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Abstract: This paper proposes an extension of Tanaka and Asai approach to study Atanassov’s
I-fuzzy linear programming problems where problem parameters are prescribed by I-fuzzy num-
bers. In literature, there are various indices based ranking function approaches for solving such
I-fuzzy linear programming problems, e.g., Li [26], Li et al. [27], Dubey and Mehra [18] and
Dubey et al. [19]. One major issue with these approaches is that the solution so obtained depends
on the specific choice of the ranking function. The primary advantage of the proposed method is
that, it is independent of any transformation and also provides the precise degrees of belief and
disbelief of the optimal solution in achieving the goals set by the decision maker. It is shown that
solving such an optimization problem is equivalent to solving a non-linear programming problem.
A small numerical example is included as an illustration.
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1 Introduction

Atanassov [5, 7, 8] integrated the notion of hesitancy degree in a fuzzy set by adding a new
component which describes the degree of non-membership of an element in a given fuzzy set and
called such a set an intutionistic fuzzy set. While the definition of fuzzy set provides the degree
of membership of an element in a given set and its non-membership degree is understood as
one minus its membership degree, the definition of intutionistic fuzzy set provides more-or-less
independent degrees of membership and non-membership of an element in a given set. The only
requirement in latter is that the sum of two degrees is less than or equal to one. As a result, an
intutionistic fuzzy set exhibits characteristics of affirmation, negation and hesitation. For instance,
in any confronting situation in decision making, beside support or positive response, objection or
negative response, there could be an abstention which indicates hesitation or indeterminacy in
response to the situation. Intutionistic fuzzy set thus occurs very naturally in real life decision
making problems. For detailed description and properties of intutionistic fuzzy sets, we may refer
to Atanassov [6], Szmidt and Kacprzyk [29] and other references cited therein.

The domain of intutionistic fuzzy set is not devoid of its share of controversies (see, Dubois
et al. [15] and Grzegorzewski and Mrówka [22]). The nomenclature of intutionistic fuzzy set
itself was an issue of debate because same nomenclature had also been used in intuitionistic
fuzzy logic, and the two differ in their mathematical structure and treatment. It obviously makes
sense to avoid using same terminology for two different concepts. As suggested in [15] and [22],
in this paper, Atanassov intuitionistic fuzzy set is called Atanassov’s I-fuzzy set or simply I-fuzzy
set.

In the early study on fuzzy linear programming, two approaches have contributed signifi-
cantly. These are due to Zimmermann [34] and, Tanaka and Asai [30]. While Zimmermann’s
approach is applied to linear programming with fuzzy goals (also called flexible linear program-
ming problems), the approach of Tanaka and Asai [30] is useful for solving linear programming
with fuzzy parameters (also called fuzzy number linear programming problems).

Compared to Tanaka and Asai [30] approach, Zimmermann’s approach is more visible in the
literature because most of the early engineering applications employed the same. The work on lin-
ear programming with fuzzy parameters followed a somewhat different direction. This has been
mainly because there is no unique method of comparing fuzzy numbers. Therefore, depending
on the choice of ordering, we have the corresponding solution concept for the given fuzzy linear
programming problem. Most of the early work in this direction is based on Yager’s ranking func-
tion approach [33]. This lead to several variants of the original work of Yager [33] e.g., Bector et
al. [11], Li [26] and Li et al. [27]. Different from these ranking functions approaches, Clemente
et al. [12] have recently defined fuzzy ordering via a finite set of α-cuts (say r). This approach
results in solving an appropriate multi-objective linear programming problem for the given fuzzy
linear programming problem. Recently Aliev et al. [3] presented ranking on Z-numbers and its
application in decision making.

Compared to the ordering methodologies discussed above, the conceptual frame work of
Tanaka and Asai [30] for comparing fuzzy numbers is totally different and seems to be very
natural. For this, Tanaka and Asai [30] introduced a very basic notion of ‘almost positive TFN’
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and used the same to transform a fuzzy number linear programming problem to an appropriate
crisp optimization problem.

Recently Atanassov’s I-fuzzy set based linear programming problems have become popular
because of their wide applications in areas like clustering [31], medical diagnosis [14], pattern
recognition [24, 31]. Angelov [4] extended Zimmermann’s approach [34] to solve linear program-
ming problems with I-fuzzy goals. Later Aggarwal et al. [1] studied I-fuzzy linear programming
problems with application in I-fuzzy matrix games. Motivated by the works of Hurwicz [20] and
Yager [33], Dubey et al. [17] studied an I-fuzzy optimization problem with Atanassov’s I-fuzzy
goals, by resolving the indeterminacy factor before applying the Bellman and Zadeh extension
principle [10] to it. Further Dubey et al. [18] studied multiobjective flexible linear programming
in a bipolar frame work and developed an algorithm for computing a Pareto-optimal solution.

