On probabilities on IF-sets and MV-algebras

Vladislav Biba

Faculty of Natural Sciences, Matej bel University
Department of Mathematics
Tajovského 40
97401 Banská Bystrica, Slovakia
v biba@post.sk

Abstract

A new proof is presented for the general form of probability on the generated MV-algebras by the help of the representation theorem for probabilities of the family of IF-events generating the MV-algebra..

Keywords: IF-sets, MV-algebras, probability

Definition 1: Let (Ω, S) be the measurable space where S is a σ - algebra. Let T be the tribe of all S – measurable functions $f: \Omega \longrightarrow \langle 0, 1 \rangle$. Define the set F as follows:

$$F = \{(\mu_A, \nu_A), \mu_A, \nu_A \in T, \mu_A + \nu_A \le 1\}$$

Also we will use the following definitions:

$$\langle a,b\rangle + \langle c,d\rangle = \langle a+c,b+d\rangle$$

$$\langle a_n,b_n\rangle \nearrow \langle a,b\rangle \Leftrightarrow a_n \nearrow a \wedge b_n \nearrow b$$

$$(\mu_{A_n},\nu_{A_n})\nearrow (\mu_A,\nu_A) \Leftrightarrow \mu_{A_n} \nearrow \mu_A \wedge \nu_{A_n} \searrow \nu_A$$

$$\mu_A \oplus \mu_B = \min(\mu_A + \mu_B, 1)$$

$$\mu_A \otimes \mu_B = \max(\mu_A + \mu_B - 1, 0)$$

$$(\mu_A,\nu_A) \oplus (\mu_B,\nu_B) = (\mu_A \oplus \mu_B,\nu_A \otimes \nu_B)$$

$$(\mu_A,\nu_A) \otimes (\mu_B,\nu_B) = (\mu_A \otimes \mu_B,\nu_A \oplus \nu_B)$$

Definition 2: If probability on F is a mapping $P: F \longrightarrow I$ (I is the family of all compact intervals in R) satisfying the following conditions:

(i)
$$P((0,1)) = \langle 0,0 \rangle$$
, $P((1,0)) = \langle 1,1 \rangle$
(ii) $P((\mu_A, \nu_A)) + P((\mu_B, \nu_B)) = P((\mu_A, \nu_A) \oplus (\mu_B, \nu_B)) + P((\mu_A, \nu_A) \otimes (\mu_B, \nu_B))$
(iii) $(\mu_A, \nu_A) \nearrow (\mu_A, \nu_A) \Rightarrow P((\mu_A, \nu_A)) \nearrow P((\mu_A, \nu_A))$

Theorem 1: To any probability $P: F \longrightarrow I$ there exists real numbers α and β such that $0 \le \alpha \le \beta \le 1$ and:

$$P((\mu_A, \nu_A)) = \left\langle (1-\alpha) \int_{\Omega} \mu_A dP + \alpha \int_{\Omega} (1-\nu_A) dP, (1-\beta) \int_{\Omega} \mu_A dP + \beta \int_{\Omega} (1-\nu_A) dP \right\rangle.$$

Proof: see [3].

Definition 3: MV algebra is the system $(M, \oplus, \otimes, \neg, 0, u)$, if:

 \oplus , \otimes are binary operations, \oplus is comutative and associative, \neg is unary operation, 0 and u are from set M and for any $a \in M$: $a \oplus 0 = a$, $a \oplus u = u$, $\neg(\neg a) = a$, $\neg 0 = u$, $a \oplus (\neg a) = u$, $\neg(\neg a \oplus b) \oplus b = \neg(a \oplus \neg b) \oplus a$, $a \otimes b = \neg(\neg a \oplus \neg b)$.

Lemma: Let M be the set $M = \{(\mu_A, \nu_A), \mu_A, \nu_A \text{ are S-measurable}, \mu_A, \nu_A : \Omega \longrightarrow \langle 0, 1 \rangle \}$

and operations \oplus , \otimes , \neg are defined as follows:

$$A \oplus B = (\mu_A \oplus \mu_B, \nu_A \otimes \nu_B)$$

$$A \otimes B = (\mu_A \otimes \mu_B, \nu_A \oplus \nu_B)$$

$$\neg (\mu_A, \nu_A) = (1 - \mu_A, 1 - \nu_A)$$

Then $(M, \oplus, \otimes, \neg, 0, 1)$ is an MV algebra where 0 = (0, 1) and 1 = (1, 0).

Proof. See [2]

We can define probability on set M analogously to Definition 1. If we consider the set $J = \{[a,a]; a \text{ is a real number}\}$, then the mapping $P: F \longrightarrow I$ called a state.

Theorem 2: To any state $p: F \longrightarrow \langle 0, 1 \rangle$ exists exactly one state $p: M \longrightarrow \langle 0, 1 \rangle$ such that $p \mid F = p$.

Proof. Define $p((\mu_A, \nu_A)) = p((\mu_A, 0)) - p((0, 1 - \nu_A))$. The proof of all properties of p is straightforward.

Theorem 3: To any IF probability $P: F \longrightarrow I$ there exists exactly one probability $\overline{P}: M \longrightarrow I$ such that $\overline{P} \mid F = P$.

Proof. For any probability $P: F \longrightarrow I$ we can put

$$P(A) = \langle P^{(1)}(A), P^{(2)}(A) \rangle,$$

where $P^{(1)}$, $P^{(2)}$ are states on F. For the states we have exactly one state $\overline{P}^{(1)}$, $\overline{P}^{(2)}$ on M extending $P^{(1)}$, $P^{(2)}$. Therefore the mapping

$$\overline{P}(A) = \left\langle \overline{P}^{(1)}(A), \overline{P}^{(2)}(A) \right\rangle$$

is a probability on M extending P..

Theorem 6: To any probability on M $P: M \longrightarrow I$ there exists real numbers α and β , such that $0 \le \alpha \le \beta \le 1$ and

$$P((\mu_A, \nu_A)) = \left\langle (1 - \alpha) \int_{\Omega} \mu_A dP + \alpha \int_{\Omega} (1 - \nu_A) dP, (1 - \beta) \int_{\Omega} \mu_A dP + \beta \int_{\Omega} (1 - \nu_A) dP \right\rangle.$$

Proof. It is a consequence of Theorems 1 and 3.

References

- [1] Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica Verlag, New York 1999.
- [2] Mazureková, P.: An embedding of IF-sets to MV-algebras. J. Electrical Engineering, submitted.
- [3] Riečan, B.: On a problem of Radko Mesiar: general form of IF-probabilities. Fuzzy Sets and Systems 157, 2006, 1485 1490.