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1 Introduction

In[1, 2], K. T. Atanassov introduced the notion of intuitionistic fuzzy sets. Later P. Grzegorzewski
and E. Mréwka defined the probability on the family of intuitionistic fuzzy events

N ={(pa,v4); pa,va are S-measurable and 4 +v4 < 1o}

as a mapping P from the family N to the set of all compact intervals in R by the formula

Pl(j,va)) = { [uaar~ [ v, dp},

where (£, S, P) is the probability space, see [7]. This intuitionistic fuzzy probability was
axiomatically characterized by B. Riecan (see [10]).
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In this paper, we formulate the Individual ergodic theorem for intuitionistic fuzzy observables,
using P-almost everywhere convergence, where P is an intuitionistic fuzzy probability. Recall
that the formulation of the individual ergodic theorem for intuitionistic fuzzy events with product
first appeared in the paper [3]. There we used a separating intuitionistic fuzzy probability. Since
the intuitionistic fuzzy probability P can be decomposed to two intuitionistic fuzzy states, we can
use the results holding for intuitionistic fuzzy states, which were proved in [6].

Remark that in a whole text we use a notation IF as an abbreviation for intuitionistic fuzzy.

2 IF-events, IF-states, IF-observables and IF-mean value

In this section we explain the basic notions from IF-probability theory, see [1, 2, 13, 14, 15].

Definition 2.1. Let ) be a nonempty set. An IF-set A on ) is a pair (pa,va) of mappings
pa,va : Q — [0, 1] such that g + va < lg.

Definition 2.2. Start with a measurable space (), S). Hence S is a o-algebra of subsets of €).
An IF-event is called an IF-set A = (jua,v4) such that jia,v4 : Q@ — [0, 1] are S-measurable.

The family of all IF-events on (2, S) will be denoted by F, 114 : Q@ — [0, 1] will be called
the membership function, v4 :  — [0, 1] will be called the non-membership function.

If A = (ua,va) € F,B = (up,vp) € F, then we define the Lukasiewicz binary operations
@, ® on F by

A®B = ((pa+pp)Alg, (va+vp—1)V0q)),
AOB = ((pa+ps—1)V0q,(ra+vp)Alg))

and the partial ordering is given by
A <B < g < up,vs > vp.
In the paper, we use max—min connectives defined by
AVB = (uaVug,vaAvg),

AANB = (uaApug,vaVug)

and the de Morgan rules
(aVb)" =a" ND,

(@AD)" =a* Vb,
where a* =1 — a.

Example 2.3. A fuzzy set f : Q — [0, 1| can be regarded as an IF-set if we put
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If f = x4, then the corresponding IF-set has the form

A = (xa, 1o —xa) = (xa, Xa')-

In this case A @ B corresponds to the union of sets, A ® B to the intersection of sets and < to
the set inclusion.

Consider a probability space (€2, S, P). Then in [7] the IF-probability P(A) of an IF-event
A = (ua,va) € F has been defined as a compact interval by the equality

P(A) = {/Q,uAdP,l—/QI/AdP].

Let J be the family of all compact intervals. Then the mapping P : F — J can be defined
axiomatically similarly as in [10].

Definition 2.4. Let F be the family of all IF-events in (). A mapping P : F — J is called an
IF-probability if the following conditions hold:

(i) P((1a,0q)) = [1,1], P((0q, 10)) = [0,0];
(ii) If A ® B = (0q, 1q), then P(A @ B) = P(A) + P(B);

(iii) If A, /* A, then P(A,) /P(A).
(Recall that [, 5, / [ov, B] means that o, /o, B, 7 5, but A, = (pa,,va,) /A=
(fea,va) means pa, 7 pia, Va, \( VA-)

[F-probability P is called separating, if
P((asva)) = [P*(pa), 1 = PH(va)],
where the functions P°,P* : T — [0, 1] are probabilities.

Of course, each P(A) is an interval, denote it by P(A) = [P°(A), P#(A)]. By this way we
obtain two functions
P F —[0,1],P": F —[0,1]

and some properties of PP can be characterized by some properties of P°, P¥, see [11].

Theorem 2.5. Let P : F — J and P(A) = [P’(A), P*(A)] for each A € F. Then P is an
IF-probability if and only if P° and P* are IF-states.