As regards the case of linear programming with I-fuzzy parameters, there are contributions
of Dubey and Mehra [18], Li [26] and Li et al.[27] where various indices based ranking function
approaches have been employed. Aggarwal et al. [2] have extended Clemente et al. [12] approach
to I-fuzzy parameter scenario and showed its application in a variety of I-fuzzy matrix games. To
the best of our knowledge, Tanaka and Asai’s [30] approach has not yet been attempted to study
I-fuzzy linear programming problems and that is what we wish to study in the present paper.

In a recent work Inuiguchi and Lodwick [23] presented an overview of the contributions
of Tanaka and Asai [30] approach for solving fuzzy number and other related linear program-
ming problems. This contribution of Inuguichi and Lodwick [23] has created renewed interest in
Tanaka and Asai’s [30] approach so as to explore its application in more general type of fuzzy
linear programming problems. Here we attempt to study Atanassov’s I-fuzzy linear programming
problem via Tanaka and Asai’s [30] approach. Thus we are able to solve an I-fuzzy number lin-
ear programming problem without using any defuzzification function and/or any indices based
ranking function approach.

The paper is organized as follows. Section 2 presents the basic definitions corresponding to
I-fuzzy set and I-fuzzy number. Section 3, first presents the main concept, ‘an almost positive’
symmetric triangular fuzzy number, of Tanaka and Asai [30] and then, the generalization of this
notion to I-fuzzy scenario so as to understand the meaning of ‘an almost positive’ symmetric
triangular I-fuzzy number. Section 4, starts with the basic formulation of a linear programming
problem with I-fuzzy parameters and converts it into a finite system of I-fuzzy inequalities. This
later system is solved by solving an appropriate nonlinear programming problem which is con-
structed by employing the definition of ‘an almost positive’ symmetric triangular I-fuzzy number.
Here a small numerical example is also included as an illustration. The last section, namely
Section 5, is the Conclusion section.

2 Preliminaries

In this section, we present certain preliminaries with regard to I-fuzzy sets and I-fuzzy numbers.
For results related to fuzzy sets and fuzzy numbers we may refer to Wu [32], Bector and Chandra
[9] and Zimmermann [34].
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Definition 2.1 (I-fuzzy set). An I-fuzzy set ã in X is described by

ã = {〈x, µã(x), νã(x)〉 | x ∈ X, µã(x) + νã(x) 5 1},

where µã : X → [0, 1] and νã : X → [0, 1] define, respectively, the membership function and the
nonmembership function.

If µã(x) + νã(x) = 1, for all x ∈ X , then ã degenerates to the standard fuzzy set.
We now take X = R, the real Euclidean space, and recall an I-fuzzy number.

Definition 2.2 ((I-fuzzy number (Li [25], Nehi [28]))). An I-fuzzy number ã is an I-fuzzy set
over R whose membership function µã : R → [0, 1] and νã : R → [0, 1] satisfy the following
conditions

(i) there are real numbers c and d such that µã(c) = 1 and νã(d) = 1;

(ii) µã is quasi concave and νã is quasi convex on R;

(iii) µã is upper semi-continuous and νã is lower semi-continuous;

(iv) the support sets {x ∈ R |µã(x) > 0} and {x ∈ R | νã(x) < 1} are bounded.

We denote the set of I-fuzzy numbers by IFN(R).
From above definition we get at once that for any I-fuzzy number ã there exists eight numbers

a1, a2, a3, a4, c1, c2, c3, c4 ∈ R such that c1 5 a1 5 c2 5 a2 5 a3 5 c3 5 a4 5 c4 and four
functions f1, f2, f3, f4 : R → [0, 1], called the sides of a I-fuzzy number, where f1 and f4 are
nondecreasing and f2 and f3 are non increasing functions. The membership function µã of an
I-fuzzy number ã can be specified as

µã(x) =



0, x < a1,

f1(x), a1 5 x < a2,

1, a2 5 x 5 a3,

f2(x), a3 < x 5 a4,

0, x > a4,

while the nonmembership function νã has the following form

νã(x) =



1, x < c1,

f3(x), c1 5 x < c2,

0, c2 5 x 5 c3,

f4(x), c3 < x 5 c4,

1, x > c4.

It is worth noting that each I-fuzzy number ã is a conjunction of two fuzzy numbers, the
membership function of one is µã and that of the other is 1− νã.

In particular, if the nondecreasing functions f1 and f4 and non increasing functions f2 and f3
are linear and a2 = c2, a3 = c3, then the given I-fuzzy number is a trapezoidal I-fuzzy number.
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The membership function and nonmembership function for the trapezoidal I-fuzzy number are as
follows

µã(x) =



0, x < a1,
x− a1
a2 − a1

, a1 5 x < a2,

1, a2 5 x 5 a3,
a3 − x
a4 − a3

, a3 < x 5 a4,

0, x > a4,

and

νã(x) =



1, x < c1,
x− c2
c1 − c2

, c1 5 x < c2,

0, c2 5 x 5 c3,
x− c3
c4 − c3

, , c3 < x 5 c4,

1, x > c4.

