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1 Introduction

The notion of intuitionistic fuzzy set (IFS) was introduced by Atanassov [1, 2, 3, 4] as a gener-
alization of Zadeh’s fuzzy set [22]. There are situations where IFS theory is more appropriate
to dealt with [7]. IFS theory have successfully been applied in knowledge engineering, medical
diagnosis, decision making, career determination, etc., [11, 21, 12]. Several researchers have
extended various mathematical aspects such as groups, rings, topological spaces, metric spaces,
topological groups, topological vector spaces etc. in IFS [6, 10, 13, 16, 17, 18, 19]. The notion
of fuzzy vector subspaces has been introduced by Katsaras [14] and a notion of fuzzy bases and
fuzzy dimension was studied by Shi et al. [20]. We have introduced a notion of intuitionistic
fuzzy vector space and intuitionistic fuzzy basis in [9]. As a continuation of our paper [9], here
we introduced the notion of intuitionistic fuzzy dimension of an intuitionistic fuzzy vector space
with the help of intuitionistic fuzzy basis and studied some of its basic results.
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2 Preliminaries

Definition 2.1. [1] Let X be a non-empty set. An intuitionistic fuzzy set (IFS for short) of X is de-
fined as an object having the form A = {〈x,µA(x),νA(x)〉 | x ∈ X}, where µA : X → [0,1] and νA :
X → [0,1] denote the degree of membership (namely µA(x)) and the degree of non-membership
(namely νA(x)) of each element x ∈ X to the set A, respectively, and 0 ≤µA(x)+ νA(x) ≤ 1 for
each x ∈ X . For the sake of simplicity we shall use the symbol A = (µA,νA) for the intuitionistic
fuzzy set A = {〈x,µA(x),νA(x)〉 | x ∈ X}.

In this paper, we use the symbols a∧b = min{a,b} and a∨b = max{a,b}.

Definition 2.2. [1] Let A = (µA,νA) and B = (µB,νB) be intuitionistic fuzzy sets of a set X . Then

(1) A⊆ B iff µA(x)≤ µB(x) and νA(x)≥ νB(x) for all x ∈ X .

(2) A = B iff A⊆ B and B⊆ A.

(3) Ac = {〈x,νA(x),µA(x)〉 | x ∈ X}

(4) A∩B = {〈x,µA(x)∧µB(x),νA(x)∨νB(x)〉 | x ∈ X}.

(5) A∪B = {〈x,µA(x)∨µB(x),νA(x)∧νB(x)〉 | x ∈ X}.

(6) � A = {〈x,µA(x),1−µA(x)〉 | x ∈ X}, ♦ A = {〈x,1−νA(x),νA(x)〉 | x ∈ X}.

Definition 2.3. [4] Let A be an IFS in a set X. Then for λ ,ξ ∈ [0,1] with λ + ξ ≤ 1, the set
A[λ ,ξ ] = {x ∈ X : µA(x)≥ λ and νA(x)≤ ξ} is called (λ ,ξ )-level subset of A.

Proposition 2.4. [4] Let A be an IFS in a set X and (λ1,ξ1),(λ2,ξ2) ∈ Im(A). If λ1 ≤ λ2 and
ξ1 ≥ ξ2, then A[λ1,ξ1] ⊇ A[λ2,ξ2].

Definition 2.5. [15, 5] Let X be a vector space over the field K, the field of real and complex
numbers, α ∈ K, A = (µA,νA) and B = (µB,νB) be two intuitionistic fuzzy sets of X. Then

(1) the sum of A and B is defined to be the intuitionistic fuzzy set A+B = (µA+µB,νA+νB) of
X given by

µA+B(x) =

 sup
x=a+b

{µA(a)∧µB(b)} i f x = a+b

0 otherwise,

νA+B(x) =

 in f
x=a+b

{νA(a)∨νB(b)} i f x = a+b

1 otherwise.

(2) αA is defined to be the IFS αA = (µαA,ναA) of X , where

µαA(x) =


µA(α

−1x) i f α 6= 0

sup
y∈X

µA(y) i f α = 0,x = θ

0 i f α = 0,x 6= θ ,

22



ναA(x) =


νA(α

−1x) i f α 6= 0

in f
y∈X

νA(y) i f α = 0,x = θ

1 i f α = 0,x 6= θ .

.

Proposition 2.6. [9] Let A,A1, . . . ,An be intuitionistic fuzzy sets in a vector space X and λ1, . . . ,λn

be scalars. Then the following assertions are equivalent:

(1) λ1A1 +λ2A2 + · · ·+λnAn ⊆ A.

(2) For all x1,x2, . . . ,xn in X , we have
µA(λ1x1 +λ2x2 + · · ·+λnxn) ≥ min{µA1(x1),µA2(x2), . . . ,µAn(xn)} and νA(λ1x1 +λ2x2 +

· · ·+λnxn)≤ max{νA1(x1),νA2(x2), . . . ,νAn(xn)}.

