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1 Introduction

In [1, 2], K. T. Atanassov introduced the notion of intuitionistic fuzzy sets. Later P. Grzegorzewski
and E. Mrówka defined the probability on the family of intuitionistic fuzzy events

N = {(µA, νA) ; µA, νA are S-measurable and µA + νA ≤ 1Ω}

as a mapping P from the family N to the set of all compact intervals in R by the formula

P((µA, νA)) =

[ ∫
Ω

µA dP , 1−
∫

Ω

νA dP

]
,

where (Ω,S, P ) is the probability space, see [7]. This intuitionistic fuzzy probability was
axiomatically characterized by B. Riečan (see [10]).
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In this paper, we formulate the Individual ergodic theorem for intuitionistic fuzzy observables,
using P-almost everywhere convergence, where P is an intuitionistic fuzzy probability. Recall
that the formulation of the individual ergodic theorem for intuitionistic fuzzy events with product
first appeared in the paper [3]. There we used a separating intuitionistic fuzzy probability. Since
the intuitionistic fuzzy probability P can be decomposed to two intuitionistic fuzzy states, we can
use the results holding for intuitionistic fuzzy states, which were proved in [6].

Remark that in a whole text we use a notation IF as an abbreviation for intuitionistic fuzzy.

2 IF-events, IF-states, IF-observables and IF-mean value

In this section we explain the basic notions from IF-probability theory, see [1, 2, 13, 14, 15].

Definition 2.1. Let Ω be a nonempty set. An IF-set A on Ω is a pair (µA, νA) of mappings
µA, νA : Ω→ [0, 1] such that µA + νA ≤ 1Ω.

Definition 2.2. Start with a measurable space (Ω,S). Hence S is a σ-algebra of subsets of Ω.
An IF-event is called an IF-set A = (µA, νA) such that µA, νA : Ω→ [0, 1] are S-measurable.

The family of all IF-events on (Ω,S) will be denoted by F , µA : Ω −→ [0, 1] will be called
the membership function, νA : Ω −→ [0, 1] will be called the non-membership function.

If A = (µA, νA) ∈ F , B = (µB, νB) ∈ F , then we define the Łukasiewicz binary operations
⊕,� on F by

A⊕B = ((µA + µB) ∧ 1Ω, (νA + νB − 1) ∨ 0Ω)),

A�B = ((µA + µB − 1) ∨ 0Ω, (νA + νB) ∧ 1Ω))

and the partial ordering is given by

A ≤ B⇐⇒ µA ≤ µB, νA ≥ νB.

In the paper, we use max–min connectives defined by

A ∨B = (µA ∨ µB, νA ∧ νB),

A ∧B = (µA ∧ µB, νA ∨ νB)

and the de Morgan rules
(a ∨ b)∗ = a∗ ∧ b∗,

(a ∧ b)∗ = a∗ ∨ b∗,

where a∗ = 1− a.

Example 2.3. A fuzzy set f : Ω −→ [0, 1] can be regarded as an IF-set if we put

A = (f, 1Ω − f).
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If f = χA, then the corresponding IF-set has the form

A = (χA, 1Ω − χA) = (χA, χA′ ).

In this case A ⊕ B corresponds to the union of sets, A � B to the intersection of sets and ≤ to
the set inclusion.

Consider a probability space (Ω,S, P ). Then in [7] the IF-probability P(A) of an IF-event
A = (µA, νA) ∈ F has been defined as a compact interval by the equality

P(A) =

[ ∫
Ω

µA dP , 1−
∫

Ω

νA dP

]
.

Let J be the family of all compact intervals. Then the mapping P : F → J can be defined
axiomatically similarly as in [10].

Definition 2.4. Let F be the family of all IF-events in Ω. A mapping P : F → J is called an
IF-probability if the following conditions hold:

(i) P((1Ω, 0Ω)) = [1, 1] , P((0Ω, 1Ω)) = [0, 0];

(ii) If A�B = (0Ω, 1Ω), then P(A⊕B) = P(A) + P(B);

(iii) If An ↗ A, then P(An)↗ P(A).
(Recall that [αn, βn]↗ [α, β] means that αn ↗ α, βn ↗ β, but An = (µAn , νAn)↗ A =

(µA, νA) means µAn ↗ µA, νAn ↘ νA.)