We can represent a trapezoidal I-fuzzy number (TrIFN) by

ã = 〈[a1, a2, a3, a4], [c1, c2, c3, c4]〉

with a2 = c2, a3 = c3. Now if, a2 = a3 = c2 = c3 = a(say) then the a above given trapezoidal I-
fuzzy number is the triangular I-fuzzy number. Similarly, a triangular I-fuzzy number (TIFN) is
represented by ã = 〈[a1, a2, a3], [c1, c2, c3]〉 with a2 = c2. Again if (a2−a1) = (a3−a2) = p(say)
and (c2 − c1) = (c3 − c2) = q(say) then the given (TIFN) will be a symmetric triangular I-
fuzzy number. We note that a symmetric triangular I-fuzzy number ã may be denoted by ã =

〈[a− p, a, a+ p], [a− q, a, a+ q]〉.

Definition 2.3. (I-fuzzy arithmetic (Li [25], Nehi [28])). Let ã = 〈[a1, a2, a3], [c1, c2, c3]〉 and
b̃ = 〈[b1, b2, b3], [d1, d2, d3]〉 be two Triangular I-fuzzy number and k be a real number. Then the
standard addition ã+ b̃ and substraction ã− b̃ are respectively the I-fuzzy numbers defined as

ã+ b̃ = 〈[a1 + b1, a2 + b2, a3 + b3], [c1 + d1, c2 + d2, c3 + d3]〉,

and
ã− b̃ = 〈[a1 − b3, a2 − b2, a3 − b1], [c1 − d3, c2 − d2, c3 − d1]〉.

Further, multiplication with any real number k, kã is an another I-fuzzy number defined as

kã = 〈[ka1, ka2, ka3], [kc1, kc2, kc3]〉, if k > 0,

kã = 〈[ka3, ka2, ka1], [kc3, kc2, kc1]〉, if k < 0.

3 An almost positive symmetric triangular I-fuzzy number

While discussing solution methodology for fuzzy linear programming problems, Tanaka and
Asai [30] introduced the concept of ‘an almost positive’ symmetric triangular fuzzy number.
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Taking motivation from Tanaka and Asai [30], in this section, we conceptualize the notion of ‘an
almost positive’ symmetric triangular I-fuzzy number. Before we formalize our notion for ‘an
almost positive’ symmetric triangular I-fuzzy number, we have the basic definition and related
results with regards to an ‘almost positive’ symmetric triangular fuzzy number.

Definition 3.1 (‘almost positive’ symmetric triangular fuzzy number (Tanaka & Asai [30])).
Let ã = 〈[a − p, a, a + p]〉 be a symmetric triangular fuzzy number. Let 0 ≤ h ≤ 1. Then
ã = 〈[a− p, a, a+ p]〉 is said to be almost positive with degree of belief h, denoted by ã &F

h 0, if
a > 0 and µã(0) ≤ (1− h).

Figure 1 illustrates ã &F
h 0 graphically.

3 An Almost Positive Symmetric Triangular I-fuzzy Number

While discussing solution methodology for fuzzy linear programming problems, Tanaka and Asai
[30] introduced the concept of ‘an almost positive’ symmetric triangular fuzzy number. Taking
motivation from Tanaka and Asai [30], in this section, we conceptualize the notion of ‘an almost
positive’ symmetric triangular I-fuzzy number. Before we formalize our notion for ‘an almost
positive’ symmetric triangular I-fuzzy number, we have the basic definition and related results
with regards to an ‘almost positive’ symmetric triangular fuzzy number.

Definition 3.1. (‘almost positive’ symmetric triangular fuzzy number (Tanaka and Asai
[30]))

Let ã =< [a − p, a, a + p] be a symmetric triangular fuzzy number. Let 0 ≤ h ≤ 1. Then
ã =< [a− p, a, a+ p] > is said to be almost positive with degree of belief h, denoted by ã &F

h 0,
if a > 0 and µã(0) ≤ (1− h).

Figure 1 illustrates ã &F
h 0 graphically.

(1− h)

ã
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Figure 1: Fuzzy Number ã &F
h 0

Remark 1. Earlier Wu [32] and Dubois and Prade [16] defined a fuzzy number ã to be a ‘positive
fuzzy number’ if µã(x) = 0, ∀x ≤ 0. Therefore, a symmetric triangular fuzzy number is
certainly be a ‘positive fuzzy number’ if it is ‘almost positive fuzzy number with degree 1’ in
the sense of Tanaka and Asai [30]. Thus, the definition of ‘almost positive’ symmetric triangular
fuzzy number is more general than the definition of ‘positive fuzzy’ number.