Definition 2.7. [9] An IFS V = (µV ,νV ) of a vector space X over the field K is said to be intu-
itionistic fuzzy vector space over X if

(i) V +V ⊆V

(ii) αV ⊆V, for every scalar α.

We denote the set of all intuitionistic fuzzy vector spaces over a vector space X by IFV S(X).

Remark 2.8. [9] Let X be a vector space.

(1) If µV is a fuzzy subspace of X , then V = (µV ,µ
c
V ) ∈ IFV S(X).

(2) If V ∈ IFV S(X), then µV and νc
V are fuzzy vector subspace of X .

(3) If V ∈ IFV S(X), then �V,♦V ∈ IFV S(X).

Lemma 2.9. [9] Let V be an intuitionistic fuzzy set in a vector space X . Then, the following are
equivalent:

(1) V is an intuitionistic fuzzy vector space over X.

(2) For all scalars α,β , we have αV +βV ⊆V.

(3) For all scalars α,β and for all x,y ∈ X , we have
µV (αx+βy)≥ µV (x)∧µV (y)} and νV (αx+βy)≤ νV (x)∨νV (y).

Remark 2.10. [9] Our definition of intuitionistic fuzzy vector space is equivalent to the definition
of intuitionistic fuzzy subspace of [19] and [8].

Proposition 2.11. [8] If V,W ∈ IFV S(X), then V +W ∈ IFV S(X).

Proposition 2.12. [9] If V ∈ IFV S(X) α ∈ K, then αV ∈ IFV S(X).

Proposition 2.13. [8] If {Vi}i∈I ∈ IFV S(X), then ∩
i∈I

Vi ∈ IFV S(X).
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Proposition 2.14. [9] Let V ∈ IFV S(X). Then µV (θ)≥ µV (x) and νV (θ)≤ νV (x), ∀x ∈ X .

Proposition 2.15. [9] Let V ∈ IFV S(X). Then for each (λ ,ξ )∈ [0,1]× [0,1] with λ +ξ ≤ 1, λ ≤
µV (θ) and ξ ≥ νV (θ), V [λ ,ξ ] is a subspace of the vector space X ,

Definition 2.16. [9] For any (a,b),(c,d) ∈ [0,1]× [0,1] with a+b≤ 1, c+d ≤ 1, we say that:

(1) (a,b)≥ (c,d) if a≥ b and c≤ d.

(2) (a,b)≤ (c,d) if a≤ b and c≥ d.

(3) (a,b)> (c,d) if a > b and c≤ d or if a≥ b and c < d.

(4) (a,b)< (c,d) if a < b and c≥ d or if a≤ b and c > d.

(5) (a,b) = (c,d) if a = b and c = d.

Proposition 2.17. [9] Let V ∈ IFV S(X) with dim X = m. Then Im(V ) contains at most m+ 1
points of [0,1]× [0,1].

Definition 2.18. [9] Let V = (µV ,νV )∈ IFV S(X). Then for any λ ∈ µV (X),ξ ∈ νV (X) we define

µ
[λ ]
V = {x ∈ X : µV (x) ≥ λ} and ν

[ξ ]
V = {x ∈ X : νV (x) ≤ ξ}, [λ1

µ
[λ ]
V
](x) =

λ , i f x ∈ µ
[λ ]
V

0, otherwise
,

[ξ 1
ν
[ξ ]
V
](x) =

ξ , i f x ∈ ν
[ξ ]
V

1, otherwise
.

Theorem 2.19. [9] (Representation Theorem) Let V ∈ IFV S(X) with dim X = m and Im(V ) =

{(λ0,ξ0), (λ1,ξ1), ...(λk,ξk)},k≤m such that (1,0)≥ (λ0,ξ0)> (λ1,ξ1)> ... > (λk,ξk)≥ (0,1).
Then there exists nested collection of subspaces of X as {θ} ⊆V [λ0,ξ0] $V [λ1,ξ1] $ ...$V [λk,ξk] =

X such that µV = λ01
µ
[λ0]
V
∨λ11

µ
[λ1]
V
∨ ...∨λk1

µ
[λk ]
V

and νV = ξ01
ν
[ξ0]
V
∧ξ11

ν
[ξ1]
V
∧ ...∧ξk1

ν
[ξk ]
V

. Also,

(1) If (ζ ,ρ),(η ,σ) ∈ (λi+1,λi]× [ξi,ξi+1) with ζ +ρ ≤ 1,η +σ ≤ 1, then V [ζ ,ρ] = V [η ,σ ] =

V [λi,ξi].