IF-probability P is called separating, if

P
(
(µA, νA)

)
= [P[(µA), 1− P](νA)],

where the functions P[,P] : T → [0, 1] are probabilities.

Of course, each P(A) is an interval, denote it by P(A) = [P[(A),P](A)]. By this way we
obtain two functions

P[ : F → [0, 1],P] : F → [0, 1]

and some properties of P can be characterized by some properties of P[,P], see [11].

Theorem 2.5. Let P : F → J and P(A) = [P[(A),P](A)] for each A ∈ F . Then P is an
IF-probability if and only if P[ and P] are IF-states.

Proof. See [11, Theorem 2.3]

Recall that by an intuitionistic fuzzy state (IF-state) m we understand each mapping m :

F → [0, 1] which satisfies the following conditions (see [12]):

(i) m((1Ω, 0Ω)) = 1 , m((0Ω, 1Ω)) = 0;

(ii) if A�B = (0Ω, 1Ω) and A,B ∈ F , then m(A⊕B) = m(A) + m(B);

(iii) if An ↗ A (i.e. µAn ↗ µA, νAn ↘ νA), then m(An)↗m(A).

39



Now we introduce the notion of an observable. Let J be the family of all intervals in R of
the form

[a, b) = {x ∈ R : a ≤ x < b}.

Then the σ-algebra σ(J ) is denoted by B(R) and it is called the σ-algebra of Borel sets, its
elements are called Borel sets (see [16]).

Definition 2.6. By an IF-observable onF we understand each mapping x : B(R)→ F satisfying
the following conditions:

(i) x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) IfA∩B = ∅ andA,B ∈ B(R), then x(A)�x(B) = (0Ω, 1Ω) and x(A∪B) = x(A)⊕x(B);

(iii) If An ↗ A and An, A ∈ B(R), n ∈ N , then x(An)↗ x(A).

Similarly, we can define the notion of n-dimensional IF-observable.

Definition 2.7. By an n-dimensional IF-observable on F we understand each mapping
x : B(Rn)→ F satisfying the following conditions:

(i) x(Rn) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) If A ∩ B = ∅ and A,B ∈ B(Rn), then x(A) � x(B) = (0Ω, 1Ω) and x(A ∪ B) =

x(A)⊕ x(B);

(iii) If An ↗ A and An, A ∈ B(Rn), n ∈ N , then x(An)↗ x(A).

Similarly, as in the classical case the following theorem can be proved ([9, 15]).

Theorem 2.8. Let x : B(R) −→ F be an IF-observable, m : F −→ [0, 1] be an IF-state. Define
the mapping mx : B(R) −→ [0, 1] by the formula

mx(C) = m(x(C)).

Then mx : B(R) −→ [0, 1] is a probability measure.

Since mx : B(R)→ [0, 1] plays now an analogous role as Pξ : B(R)→ [0, 1], we can define
IF-expected value E(x) by the same formula (see [9]).

Definition 2.9. We say that an IF-observable x is an integrable IF-observable if the integral∫
R
t dmx(t) exists. In this case, we define the IF-expected value

E(x) =

∫
R

t dmx(t).

If the integral
∫
R
t2 dmx(t) exists, then we define IF-dispersion D2(x) by the formula

D2(x) =

∫
R

t2 dmx(t)−
(
E(x)

)2
=

∫
R

(t− E(x))2 dmx(t).
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3 Product operation, joint IF-observable
and function of several IF-observables

In [8] we introduced the notion of product operation on the family of IF-events F , and showed
an example of this operation.

