B$) if and only if, for all $x \in X : \mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$.

It is clear that A = B if and only if $A \sqsubseteq B$ and $B \sqsubseteq A$.

Definition 4. [1] Let $A \in IFS$ and let $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ then the above set is called the complement of A:

$$A^{c} = \{ \langle x, \nu_{A}(x), \mu_{A}(x) \rangle : x \in X \}.$$

Heyting algebras were introduced by A. Heyting, in 1930 to formalize intuitionistic logic [5]. This algebra has many studying areas as topos theory, linguistics, quantum theory, etc.

Definition 5. [5] A Heyting algebra is an algebra $(H, \lor, \land, \rightarrow, 0_H, 1_H)$ such that $(H, \lor, \land, 0, 1)$ is an lattice and for all $a, b, c \in H$,

$$a \le b \to c \Leftrightarrow a \land b \le c.$$

 $(H, \lor, \land, 0_H, 1_H)$ lattice is a Heyting algebra with \rightarrow binary operation. $\forall a, b \in H$,

$$a \to b = \bigvee \{c : a \land c \le b, c \in H\}.$$

Proposition 1. An algebra $(H, \lor, \land, \rightarrow, 0_H, 1_H)$ is a Heyting algebra if and only if $(H, \lor, \land, 0_H, 1_H)$ is an lattice and the following identities hold for all $a, b, c \in H$,

1. $a \rightarrow a = 1$ 2. $a \wedge (a \rightarrow b) = a \wedge b$ 3. $b \wedge (a \rightarrow b) = b$ 4. $a \rightarrow (b \wedge c) = (a \rightarrow b) \wedge (a \rightarrow c)$ E. Eslami introduced the Intuitionistic Fuzzy Residuated Lattice (IFRL) in 2012, [3], and examined some properties of these lattices.

Definition 6. [6] A residuated lattice is an algebra $L = (L, \lor, \land, *, \rightarrow, 0, 1)$ of type (2, 2, 2, 2, 0, 0) such that;

- *1.* $(L, \lor, \land, 0, 1)$ *is a bounded lattice,*
- 2. (L, *, 1) is a commutative monoid
- *3. The operation* * *and* \rightarrow *form an adjoint pair, i.e.,*

$$x * y \le z$$
 if and only if $x \le y \to z$

for all $x, y, z \in L$.

A residuated lattice L is called a Heyting Algebra, in which $x * y = x \land y$, for all $x, y \in L$. In [3], determined that if $L = (L, \lor, \land, *, \rightarrow, 0, 1)$ is a residuated lattice and $\sim: L \to L$ by $\sim x = x \to 0$, then \sim is a negator on L which has not to be involutive. We can obtain a symmetric residuated lattice by adding an involutive negator, as follows.

Definition 7. [3] A residuated lattice L is called a symmetric residuated lattice if it is equipped with unary operation \sim satisfying;

$$\sim \quad \sim x = x$$

$$\sim \quad (x \lor y) = \sim x \land \sim y$$

$$\sim \quad (x \land y) = \sim x \lor \sim y$$

for all $x, y \in L$.

Definition 8. [3] Let $L = (L, \lor, \land, *, \rightarrow, \sim, 0, 1)$ be a symmetric residuated lattice. A intuitionisite fuzzy residuated lattice in an algebra $\widetilde{L} = (\widetilde{L}, \lor, \land, T, I, \widetilde{0, 1})$ where

1. $\widetilde{L} = \{(x, y) \in L^2 : x \leq \sim y\}$ 2. $(x, y) \land (u, v) = (\min(x, u), \max(y, v))$ 3. $(x_1, y_1) \lor (x_2, y_2) = (\max(x, u), \min(y, v))$ 4. $T((x, y), (u, v)) = (x * u, S(y, v)), \text{ where } S(y, v) = \sim (\sim y * \sim v)$ 5. $I((x, y), (u, v)) = ((x \to u) \land (\sim y \to \sim v), \sim (\sim y \to \sim v))$ 6. $\widetilde{0} = (0, 1), \widetilde{1} = (1, 0)$

Theorem 1. [4] Let L and L defined as above definition. Then L is a Heyting algebra if and only if L is a Heyting algebra.