Proof. See [11, Theorem 2.3] ]

Recall that by an intuitionistic fuzzy state (IF-state) m we understand each mapping m :
F — [0, 1] which satisfies the following conditions (see [12]):

(i) m((1g,00)) =1, m((0g, 1a)) = 0;
(i) if A®B = (0g,1g)and A,B € F,then m(A & B) = m(A) + m(B);

(i) if A, 7 A (e pa, / pas va, N\ Va), thenm(A,) / m(A).
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Now we introduce the notion of an observable. Let J be the family of all intervals in R of
the form
la,b) ={r € R:a <z <b}.

Then the o-algebra o(7) is denoted by B(R) and it is called the o-algebra of Borel sets, its
elements are called Borel sets (see [16]).

Definition 2.6. By an IF-observable on F we understand each mapping x : B(R) — F satisfying

the following conditions:
(i) x(R) = (1q,0q), (D) = (0q, 1a);
(ii) If ANB = 0and A, B € B(R), then z(A)®x(B) = (0q, 1q) and t(AUB) = z(A)®x(B);
(iii) If A, /* Aand A,,, A € B(R), n € N, then x(4A,) / x(A).
Similarly, we can define the notion of n-dimensional IF-observable.

Definition 2.7. By an n-dimensional IF-observable on F we understand each mapping
x : B(R") — F satisfying the following conditions:

(i) 2(R") = (1g,00), 2(0) = (0q, 1o),

(i) f AN B = 0 and A,B € B(R"), then x(A) ® z(B) = (0q,1q) and x(A U B) =
z(A) @ x(B),

(iii) If A, /* Aand A,,, A € B(R™), n € N, then x(A,) / x(A).
Similarly, as in the classical case the following theorem can be proved ([9, 15]).

Theorem 2.8. Let x : B(R) — F be an IF-observable, m : F — |0, 1] be an IF-state. Define
the mapping m,, : B(R) — |0, 1] by the formula

m,(C) = m(z(C)).
Then m, : B(R) — [0, 1] is a probability measure.

Since m,, : B(R) — [0, 1] plays now an analogous role as P: : B(R) — [0, 1], we can define
IF-expected value E(z) by the same formula (see [9]).

Definition 2.9. We say that an IF-observable x is an integrable IF-observable if the integral
S pt dmy(t) exists. In this case, we define the IF-expected value

E(z) = /R ¢ dm, (1),

If the integral | R t2 dm, (t) exists, then we define IF-dispersion D?(x) by the formula

D(z) = /R £ dm, (1) — (B(z))’ = / (t — B(z))? dmy(t).

R
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3 Product operation, joint IF-observable
and function of several IF-observables

In [8] we introduced the notion of product operation on the family of IF-events F, and showed
an example of this operation.

Definition 3.1. We say that a binary operation - on F is product if it satisfies the following

conditions:
(i) (lg,0q) - (a1, a2) = (a1, as) for each (a1, as) € F;
(ii) The operation - is commutative and associative;

(iii) If (a1, a9) ® (b1,b2) = (0q, 1lq) and (ay, as), (b1, bs) € F, then

(Cl, 02) . ((&1, CLQ) ) (bl, bQ)) = ((Cl, Cz) . ((11, ag)) D ((01, Cg) . (b1, bg))

and
((c1,¢2) - (a1, a2)) ® ((c1,¢2) - (br,b2)) = (0g, 1)

foreach (c1,¢;) € F;

(ZV) If(alnaa2n) \1 (Oﬂ,lﬂ), <b1n762n> \1 (OQ>1Q) and (a1n7a2n)7<blnab2n) S JT_-’ then
(alm Cbzn) : (bm’ an) N (097 19)-

The following theorem defines the product operation for IF-events.

Theorem 3.2. The operation - defined by

(@1,91) - (T2,92) = (T1- T2, 91 + Y2 — Y1 - Y2)
for each (x1,y1), (x2,y2) € F is product operation on F.
Proof. See [8, Theorem 1]. ]
In [13] B. Riecan defined the notion of a joint IF-observable and he proved its existence.

Definition 3.3. Let x,y : B(R) — F be two IF-observables. The joint IF-observable of the
IF-observables .,y is a mapping h : B(R?) — F satisfying the following conditions:

(i) h(RQ) = (1Q,OQ), h(@) — (OQ, IQ),'

(ii) If A,B € B(R?) and AN B =, then h(AU B) = h(A) ® h(B)
and h(A) ® h(B) = (0q, 1q);

(iii) If A, Ay, ... € B(R?)and A, /* A, then h(A,) /* h(A);

(iv) h(C x D) =xz(C)-y(D) foreach C, D € B(R).
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Theorem 3.4. For each two IF-observables x,y : B(R) — F there exists their joint IF-observable.
Proof. See [13, Theorem 3.3]. [l

Remark 3.5. The joint IF-observable of the IF-observables x,y from Definition 3.3 is a two-

dimensional IF-observable.