Definition 3.1. We say that a binary operation · on F is product if it satisfies the following
conditions:

(i) (1Ω, 0Ω) · (a1, a2) = (a1, a2) for each (a1, a2) ∈ F;

(ii) The operation · is commutative and associative;

(iii) If (a1, a2)� (b1, b2) = (0Ω, 1Ω) and (a1, a2), (b1, b2) ∈ F , then

(c1, c2) ·
(
(a1, a2)⊕ (b1, b2)

)
=
(
(c1, c2) · (a1, a2)

)
⊕
(
(c1, c2) · (b1, b2)

)
and (

(c1, c2) · (a1, a2)
)
�
(
(c1, c2) · (b1, b2)

)
= (0Ω, 1Ω)

for each (c1, c2) ∈ F;

(iv) If (a1n, a2n) ↘ (0Ω, 1Ω), (b1n, b2n) ↘ (0Ω, 1Ω) and (a1n, a2n), (b1n, b2n) ∈ F , then
(a1n, a2n) · (b1n, b2n)↘ (0Ω, 1Ω).

The following theorem defines the product operation for IF-events.

Theorem 3.2. The operation · defined by

(x1, y1) · (x2, y2) = (x1 · x2, y1 + y2 − y1 · y2)

for each (x1, y1), (x2, y2) ∈ F is product operation on F .

Proof. See [8, Theorem 1].

In [13] B. Riečan defined the notion of a joint IF-observable and he proved its existence.

Definition 3.3. Let x, y : B(R) → F be two IF-observables. The joint IF-observable of the
IF-observables x, y is a mapping h : B(R2)→ F satisfying the following conditions:

(i) h(R2) = (1Ω, 0Ω), h(∅) = (0Ω, 1Ω);

(ii) If A,B ∈ B(R2) and A ∩B = ∅, then h(A ∪B) = h(A)⊕ h(B)

and h(A)� h(B) = (0Ω, 1Ω);

(iii) If A,A1, . . . ∈ B(R2) and An ↗ A, then h(An)↗ h(A);

(iv) h(C ×D) = x(C) · y(D) for each C,D ∈ B(R).
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Theorem 3.4. For each two IF-observables x, y : B(R)→ F there exists their joint IF-observable.

Proof. See [13, Theorem 3.3].

Remark 3.5. The joint IF-observable of the IF-observables x, y from Definition 3.3 is a two-
dimensional IF-observable.

If we have several IF-observables and a Borel measurable function, we can define the
IF-observable, which is the function of several IF-observables. About this says the following
definition.

Definition 3.6. Let x1, . . . , xn : B(R) → F be IF-observables, hn be their joint IF-observable
and gn : Rn → R be a Borel measurable function. Then, we define the IF-observable
gn(x1, . . . , xn) : B(R)→ F by the formula

gn(x1, . . . , xn)(A) = hn
(
g−1
n (A)

)
.

for each A ∈ B(R).

4 Lower and upper limits, P-almost everywhere convergence

In [4] we defined the notions of lower and upper limits for a sequence of IF-observables.

Definition 4.1. We shall say that a sequence (xn)n of IF-observables has lim sup
n→∞

if there exists

an IF-observable x : B(R)→ F such that

x((−∞, t)) =
∞∨
p=1

∞∨
k=1

∞∧
n=k

xn

((
−∞, t− 1

p

))
for every t ∈ R. We write x = lim sup

n→∞
xn.

Note that if another IF-observable y satisfies the above condition, then m ◦ y = m ◦ x.

Definition 4.2. A sequence (xn)n of IF-observables has lim inf
n→∞

if there exists an IF-observable x
such that

x((−∞, t)) =
∞∨
p=1

∞∧
k=1

∞∨
n=k

xn

((
−∞, t− 1

p

))
for all t ∈ R. Notation: x = lim inf

n→∞
xn.

In paper [5] we showed the connection between two kinds of P-almost everywhere conver-
gence.

Definition 4.3. Let (xn)n be a sequence of IF-observables on an IF-space (F ,P). We say that
(xn)n converges P-almost everywhere to 0, if

P
( ∞∧
p=1

∞∨
k=1

∞∧
n=k

xn

((
− 1

p
,
1

p

)))
= lim

p→∞
lim
k→∞

lim
i→∞
P
( k+i∧
n=k

xn

((
− 1

p
,
1

p

)))
=

= [1, 1] = 1.
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Remark 4.4. The defining formula is equivalent to the following equality

P
( ∞∨
p=1

∞∧
k=1

∞∨
n=k

xn

(
R\
(
− 1

p
,
1

p

)))
= [0, 0] = 0.