2 *H*-Intuitionistic fuzzy sets

In this section, we studied a special case of intuitionisitc fuzzy residuated lattice.

Definition 9. Let $L = ([0, 1], \lor, \land, \rightarrow, 0, 1)$ be a Heyting algebra and $\sim x = 1 - x$ is defined for all $x \in L$. An intuitionistic fuzzy Heyting algebra (IFHA) is an algebra $L^* = (L^*, \lor, \land, I, 0^*, 1^*)$ where

1.
$$L^* = \{(x, y) \in [0, 1]^2 : x \leq v\}$$

- 2. $(x_1, y_1) \land (x_2, y_2) = (\min(x_1, x_2), \max(y_1, y_2))$
- 3. $(x_1, y_1) \lor (x_2, y_2) = (\max(x_1, x_2), \min(y_1, y_2))$
- 4. $I((x_1, y_1), (x_2, y_2)) = ((x_1 \to x_2) \land (\sim y_1 \to \sim y_2), \sim (\sim y_1 \to \sim y_2))$

5.
$$0^* = (0, 1), 1^* = (1, 0)$$

Definition 10. Let $L^* = (L^*, \lor, \land, I, 0^*, 1^*)$ be an intuitionistic fuzzy Heyting algebra. A Heyting valued Intuitionistic fuzzy set on a set X called H-Intuitionistic Fuzzy Set (shortly H - IFS(X)) is an object of the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \},\$$

where μ_A and ν_A are called "degree of membership of x in A" and "degree of non-membership of x in A", resp. which defined from X to $L = ([0, 1], \lor, \land, \rightarrow, 0, 1)$ Heyting algebra and satisfy the following condition:

$$\mu_A(x) + \nu_A(x) \leq 1$$
, for all $x \in X$.

The following fundamental operations and relations on H-IFS(X) are similar with IFS(X).

Definition 11. Let $A, B \in H - IFS(X)$ then

- 1. $A \sqsubseteq B$ iff $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$, for all $x \in X$.
- 2. A = B iff $A \sqsubseteq B$ and $B \sqsubseteq A$

3.
$$A^{c} = \{ \langle x, \nu_{A}(x), \mu_{A}(x) \rangle : x \in X \}$$

4.
$$A \sqcap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}$$

5. $A \sqcup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X \}$

Two intuitionistic fuzzy modal operators called "necessity" and "possibility" were defined by Atanassov, as follows:

Definition 12. [1] Let X be a set and $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\} \in IFS(X).$

$$I. \ \Box A = \{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X \}$$

2. $\Diamond A = \{ \langle x, 1 - \nu_A(x), \nu_A(x) \rangle : x \in X \}$

Now, we will redefine these intuitionistic fuzzy modal operators on H - IFS(X) and we will prove some properties of them. We will use \Box_H and \Diamond_H expressions to show that study on Heyting valued intuitionistic fuzzy sets.

Definition 13. Let X be a set and $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \} \in H - IFS(X).$

$$I. \ \Box_H A = \{ \langle x, 1 \to \mu_A(x), \sim (1 \to \mu_A(x)) \rangle : x \in X \}$$

2.
$$\Diamond_H A = \{ \langle x, \sim (1 \to \nu_A(x)), 1 \to \nu_A(x) \rangle : x \in X \}$$

 $\Box_H A$ and $\Diamond_H A$ are called Heyting valued intuitionistic fuzzy modal operators.

Theorem 2. Let X be a set and $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \} \in H - IFS(X).$

 $I. \ \Box_H A = I(1^*, \Box A)$

2.
$$\Diamond_H A = I(1^*, \Diamond A)$$
.