(2) If (ζ ,ρ) ∈ (λi+1,λi]× [ξi,ξi+1),(η ,σ) ∈ (λi,λi−1]× [ξi−1,ξi) with ζ +ρ ≤ 1,η +σ ≤ 1,
then V [ζ ,ρ] %V [η ,σ ].

Definition 2.20. [9] Let V ∈ IFV S(X) with dim X = m. Consider Theorem 2.19. Let BVi be the
basis of V [λi,ξi], i = 0,1, ..,k such that

BV0 $ BV1 $ · · ·$ BVk . (*)

If V (λ0,ξ0) = {θ}, we start with V (λ1,ξ1).
Define a map B from X to [0,1]× [0,1] by

µB(x) =

∨{λi : x ∈ BVi}
0, otherwise

and νB(x) =

∧{ξi : x ∈ BVi}
1, otherwise

.
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Let µB(x) = λ j. Then x ∈ BV j and x /∈ BV j−1 i.e. x ∈V [λ j,ξ j] and x /∈V [λ j−1,ξ j−1]. Thus µV (x)≥ λ j

and νV (x)≤ ξ j. If µV (x)> λ j, then µV (x) = λl for some l < j. Then x ∈V [λl ,ξl ] and µ(B)(x) = λl,

which is a contradiction. Therefore µV (x) = λ j. Then νV (x) = ξ j i.e. νB(x) = ξ j. Therefore B is
an intuitionistic fuzzy set and it is called intuitionistic fuzzy basis of V corresponding to (∗).

Proposition 2.21. [9] Let B be an intuitionistic fuzzy basis of V corresponding to (∗) of Definition
2.20. Then

(1) If (ζ ,ρ),(η ,σ) ∈ (λi+1,λi]× [ξi,ξi+1) with ζ +ρ ≤ 1,η +σ ≤ 1, then B[ζ ,ρ] = B[η ,σ ] =

BVi .

(2) If (ζ ,ρ) ∈ (λi+1,λi]× [ξi,ξi+1),(η ,σ) ∈ (λi,λi−1]× [ξi−1,ξi) with ζ +ρ ≤ 1,η +σ ≤ 1,
then B[ζ ,ρ] % B[η ,σ ].

(3) B[λ ,ξ ] is a basis of V [λ ,ξ ] for λ ∈ (0,1],ξ ∈ [0,1) with λ +ξ ≤ 1.

Proposition 2.22. Let B be an intuitionistic fuzzy basis of V corresponding to (∗) of Definition
2.20. Then µ

[λi]
B = BVi = ν

[ξi]
B , for i = 0,1,2, ..,k.

Proo f . Let x ∈ µ
[λi]
B ⇒ µB(x)≥ λi. Let µB(x) = λ j ⇒ x ∈ BV j ⊂ BVi.

Thus µ
[λi]
B ⊆ BVi. Conversely, let x ∈ BVi ⇒ µV (x)≥ λi.

Let µV (x) = λ j. If λ j > λi, then µB(x) = λ j.

If λ j = λi, then µB(x)≥ λi. Therefore, in any case x ∈ µ
[λi]
B .

Thus BVi ⊆ µ
[λi]
B . Hence µ

[λi]
B = BVi.

Similarly, it can be proved that BVi = ν
[ξi]
B . �

Proposition 2.23. Let V ∈ IFV S(X) with dimX =m and Im(V )= {(λ0,ξ0), (λ1,ξ1), ...(λk,ξk)},k≤
m such that (1,0) ≥ (λ0,ξ0) > (λ1,ξ1) > ... > (λk,ξk) ≥ (0,1). Then for i = 0,1, ..,k, V [λi,ξi] =

µ
[λi]
V = ν

[ξi]
V .

Proo f . Obviously, V [λi,ξi] ⊆ µ
[λi]
V .

Let x ∈ µ
[λi]
V .

⇒ µV (x)≥ λi.

Let µV (x) = λ j. Then νV (x) = ξ j.
⇒ x ∈V [λ j,ξ j]

⇒ x ∈V [λi,ξi] [as either (λ j,ξ j) = (λi,ξi) or (λ j,ξ j)> (λi,ξi) ].
Thus µ

[λi]
B ⊆V [λi,ξi]. Therefore V [λi,ξi] = µ

[λi]
V .

Similarly we have V [λi,ξi] = ν
[ξi]
V . �

Proposition 2.24. Let B be an intuitionistic fuzzy basis of V corresponding to (∗) of Definition
2.20. Then | µ [λi]

B |= dim(µ
[λi]
V ) and | ν [ξi]

B |= dim(ν
[ξi]
V ), for i = 0,1,2, ..,k.

Proo f . | µ [λi]
B |=| BVi |= dim(V [λi,ξi]) = dim(µ

[λi]
V ) [By Proposition 2.22 and 2.23].