Theorem 4.5. A sequence (xn)n of IF-observables converges P-almost everywhere to 0 if and
only if it converges P[-almost everywhere and P]-almost everywhere to 0.

Proof. See [5, Theorem 5].

Proposition 4.1. A sequence (xn)n of IF-observables converges P-almost everywhere to 0 if and
only if

P
( ∞∨
p=1

∞∨
k=1

∞∧
n=k

xn

((
−∞, t− 1

p

)))
= P

( ∞∨
p=1

∞∧
k=1

∞∨
n=k

xn

((
−∞, t− 1

p

)))
=

= P
(
0F((−∞, t))

)
,

for every t ∈ R.

Proof. See [5, Proposition 2].

In accordance to Proposition 4.1, we can extend the notion of P-almost everywhere conver-
gence in the following way.

Definition 4.6. A sequence (xn)n of IF-observables converges P-almost everywhere to an IF-
observable x, if

P
( ∞∨
p=1

∞∨
k=1

∞∧
n=k

xn

((
−∞, t− 1

p

)))
= P

( ∞∨
p=1

∞∧
k=1

∞∨
n=k

xn

((
−∞, t− 1

p

)))
=

= P
(
x((−∞, t))

)
,

for every t ∈ R.

Sometimes we need to work with a sequence of IF-observables induced by a Borel measurable
function.

Recall, that the corresponding probability spaces are (RN , σ(C), P [) and (RN , σ(C), P ]),
where C is the family of all sets of the form

{(ti)∞i=1 : t1 ∈ A1, . . . , tn ∈ An},

and P [, P ] are the probability measures determined by the equalities

P [
(
{(ti)∞i=1 : t1 ∈ A1, . . . , tn ∈ An}

)
= P[

(
x1(A1) · . . . · xn(An)

)
,

P ]
(
{(ti)∞i=1 : t1 ∈ A1, . . . , tn ∈ An}

)
= P]

(
x1(A1) · . . . · xn(An)

)
.

The corresponding projections ξn : RN → R are defined by the equality

ξn
(
(ti)
∞
i=1

)
= tn.
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Theorem 4.7. Let (xn)n be a sequence of IF-observables, (ξn)n be the sequence of corresponding
projections, (gn)n be a sequence of Borel measurable functions gn : Rn → R. If the sequence(
gn(ξ1, . . . , ξn)

)
n

converges P [-almost everywhere and P ]-almost everywhere, then the sequence(
gn(x1, . . . , xn)

)
n

converges P-almost everywhere and

P
(

lim sup
n→∞

gn(x1, . . . , xn)
(
(−∞, t)

))
= P

(
lim inf
n→∞

gn(x1, . . . , xn)
(
(−∞, t)

))
for each t ∈ R. Moreover

P
(

lim sup
n→∞

gn(x1, . . . , xn)
(
(−∞, t)

))
=

[
P [
(
E
)
, P ]
(
E
)]

for each t ∈ R, where E = {u ∈ RN : lim supn→∞ gn
(
ξ1(u), . . . , ξn(u)

)
< t}.

Proof. See [5, Theorem 6].

5 Individual Ergodic Theorem

In paper [5] we proved the modification of the classical Individual Ergodic Theorem using m-
almost everywhere convergence. Since the intuitionistic fuzzy probability P can be decomposed
to two intuitionistic fuzzy states m (see [11, 14]), then we try to formulate the modification of the
classical Individual Ergodic Theorem using P-almost everywhere convergence.

Now, we recall the modification of the Individual Ergodic Theorem for the IF-state (see [6]).

Theorem 5.1. (Individual Ergodic Theorem) Let (F , ·) be a family of IF-events with product,
and m be an IF-state. Let x be an integrable IF-observable and τ be an m-preserving transfor-
mation. Then there exists an integrable IF-observable x∗ such that

(i) E(x) = E(x∗),

(ii) lim
n→∞

1
n

n−1∑
i=0

(τ i ◦ x) = x∗ m-almost everywhere.

Proof. See [6, Theorem 6.3] .

We defined the IF-mean value of an IF-observable and P-almost everywhere convergence
in the previous sections. Now we must define a transformation preserving an intuitionistic
probability P .