Proof. (1) For $x \in X$,

$$I(1^*, \Box A) = I((1,0), (\mu_A(x), 1 - \mu_A(x)))$$

= $((1 \to \mu_A(x)) \land (\sim 0 \to \sim (1 - \mu_A(x))), \sim (\sim 0 \to \sim (1 - \mu_A(x))))$
= $(1 \to \mu_A(x), \sim (1 \to \mu_A(x)))$
= $\Box_H A$

(2) If we use $1 \to a = (1 \to a)$ for all $a \in [0, 1]$ then it is clear that $\Diamond_H A = I(1^*, \Diamond A)$. \Box

Theorem 3. Let X be a set and $A \in H - IFS(X)$.

- $I. \ (\Box_H A)^c = \Diamond_H A$
- 2. $(\Diamond_H A)^c = \Box_H A^c$
- 3. $\Box_H A \sqsubseteq \Diamond_H A$
- 4. $\Box_H \Box_H A = \Box_H A$
- 5. $\Diamond_H \Diamond_H A = \Diamond_H A$
- 6. $\Diamond_H \Box_H A = \Box_H A$

7.
$$\Box_H \Diamond_H A = \Diamond_H A$$

Proof. (1) We know that $\Diamond_H A^c = I(1^*, \Diamond A^c)$. For $x \in X$,

$$I(1^*, \Diamond A^c) = ((1 \to \sim \mu_A(x)) \land (\sim 0 \to \sim \mu_A(x)), \sim (\sim 0 \to \sim \mu_A(x)))$$

= $((1 \to \sim \mu_A(x)) \land (1 \to \sim \mu_A(x)), \sim (1 \to \sim \mu_A(x)))$
= $((1 \to \sim \mu_A(x)), \sim (1 \to \sim \mu_A(x)))$
= $(\sim (1 \to \mu_A(x)), (1 \to \mu_A(x)))$

So, $\Diamond_H A^c = I(1^*, \Diamond A^c) = (\Box_H A)^c$. (2) If we use $\Box A \sqsubseteq \Diamond A$ then $\mu_A(x) \leq \sim \nu_A(x)$ and $\sim \mu_A(x) \geq \nu_A(x)$.

$$1 \rightarrow \mu_A(x) \le 1 \rightarrow \sim \nu_A(x) \text{ and } 1 \rightarrow \sim \mu_A(x) \ge 1 \rightarrow \nu_A(x)$$

$$\Rightarrow 1 \rightarrow \mu_A(x) \le \sim (1 \rightarrow \nu_A(x)) \text{ and } \sim (1 \rightarrow \mu_A(x)) \ge 1 \rightarrow \nu_A(x)$$

We obtained that $\Box_H A \sqsubseteq \Diamond_H A$.

Other properties can be seen similarly.

Proposition 2. Let $(H, \lor, \land, \rightarrow, 0_H, 1_H)$ be a Heyting algebra.

- *1.* If $a \leq b$ for $a, b \in H$ then $c \to a \leq c \to b$ for all $c \in H$.
- 2. $c \to (a \lor b) = (c \lor a) \to (c \lor b)$ for all $a, b, c \in H$.

Theorem 4. Let X be a set and $A, B \in H - IFS(X)$.

- $I. \ \Box_H(A \sqcup B) = \Box_H A \sqcup \Box_H B$
- 2. $\Box_H(A \sqcap B) = \Box_H A \sqcap \Box_H B$

Proof. (1)

$$\Box_{H}(A \sqcup B) = \{ \langle x, 1 \to \max\{\mu_{A}(x), \mu_{B}(x) \}, \sim (1 \to \max\{\mu_{A}(x), \mu_{B}(x)\}) \rangle : x \in X \}$$

$$= \{ \langle x, \max\{1 \to \mu_{A}(x), 1 \to \mu_{B}(x) \}, \sim \max\{1 \to \mu_{A}(x), 1 \to \mu_{B}(x)\} \rangle : x \in X \}$$

$$= \{ \langle x, \max\{1 \to \mu_{A}(x), 1 \to \mu_{B}(x) \}, \min\{\sim (1 \to \mu_{A}(x)), \sim (1 \to \mu_{B}(x))\} \rangle : x \in X \}$$

$$= \Box_{H}A \sqcup \Box_{H}B$$

(2) It can be proved easily.