Remark 2. Tanaka and Asai [30] did not use the term ‘degree of belief’ but rather used the term
‘degree’ only. We find the term ‘degree of belief’ convenient for extending the concept of ‘almost
positive’ to I-fuzzy scenario.
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Remark 1. Earlier Wu [32] and Dubois and Prade [16] defined a fuzzy number ã to be a ‘positive
fuzzy number’ if µã(x) = 0, ∀x ≤ 0. Therefore, a symmetric triangular fuzzy number is
certainly be a ‘positive fuzzy number’ if it is ‘almost positive fuzzy number with degree 1’ in
the sense of Tanaka and Asai [30]. Thus, the definition of ‘almost positive’ symmetric triangular
fuzzy number is more general than the definition of ‘positive fuzzy’ number.

Remark 2. Tanaka and Asai [30] did not use the term ‘degree of belief’ but rather used the term
‘degree’ only. We find the term ‘degree of belief’ convenient for extending the concept of ‘almost
positive’ to I-fuzzy scenario.

Remark 3. As h is the degree of belief for the fuzzy statement ‘ã &F
h 0 to be almost positive’, the

quantity (1− h) may be interpreted as the degree of disbelief for the same fuzzy statement.

Remark 4. As ã is a symmetric triangular fuzzy number, maximizing the degree of belief h
automatically minimizes the degree of disbelief (1− h) for the fuzzy statement ã &F

h 0.

The concept of ã &F
h 0 can now be utilized to compare two symmetric triangular fuzzy

numbers ã and b̃. We say that ã &F
h b̃ if (ã − b̃) &F

h 0. Thus a fuzzy number ã is more than or
equal to another fuzzy number b̃, if the fuzzy number (ã − b̃) is almost positive with degree of
belief h. Further, the inequality ã .F

h b̃ is to be understood in the sense that the fuzzy number
(b̃− ã) is almost positive with degree of belief h.
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We now present the definition of ‘an almost positive’ symmetric triangular I-fuzzy number.

Definition 3.2 (Almost positive symmetric triangular I-fuzzy number). Let ã = 〈[a−p, a, a+
p][a − q, a, a + q]〉 be a symmetric triangular I-fuzzy number. Let 0 ≤ h1 ≤ 1 and 0 ≤ h2 ≤ 1.
We say that ã is almost positive, denoted by ã &IF

h1,h2
0, if a > 0 and

(i) µã(0) ≤ (1− h1), and

(ii) νã(0) ≥ h2,

where, h1 and (1 − h2) respectively are interpreted as the ‘degree of belief’ and the ‘degree of
disbelief’ in making the statement ‘ã is almost positive’.

The below given figure, Figure 2 depicts the meaning of ã &IF
h1,h2

0.

Remark 3. As h is the degree of belief for the fuzzy statement ‘ã &F
h 0 to be almost positive’, the

quantity (1− h) may be interpreted as the degree of disbelief for the same fuzzy statement.

Remark 4. As ã is a symmetric triangular fuzzy number, maximizing the degree of belief h

automatically minimizes the degree of disbelief (1− h) for the fuzzy statement ã &F
h 0.

The concept of ã &F
h 0 can now be utilized to compare two symmetric triangular fuzzy

numbers ã and b̃. We say that ã &F
h b̃ if (ã − b̃) &F

h 0. Thus a fuzzy number ã is more than or
equal to another fuzzy number b̃, if the fuzzy number (ã − b̃) is almost positive with degree of
belief h. Further, the inequality ã .F

h b̃ is to be understood in the sense that the fuzzy number
(b̃− ã) is almost positive with degree of belief h.

We now present the definition of ‘an almost positive’ symmetric triangular I-fuzzy number.

Definition 3.2. (Almost positive symmetric triangular I-fuzzy number) Let ã =< [a−p, a, a+

p][a− q, a, a+ q] > be a symmetric triangular I-fuzzy number. Let 0 ≤ h1 ≤ 1 and 0 ≤ h2 ≤ 1.
We say that ã is almost positive, denoted by ã &IF

h1,h2
0, if a > 0 and

(i) µã(0) ≤ (1− h1), and

(ii) νã(0) ≥ h2,

where, h1 and (1−h2) respectively are interpreted as the ‘degree of belief’ and the ‘degree of
disbelief’ in making the statement ‘ã is almost positive’. The below given figure, Figure 2 depicts
the meaning of ã &IF

h1,h2
0.
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Figure 2: Meaning of ã &IF
h1,h2

0

We next define the ‘belief score’ of the I-fuzzy statement ã &IF
h1,h2

0.

Definition 3.3. (Belief score) Let ã be almost positive with degree of belief h1 and degree of
disbelief (1− h1). Then the difference h1 − (1− h2), i.e., (h1 + h2 − 1) is called the belief score
of the I-fuzzy statement ã &IF

h1,h2
0.
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We next define the ‘belief score’ of the I-fuzzy statement ã &IF
h1,h2

0.