Definition 5.2. Let (F , ·) be a family of IF-events with product, P be an IF-probability. Then, a
mapping τ : F → F is said to be a P-preserving transformation if the following conditions are
satisfied:

(i) τ
(
(1Ω, 0Ω)

)
= (1Ω, 0Ω);

(ii) If A,B ∈ F and A�B = (0Ω, 1Ω), then τ(A)� τ(B) = (0Ω, 1Ω) and
τ(A⊕B) = τ(A)⊕ τ(B);
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(iii) If An ↗ A, An,A ∈ F , n ∈ N , then τ(An)↗ τ(A);

(iv) P
(
τ(A) · τ(B)

)
= P(A ·B) for each A,B ∈ F .

Now we show the connection to the m-preserving transformation. Recall that by m-preserving
transformation we understand each mapping τ : F → F if the following conditions are
satisfied:

(i) τ
(
(1Ω, 0Ω)

)
= (1Ω, 0Ω);

(ii) If A,B ∈ F and A�B = (0Ω, 1Ω), then τ(A)� τ(B) = (0Ω, 1Ω) and
τ(A⊕B) = τ(A)⊕ τ(B);

(iii) If An ↗ A, An,A ∈ F , n ∈ N , then τ(An)↗ τ(A);

(iv) m
(
τ(A) · τ(B)

)
= m(A ·B) for each A,B ∈ F .

See [6].

Theorem 5.3. Let (F , ·) be a family of IF-events with product, P be an IF-probability. The
mapping τ : F → F is the P-preserving transformation if and only if the mapping τ is the
P[-preserving transformation and the P]-preserving transformation, where P[,P] are the
IF-states.

Proof. “⇒” Let P be an IF-probability. Then by Theorem 2.5 it can be decomposed to two
IF-states P[,P] such that P(A) = [P[(A),P](A)] for each A ∈ F . If the mapping τ : F → F
is the P-preserving transformation, then by (iv) from Definition 5.2 we have[

P[(A ·B),P](A ·B)
]

= P(A ·B) = P
(
τ(A) · τ(B)

)
=
[
P[
(
τ(A) · τ(B)

)
,P]
(
τ(A) · τ(B)

)]
.

Hence,

P[
(
τ(A) · τ(B)

)
= P[(A ·B),

P]
(
τ(A) · τ(B)

)
= P](A ·B),

for each A,B ∈ F . Therefore, τ is a P[-preserving transformation and a P]-preserving transfor-
mation.

“⇐” The opposite direction can be proved similarly.

Theorem 5.4. (Individual Ergodic Theorem) Let (F , ·) be a family of IF-events with product,
P be an IF-probability. Let x be an integrable IF-observable and τ be an P-preserving transfor-
mation. Then there exists an integrable IF-observable x∗ such that

(i) E[(x) = E[(x∗), E](x) = E](x∗)

(ii) lim
n→∞

1
n

n−1∑
i=0

(τ i ◦ x) = x∗, P-almost everywhere.
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Proof. Let P be an IF-probability. By Theorem 2.5 it can be decomposed to two IF-states
P[,P], such that P(A) = [P[(A),P](A)] for each A ∈ F . Let τ be the P-preserving
transformation. Then from Theorem 5.3 we obtain that τ is the P[-preserving transformation
and the P]-preserving transformation, where P[,P] are the IF-states. Hence by Theorem 5.1
there exists an integrable IF-observable x∗ such that

(i) E[(x) = E[(x∗), E](x) = E](x∗)

(ii) lim
n→∞

1
n

n−1∑
i=0

(τ i ◦ x) = x∗, P[-almost everywhere and P]-almost everywhere.

Finally by Theorem 5.3 we obtain that

lim
n→∞

1

n

n−1∑
i=0

(τ i ◦ x) = x∗, P-almost everywhere.

6 Conclusion

The paper is concerned in ergodic theory for family of intuitionistic fuzzy events. We proved
the Individual ergodic theorem for intuitionistic fuzzy observables using P-almost everywhere
convergence, where P is an intuitinistic fuzzy probability. The results are a generalization of
results given in [3].
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