Theorem 5. Let X be a set and $A, B \in H - IFS(X)$.

1. $\Diamond_H (A \sqcap B) = \Diamond_H A \sqcap \Diamond_H B$ 2. $\Diamond_H (A \sqcup B) = \Diamond_H A \sqcup \Diamond_H B$

Proof. Let us prove the second characteristic.

$$\begin{split} \Diamond_H(A \sqcup B) &= \{ \langle x, \sim (1 \to \min\{\nu_A(x), \nu_B(x)\}), 1 \to \min\{\nu_A(x), \nu_B(x)\} \rangle : x \in X \} \\ &= \{ \langle x, \sim \min\{1 \to \nu_A(x), 1 \to \nu_B(x)\}, \min\{1 \to \nu_A(x), 1 \to \nu_B(x)\} \rangle : x \in X \} \\ &= \{ \langle x, \min\{\sim (1 \to \nu_A(x)), \sim (1 \to \nu_B(x))\}, \min\{1 \to \nu_A(x), 1 \to \nu_B(x)\} \rangle : x \in X \} \\ &= \langle \mu_A \sqcup \Diamond_H B \end{split}$$

Theorem 6. Let X be a set and $A, B \in H - IFS(X)$.

- $1. \ A \sqsubseteq B \ iff \square_H A \sqsubseteq \square_H B$
- 2. $A \sqsubseteq B \text{ iff } \Diamond_H A \sqsubseteq \Diamond_H B$

-		
г		1
н		L
н		L

Proof. (1)

$$A \subseteq B \Rightarrow \mu_A(x) \le \mu_B(x) \text{ and } \sim \mu_A(x) \ge \sim \mu_B(x)$$

$$\Rightarrow 1 \rightarrow \mu_A(x) \le 1 \rightarrow \mu_B(x) \text{ and } 1 \rightarrow \sim \mu_A(x) \ge 1 \rightarrow \sim \mu_B(x)$$

$$\Rightarrow 1 \rightarrow \mu_A(x) \le 1 \rightarrow \mu_B(x) \text{ and } \sim (1 \rightarrow \mu_A(x)) \ge \sim (1 \rightarrow \mu_B(x))$$

$$\Rightarrow \Box_H A \sqsubseteq \Box_H B$$

(2) It is clear.

3 Conclusion

Heyting valued new intuitionistic fuzzy modal operators can be defined on *H*-Intuitionistic fuzzy set. Basic algebraic properties of *H*-Intuitionistic fuzzy sets can be studied.

Acknowledgement

This study was supported by the Research Fund of Mersin University in Turkey with Project Number: 2015-TP3-1249.

References

- Atanassov, K. T. (1983). Intuitionistic Fuzzy Sets, *VII ITKR Session*, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: *Int. J. Bioautomation*, 2016, 20(S1), S1–S6.
- [2] Atanassov, K. T. (1999). *Intuitionistic Fuzzy Sets: Theory and Applications*, Spinger, Heidelberg.
- [3] Eslami, E. (2012). An algebraic structure for intuitionistic fuzzy logic, *Iranian Journal of Fuzzy Systems*, 9(6), 31–41.
- [4] Ghanavizi Maroof, F. & Eslami, E. (2016). Algebraic properties of intuitionistic fuzzy residuated lattices, *Iranian Journal of Fuzzy Systems*, 13(2), 95–109.
- [5] Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik, (in three parts) Sitzungsberichte der preussischen Akademie der Wissenschaften: 42–71, 158–169. English translation of Part I in Mancosu (1998): 311–327.
- [6] Hajek, P. (1998). Metamathematics of fuzzy logic, *Trends in Logic*, Kluwer Acad. Publ., Drecht, 4.
- [7] Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353.