Definition 3.3 (Belief score). Let ã be almost positive with degree of belief h1 and degree of
disbelief (1− h1). Then the difference h1− (1− h2), i.e., (h1 + h2− 1) is called the belief score
of the I-fuzzy statement ã &IF

h1,h2
0.

Remark 5. As ã is a I-fuzzy number, µã(0) + νã(0) ≤ 1 i.e., (1 − h1) + h2 ≤ 1. This gives
h1 ≥ h2. Also for a meaningful decision we expect that the degree of belief is greater than or
equal to the degree of disbelief. Thus h1 ≥ (1 − h2), i.e., h1 + h2 ≥ 1, which means that the
belief score is always expected to be non-negative.

Now the concept of ã &IF
h1,h2

0 can be utilized to compare two symmetric triangular I-fuzzy
numbers ã and b̃. Therefore, an I-fuzzy number ã is ‘more than or equal to’ another I-fuzzy
number b̃, denoted by ã &IF

h1,h2
b̃ if the triangular I-fuzzy number (ã − b̃) is almost positive, i.e.,

(ã − b̃) &IF
h1,h2

0. Further, an I-fuzzy number ã is ‘less than or equal to’ another I-fuzzy number
b̃, denoted by ã .IF

h1,h2
b̃, if the symmetric triangular I-fuzzy number (b̃ − ã) is almost positive,

i.e., (b̃− ã) &IF
h1,h2

0.
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One may check that an I-fuzzy number ã = 〈[175, 180, 185], [170, 180, 190]〉 is ‘more than or
equal to’ 178 with degree of belief 0.4 and degree of disbelief 0.8. Further ã is ‘more than or equal
to’ 172 with degree of belief 1 and degree of disbelief 0.2. Here a real number r is interpreted as
the degenerate triangular I-fuzzy number 〈[r, r, r], [r, r, r]〉.

4 Linear programming with I-fuzzy parameters:
proposed approach

In this section, we discuss our proposed approach to solve I-fuzzy number linear programming
problems. For this we consider a general model of an I-fuzzy linear programming problem
(IFLP).

(IFLP) Maximize ãT0 x

subject to
ÃTx .IF b̃,

x ≥ 0.

Here ã0 = (ã01, ã02, · · · , ã0n)T and b̃ = (ã10, ã20, · · · , ãm0)
T respectively are the n-dimensional

and m-dimensional vectors with entries as symmetric triangular I-fuzzy numbers. Further let
Ã = [ãij] be an (m× n) matrix with ãij, (i = 1, . . . ,m, j = 1, . . . , n) as symmetric triangular
I-fuzzy numbers. Thus ãij = 〈[aij−pij, aij, aij+pij], [aij−qij, aij, aij+qij]〉 (i = 0, . . . ,m, j =

0, . . . , n) and the inequality between two I-fuzzy numbers is, to compare them in the sense of
almost positive.

Let ã00 be the aspiration level for the objective function (I-fuzzy goal), indicated by the deci-
sion maker. Therefore, ã00 = 〈[a00− p00, a00, a00 + p00], [a00− q00, a00, a00 + q00]〉. Now solving
the above I-fuzzy optimization problem is equivalent to solve the following system of I-fuzzy
linear inequalities (IFLI).

(IFLI) Find x ∈ Rn such that
ãT0 x &IF

h1,h2
ã00,

Ãx .IF
h1,h2

b̃,

x ≥ 0.

Here &IF and .IF are the I-fuzzy inequalities between two I-fuzzy numbers as introduced
above. Without loss of generality the above system of I-fuzzy inequalities can be equivalently
written as (EIFLI)

(EIFLI) ỹ0 = −ã00x0 + ã01x1 + . . .+ ã0nxn &IF
h1,h2

0,

ỹ1 = ã10x0 − ã11x1 − . . .− ã1nxn &IF
h1,h2

0,
... =

...
...

ỹm = ãm0x0 − ãm1x1 − . . .− ãmnxn &IF
h1,h2

0,
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for
x0 = 1, xj ≥ 0, j = 1, · · · , n.

Here ỹi &IF
h1,h2

0 is to be understood in the sense of being ’almost positive’ in I-fuzzy environment
as per the Definition 3.2.

As y0 = −a00x0 +
n∑

j=1

a0jxj , the membership and non-membership functions for ỹ0 are

µỹ0(y) =



1 +
y − y0
n∑

j=0

p0jxj

, y0 −
n∑

j=0

p0jxj < y < y0,

1, y = y0,

1− y − y0
n∑

j=0

p0jxj

, y0 < y < y0 +
n∑

j=0

p0jxj,

0, otherwise.

and

νỹ0(y) =



−y + y0
n∑

j=0

q0jxj

, y0 −
n∑

j=0

q0jxj < y < y0,

0, y = y0,

y − y0
n∑

j=0

q0jxj

, y0 < y < y0 +
n∑

j=0

q0jxj,

1, otherwise.

respectively.