If we have several IF-observables and a Borel measurable function, we can define the
IF-observable, which is the function of several IF-observables. About this says the following
definition.

Definition 3.6. Let xq,...,x, : B(R) — F be IF-observables, h,, be their joint IF-observable
and g, : R — R be a Borel measurable function. Then, we define the IF-observable
gn(T1, ..., x,) : B(R) — F by the formula

gn(T1, .. x,)(A) = hn(ggl(A)).

foreach A € B(R).

4 Lower and upper limits, P-almost everywhere convergence

In [4] we defined the notions of lower and upper limits for a sequence of [F-observables.

Definition 4.1. We shall say that a sequence (x,,),, of IF-observables has lim sup if there exists

n—oo
an IF-observable T : B(R) — F such that

[ oZuNNe clENNe o]

#((—00.1)) = \/ \/ N\l (— o0t - 1))

p=1k=1n=k p
for everyt € R. We write T = lim sup x,,.

n—oo
Note that if another IF-observable y satisfies the above condition, then m oy = m o .

Definition 4.2. A sequence (x,,),, of IF-observables has lim inf if there exists an IF-observable x

n—oo
such that
(o] o0 [o¢] 1
z((—00,t)) = \/ /\ \/ xn<( —o00,t — —))
p=1k=1n=k p
forallt € R. Notation: x = liminf x,,.
n—o0

In paper [5] we showed the connection between two kinds of PP-almost everywhere conver-
gence.

Definition 4.3. Let (), be a sequence of IF-observables on an IF-space (F,P). We say that
(x)n converges P-almost everywhere to 0, if

(A1) - memimr(Re((-1)-

n=~k
= [1,1]=1
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Remark 4.4. The defining formula is equivalent to the following equality

P(VAV=(n(-53)) -on-o

Theorem 4.5. A sequence (x,), of IF-observables converges P-almost everywhere to 0 if and
only if it converges P°-almost everywhere and P*-almost everywhere to 0.

Proof. See [5, Theorem 5]. [

Proposition 4.1. A sequence (x,,),, of IF-observables converges P-almost everywhere to 0 if and
only if

P(VVA((-=3))) = 2(VAVA((-=0-5))) -
p=1k=1n=k p p=1k=1n=k p
= P(0r((—00,1))),
foreveryt € R.
Proof. See [, Proposition 2]. ]

In accordance to Proposition 4.1, we can extend the notion of P-almost everywhere conver-
gence in the following way.

Definition 4.6. A sequence (x,,),, of IF-observables converges P-almost everywhere to an IF-
observable z, if

P(VVAn((-==3))) = P(VAV=((-=1-7))) -
= P(a((~00.1))).

foreveryt € R.

Sometimes we need to work with a sequence of IF-observables induced by a Borel measurable
function.

Recall, that the corresponding probability spaces are (R™,o(C), P’) and (RY,o(C), P%),
where C is the family of all sets of the form

{(tl)fil : tl € A17 s 7tn € An}?
and P°, P¥ are the probability measures determined by the equalities
P{t)2) i € Aryoitn € AnY) =P (1(A)) - .- m0(Ay)),

Pﬁ({(tl)?il : tl S Al, . ,tn S An}) = Pﬁ<$1(141) et ZL'n(An))

The corresponding projections &, : RY — R are defined by the equality
én((tZ)(;il) = tp.

43



Theorem 4.7. Let (z,,),, be a sequence of IF-observables, (&), be the sequence of corresponding
projections, (g,), be a sequence of Borel measurable functions g, : R" — R. If the sequence
( &1y, 5n))n converges P’-almost everywhere and P*-almost everywhere, then the sequence
(gn(xl, cee xn))n converges P-almost everywhere and

P(liirisolip gn(@1, . ) ((—00, t))> = P(ligrig)lf gn(@1, ..., 20) ((—00, t)))

foreacht € R. Moreover

P(limsupgn(xl,...,mn)((—oo,t))> = [Pb(E),Pﬁ(E)}

n—oo

for each t € R, where E = {u € R" : limsup,,_,. ¢»(&(u), ..., &) <t}

Proof. See [5, Theorem 6]. O

S Individual Ergodic Theorem

In paper [5] we proved the modification of the classical Individual Ergodic Theorem using m-
almost everywhere convergence. Since the intuitionistic fuzzy probability P can be decomposed
to two intuitionistic fuzzy states m (see [11, 14]), then we try to formulate the modification of the
classical Individual Ergodic Theorem using P-almost everywhere convergence.