Similarly, for yi = ai0x0 −
n∑

j=1

aijxj , the membership and non-membership functions for

ỹi, i = 1, . . . ,m are

µỹi(y) =



1 +
y − yi
n∑

j=0

pijxj

, yi −
n∑

j=0

pijxj < y < yi,

1, y = yi,

1− y − yi
n∑

j=0

pijxj

, yi < y < yi +
n∑

j=0

pijxj,

0, otherwise.
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and

νỹi(y) =



−y + yi
n∑

j=0

qijxj

, yi −
n∑

j=0

qijxj < y < yi,

0, y = yi,

y − yi
n∑

j=0

qijxj

, yi < y < yi +
n∑

j=0

qijxj,

1 otherwise.

respectively.
Since with any fuzzy inequality, there is a degree of belief and also a degree of disbelief

associated with it, a decision maker will like to choose a solution for which the belief score is
maximum. In view of Remark 5, it is assumed here that h≥h2 and h1+h2 ≥ 1. Therefore to solve
(EIFLI) we need to solve the following equivalent nonlinear programming problem (ENLP).

(ENLP) Max h1 + h2 − 1

subject to
µỸi

(0) ≤ 1− h1, (i = 0, 1, · · · ,m),

νỸi
(0) ≥ h2, (i = 0, 1, · · · ,m),

x0 = 1, xj ≥ 0, (j = 1, 2, · · · , n),
h1 ≥ h2,

h1 + h2 ≥ 1,

0 ≤ h1, h2 ≤ 1.

Again on substituting the values of µỸi
(0) and νỸi

(0), (i = 0, 1, · · · ,m), in (ENLP), we get

(ENLP) max h1 + h2 − 1

subject to

−a00x0 +
n∑

j=1

a0jxj ≥ h1
(∑n

j=0 p0jxj
)
,

ai0x0 −
n∑

j=1

aijxj ≥ h1
( n∑

j=0

pijxj
)
,

i = 1, 2, · · · ,m

−a00x0 +
n∑

j=1

a0jxj ≥ h2

n∑
j=0

q0jxj,

ai0x0 −
n∑

j=1

aijxj ≥ h2

n∑
j=0

qijxj,

i = 1, 2, · · · ,m
x0 = 1, xj ≥ 0,

j = 1, 2, · · · , n,
h1 + h2 ≥ 1,

0 ≤ h1, h2 ≤ 1.

94



Let (x∗, h∗1, h
∗
2) be an optimal solution of (ENLP). Then we say that x∗ is a solution of the

system of linear I-fuzzy inequalities (EIFLI) with degree of belief h∗1 and the degree of disbelief
(1− h∗2). The quantity (h∗1 + h∗2 − 1) is refereed as the belief score of the solution x∗.

Remark 6. The class of fuzzy linear programming problems can be classified into symmetric and
non-symmetric forms. In the symmetric form, an aspiration level is set for the objective function
of an optimization problem, which in turn led the objective function to be subsequently treated as
a fuzzy inequality along with the other fuzzy inequality constraints, while in the non-symmetric
form, a distinction is maintained between the fuzzy objective function and the fuzzy inequality
constraints of an optimization problem and some appropriately designed ranking function is used
to define optimal solution. Moreover, if the parameters involved in an optimization problem are
fuzzy or generalized fuzzy numbers, then some defuzzification function is usually applied to solve
such problems.

Different approaches have been suggested in the literature to handle fuzzy linear programming
problems in symmetric and non-symmetric forms. For more on the treatment meted out to the two
forms, one can refer to Bector et al. [11] and Tanaka and Asai [30] for the symmetric form, and
Bector et al. [11] and Clemente et al. [12] for the non-symmetric form. Here it is to be noted that
the approaches to handle these two forms of fuzzy optimization problems are non comparable for
they employ various indices based ranking functions. There is no research work available in the
literature which study (IFLP) in the symmetric form having TIFNs involved in it. Consequently,
comparison of our present approach with any existing approach for I-fuzzy linear programming
problems is not meaningful.