Now, we recall the modification of the Individual Ergodic Theorem for the IF-state (see [6]).

Theorem 5.1. (Individual Ergodic Theorem) Let (F, -) be a family of IF-events with product,
and m be an IF-state. Let x be an integrable IF-observable and T be an m-preserving transfor-

mation. Then there exists an integrable IF-observable x* such that
(i) E(z) = E(z"),

n—1
(ii) lim 1" (rioxz) = 2* m-almost everywhere.

Proof. See [6, Theorem 6.3] . O]

We defined the IF-mean value of an IF-observable and P-almost everywhere convergence
in the previous sections. Now we must define a transformation preserving an intuitionistic
probability P.

Definition 5.2. Let (F,-) be a family of IF-events with product, P be an IF-probability. Then, a
mapping T : F — F is said to be a P-preserving transformation if the following conditions are
satisfied.:

(i) 7((1a,00)) = (1g,0);

(ii) IfA,Be Fand A©B = (0q, 1q), then T(A) © 7(B) = (0q, 1q) and
T(A®B) =7(A) @ 7(B);
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(iii) IfA, A, A,,Ac F,neN,thent(A,) /7(A);
(iv) P(r(A)-7(B)) = P(A-B) foreach A,B € F.

Now we show the connection to the m-preserving transformation. Recall that by m-preserving
transformation we understand each mapping 7 : & — F if the following conditions are
satisfied:

@ 7((1e,00)) = (1g,0);

() IfA,Be Fand A®B = (0q,1q),then 7(A) ® 7(B) = (0q, 1q) and
7A@ B)=7(A) & 7(B);

i) IfA, "A,A,,AcF,ne N,thent(A,) "71(A);
(iv) m(7(A)-7(B)) =m(A-B)foreach A,B € F.
See [6].

Theorem 5.3. Let (F,-) be a family of IF-events with product, P be an IF-probability. The
mapping T : F — F is the P-preserving transformation if and only if the mapping T is the
P-preserving transformation and the Pt-preserving transformation, where P°, P are the
IF-states.

Proof. “=" Let P be an IF-probability. Then by Theorem 2.5 it can be decomposed to two
IF-states P°, P* such that P(A) = [P°(A), P*(A)] for each A € F. If the mapping 7 : F — F
is the P-preserving transformation, then by (iv) from Definition 5.2 we have

[P’(A-B),P*(A-B)] = P(A B) =P(r(A) - 7(B))
= [P’(r(A) - 7(B)), P*(r(A) - 7(B))].

Hence,

for each A, B € F. Therefore, T is a P’-preserving transformation and a P*-preserving transfor-
mation.

“«<" The opposite direction can be proved similarly. ]

Theorem 5.4. (Individual Ergodic Theorem) Ler (F, -) be a family of IF-events with product,
‘P be an IF-probability. Let x be an integrable IF-observable and T be an P-preserving transfor-

mation. Then there exists an integrable IF-observable x* such that

(i) B (z) = B’ (2%), Bf(z) = Ef(z*)
n—1
(ii) lim % S" (tPox) = x*, P-almost everywhere.
n—o0 "V i)
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Proof. Let P be an IF-probability. By Theorem 2.5 it can be decomposed to two IF-states
P°, P, such that P(A) = [P°(A),P*(A)] for each A € F. Let 7 be the P-preserving
transformation. Then from Theorem 5.3 we obtain that 7 is the 7P°-preserving transformation
and the P*-preserving transformation, where P”, P* are the IF-states. Hence by Theorem 5.1
there exists an integrable IF-observable z* such that

(i) B'(z) = E’(z*), EX(z) = E*(z")

(i) lim 13 (r'ox) =2, 7P -almosteverywhere and P-almost everywhere.

—1

Finally by Theorem 5.3 we obtain that

n—1
7}1_)1{)10 - EO (1" ox) = x*, P-almost everywhere. O

6 Conclusion

The paper is concerned in ergodic theory for family of intuitionistic fuzzy events. We proved
the Individual ergodic theorem for intuitionistic fuzzy observables using P-almost everywhere
convergence, where P is an intuitinistic fuzzy probability. The results are a generalization of
results given in [3].
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