4.1 Numerical example

Suppose a company is into manufacturing three different products P1, P2 and P3. Three con-
straints, pertaining to the total demand, availability of raw material, and total available labour
hours, have been imposed during the course of production of these products. However, the com-
pany do not supply the precise values of the requisite parameters namely, profit per unit per prod-
uct, demand per unit per product, required raw material per unit per product, and labour hours per
unit per product. In order to provide the optimal production plan to the company, a dialogue is
initiated with the company. In this context, the company provide the estimated interpretation of
the aforemention parameters. For instance, the company says that a profit per unit of product P1 is
preferably between Rs. 4.5 and Rs. 5.5 with most likely value Rs. 5 and it can surely be not below
Rs. 4 and above Rs. 6. This information has been formulated as TIFN 5̃ = 〈[4.5, 5, 5.5], [4, 5, 6]〉.
Similarly, information on other parameters are provided by the company in linguistic form which
are translated into TIFNs. So assume that the profits per unit of products P2 and P3 are Rs. 3̃ and
Rs. 2̃, respectively. The daily demand for each product is in the ratio of 4̃ : 3̃ : 1̃ with the total
demand 1̃2 units. The raw material consumed by each product is in the ratio of 1̃ : 4̃ : 2̃ and total
availability of raw material is 6̃ units per day. Further, the labour hours consumed by per unit of
each product is in the ratio of 1̃ : 2̃ : 4̃ with the total available hours per day 1̃0. The problem is
to find how many units of each product P1, P2 and P3 should be made per day to maximize the
total profit.
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Let xi denote the number of units of products Pi, i = 1, 2, 3, respectively to be made in a
day. Suppose the decision maker takes a stand that his profit should be more than Rs. 1̃2. In this
scenario, the I-fuzzy optimization problem (IFLP) becomes as follows.

Max 5̃x1 + 3̃x2 + 2x3
subject to

4̃x1 + 3̃x2 + x3 .IF 1̃2,

1̃x1 + 4̃x2 + 2x3 .IF 6̃,

1̃x1 + 2̃x2 + 4x3 .IF 1̃0,

x1, x2, x3 ≥ 0,

where

ã01 = 5̃ = 〈[4.5, 5, 5.5], [4, 5, 6]〉, ã02 = 3̃ = 〈[2, 3, 4], [1, 3, 5]〉,
ã03 = 2̃ = 〈[2, 2, 2], [2, 2, 2]〉, ã11 = 4̃ = 〈[3.5, 4, 4.5], [3, 4, 5]〉,

ã12 = 3̃ = 〈[1, 3, 5], [0, 3, 6]〉, ã13 = 1̃ = 〈[1, 1, 1], [1, 1, 1]〉,
ã21 = 1̃ = 〈[0, 1, 2], [0, 1, 2]〉, ã22 = 4̃ = 〈[3, 4, 5], [2.5, 4, 5.5]〉,
ã23 = 2̃ = 〈[2, 2, 2], [2, 2, 2]〉, ã31 = 1̃ = 〈[0.5, 1, 1.5], [0, 1, 2]〉,
ã32 = 2̃ = 〈[1, 2, 3], [0.5, 2, 3.5]〉, ã33 = 4̃ = 〈[4, 4, 4], [4, 4, 4]〉,

ã10 = 1̃2 = 〈[11, 12, 13], [8, 12, 15]〉, ã20 = 6̃ = 〈[5, 6, 7], [3.5, 6, 8.5]〉,
ã30 = 1̃0 = 〈[8, 10, 12], [7, 10, 13]〉,

with
ã00 = 1̃2 = 〈[11.8, 12, 12.2], [11.5, 12, 12.5]〉.

Solving the above problem is equivalent to solve the following system of I-fuzzy linear in-
equalities.

(IFLI) Find x ∈ R2 such that

5̃x1 + 3̃x2 + 2x3 &IF
h1,h2

1̃2,

4̃x1 + 3̃x2 + x3 .IF
h1,h2

1̃2,

1̃x1 + 4̃x2 + 2x3 .IF
h1,h2

6̃,

1̃x1 + 2̃x2 + 4x3 .IF
h1,h2

1̃0,

x1, x2, x3 ≥ 0.

The above system of I-fuzzy linear inequalities can be rewritten as follows.
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(EIFLI) ỹ0 = −1̃2x0 + 5̃x1 + 3̃x2 + 2x3 &IF
h1,h2

0,

ỹ1 = 1̃2x0 − 4̃x1 − 3̃x2 − x3 &IF
h1,h2

0,

ỹ2 = 6̃x0 − 1̃x1 − 4̃x2 − 2x3 &IF
h1,h2

0,

ỹ3 = 1̃0x0 − 1̃x1 − 2̃x2 − 4x3 &IF
h1,h2

0,

x0 = 1, x1, x2, x3 ≥ 0.

For y0 = −12+5x1+3x2+2x3, the membership and non-membership functions are defined
as.

µỹ0(y) =



1 +
y − y0

(0.2 + 0.5x1 + x2)
, (y0 − 0.2− 0.5x1 − x2) ≤ y ≤ y0,

1, y = y0,

1 +
y0 − y

(0.2 + 0.5x1 + x2)
, y0 ≤ y ≤ (y0 + 0.2 + 0.5x1 + x2),

0, otherwise,

and

νỹ0(y) =



−y + y0
(0.5 + x1 + 2x2)

, (y0 − 0.5− x1 − 2x2) ≤ y ≤ y0,

0, y = y0,
y − y0

(0.5 + x1 + 2x2)
, y0 ≤ y ≤ (y0 + 0.5 + x1 + 2x2),

1, otherwise,

Similarly, for y1 = 12−4x1−3x2−x3 ; y2 = 6−x1−4x2−2x3 and y3 = 10−x1−2x2−4x3,
the membership and non-membership functions are defined as.

µỹ1(y) =



1 +
y − y1

(1 + 0.5x1 + 2x2)
, (y1 − 1− 0.5x1 − 2x2) ≤ y ≤ y1,

1, y = y1,

1 +
y1 − y

(1 + 0.5x1 + 2x2)
, y1 ≤ y ≤ (y1 + 1 + 0.5x1 + 2x2),

0, otherwise,

νỹ1(y) =



− y − y1
(3 + x1 + 3x2)

, (y1 − 3− x1 − 3x2) ≤ y ≤ y1,

0, y = y1,
y − y1

(3 + x1 + 3x2)
, y1 ≤ y ≤ (y1 + 3 + x1 + 3x2),

1, otherwise,

and

µỹ2(y) =



1 +
y − y2

(1 + x1 + x2)
, (y2 − 1− x1 − x2) ≤ y ≤ y2,

1, y = y2,

1− y2 − y
(1 + x1 + x2)

, y2 ≤ y ≤ (y2 + 1 + x1 + x2),

0, otherwise,
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νỹ2(y) =



− y − y2
(2.5 + x1 + 1.5x2)

, (y2 − 2.5− x1 − 1.5x2) ≤ y ≤ y2,

0, y = y2,
y − y2

(2.5 + x1 + 1.5x2)
, y2 ≤ y ≤ (y2 + 2.5 + x1 + 1.5x2),

1, otherwise.

µỹ3(y) =



1 +
y − y3

(2 + 0.5x1 + x2)
, (y3 − 2− 0.5x1 − x2) ≤ y ≤ y3,

1, y = y3,

1− y3 − y
(2 + 0.5x1 + x2)

, y3 ≤ y ≤ (y3 + 2 + 0.5x1 + x2),

0, otherwise,

νỹ3(y) =



− y − y3
(3 + x1 + 1.5x2)

, (y3 − 3− x1 − 1.5x2) ≤ y ≤ y3,

0, y = y3,
y − y3

(3 + x1 + 1.5x2)
, y3 ≤ y ≤ (y3 + 3 + x1 + 1.5x2),

1, otherwise.

In this scenario the equivalent non linear programming problem (ENLP) becomes as follows

(ENLP) Max h1 + h2 − 1

subject to

12 + 0.2h1 − 5x1 + 0.5h1x1 − 3x2 + h1x2 − 2x3 ≤ 0,

−12 + h1 + 4x1 + 0.5h1x1 + 3x2 + 2h1x2 + x3 ≤ 0,

−6 + h1 + x1 + h1x1 + 4x2 + h1x2 + 2x3 ≤ 0,

−10 + 2h1 + x1 + 0.5h1x1 + 2x2 + h1x2 + 4x3 ≤ 0,

12 + 0.5h2 − 5x1 + h2x1 − 3x2 + 2h2x2 − 2x3 ≤ 0,

−12 + 3h2 + 4x1 + h2x1 + 3x2 + 3h2x2 + x3 ≤ 0,

−6 + 2.5h2 + x1 + h2x1 + 4x2 + 1.5h2x2 + 2x3 ≤ 0,

−10 + 3h1 + x1 + h1x1 + 2x2 + 1.5h1x2 + 4x3 ≤ 0,

h1 ≥ h2,

h1 + h2 ≥ 1,

0 ≤ h1, h2 ≤ 1,

x1, x2, x3 ≥ 0.

An optimal solution of the above problem is (x∗1 = 2.459, x∗2 = 0, x∗3 = 0.4127, h∗1 =

0.7848, h∗2 = 0.3205). Therefore, the degree of belief and degree of disbelief in making the
statement that ‘the system of linear inequalities is almost positive’ is 0.7848 and 0.6795, respec-
tively. Further the belief score of the solution x∗ is 0.1053.

Remark 7. If the decision maker is not satisfied with the belief score as obtained by solving
the problem (ENLP), it will indicate that the underlying model does not represent the reality as
perceived by the decision maker. This will require changing of the parameters appropriately and
re-applying the whole methodology to the new model.
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5 Conclusions

This work extends Tanaka and Asai [30] approach to study I-fuzzy linear programming problem
in which the problem data is prescribed via symmetric triangular I-fuzzy numbers. Its extension
to symmetric Trapezoidal I-fuzzy number is natural and may be worked out.

Here it may be noted that the optimization problem (ENLP) is a non convex optimization
problem and this scenario is similar to Tanaka and Asai [30]. As there are some algorithms
available for solving non convex optimization problems e.g., ‘ the modified subgradient method’
and ‘the fuzzy decisive set method’ in [21], their utility in solving the resulting optimization
problem (ENLP) should be explored. The proposed work further my be enhanced to study fully
fuzzy linear programming problem with I-fuzzy numbers on the lines of [13].
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