The rest part is similar. �
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3 Intuitionistic fuzzy dimension

Definition 3.1. Let A be an intuitionistic fuzzy set over X. Define a map | A |: N→ [0,1]× [0,1]
such that ∀ n∈N, µ|A|(n) =∨{a : (a,b)∈ [0,1]× [0,1]\{(0,1)}with a+b≤ 1 and | A[a,b] |≥ n}
and ν|A|(n) = ∧{b : (a,b) ∈ [0,1]× [0,1]\{(0,1)} with a+b≤ 1 and | A[a,b] |≥ n} . Then | A | is
an intuitionistic fuzzy set over N, which is called the cardinality of A.

Definition 3.2. For two IFS A,B over X, the addition | A | + | B | of | A | and | B | is de-
fined as follows: for any n ∈ N, µ(|A|+|B|)(n) = ∨k+l=n(µ|A|(k)∧ µ|B|(l)) and ν(|A|+|B|)(n) =
∧k+l=n(ν|A|(k)∨ν|B|(l)).

Proposition 3.3. For two IFS | A |, | B | over N and for any (a,b) ∈ [0,1]× [0,1] with a+b ≤ 1,
µ
[a]
(|A|+|B|) = µ

[a]
|A|+µ

[a]
|B| and ν

[b]
(|A|+|B|) = ν

[b]
|A|+ν

[b]
|B|.

Proo f . First we prove that µ
[a]
(|A|+|B|) ⊆ µ

[a]
|A|+µ

[a]
|B|.

Let n ∈ µ
[a]
(|A|+|B|). Then µ(|A|+|B|)(n) = ∨k+l=n(µ|A|(k)∧µ|B|(l))≥ a.

Hence there exist k, l such that n = k+ l and µ|A|(k)∧µ|B|(l)≥ a. Then k ∈ µ
[a]
|A| and l ∈ µ

[a]
|B|, i.e.,

n = k+ l ∈ µ
[a]
|A|+µ

[a]
|B|. Similarly, it can be proved that ν

[b]
(|A|+|B|) ⊆ ν

[a]
|A|+ν

[b]
|B|.

Conversely suppose that n ∈ µ
[a]
|A|+µ

[a]
|B|.

Then there exist k, l such that n = k+ l with k ∈ µ
[a]
|A|, l ∈ µ

[a]
|B|. Then (µ|A|)(k) ≥ a,(µ|B|)(l) ≥ a.

Therefore µ(|A|+|B|)(n) = ∨k+l=n(µ|A|(k)∧µ|B|(l))≥ a. Thus n ∈ µ
[a]
(|A|+|B|).

Hence µ
[a]
|A|+µ

[a]
|B| ⊆ µ

[a]
(|A|+|B|).

Similarly, we have ν
[a]
|A|+ν

[b]
|B| ⊆ ν

[b]
(|A|+|B|). Hence proved. �

Definition 3.4. Let V ∈ IFV S(X) with an intuitionistic fuzzy basis B. Define dim(V ) =|B |. Then
dim(V ) is called intuitionistic fuzzy dimension of V.

Proposition 3.5. Let B and B′ be two intuitionistic fuzzy bases of an intuitionistic fuzzy vector
space V ∈ IFV S(X). Then | B |=| B′ |.

Proo f . By Proposition 2.21, B[a,b] and B′[a,b] are bases of V [a,b] for a ∈ (0,1],b ∈ [0,1) with
a+b≤ 1. Then | B[a,b] |=| B′[a,b] | .
Hence for any n ∈ N,
µ|B|(n) = ∨{a : (a,b) ∈ [0,1]× [0,1]\{(0,1)} with a+b≤ 1 and | B[a,b] |≥ n}
= ∨{a : (a,b) ∈ [0,1]× [0,1]\{(0,1)} with a+b≤ 1 and | B′[a,b] |≥ n}
= µ|B′|(n). Similarly, for any n ∈ N, ν|B|(n) = ν|B′|(n). Hence proved. �

Remark 3.6. Intuitionistic fuzzy dimension of an intuitionistic fuzzy vector space is independent
of intuitionistic fuzzy basis.

Proposition 3.7. Let X be a vector space with dimX =m and V ∈ IFV S(X). Then for any (a,b)∈
[0,1]× [0,1]\{(0,1)} with a+b≤ 1 and n ∈N, n ∈ µ

[a]
dim(V )

⇔ n≤ dim(µ
[a]
V ) and n ∈ ν

[b]
dim(V )

⇔

n≤ dim(ν
[b]
V ).
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Proo f . Suppose that Im(V ) = {(λ0,ξ0), (λ1,ξ1), ...(λk,ξk)},k ≤ m such that (1,0) ≥ (λ0,ξ0) >

(λ1,ξ1)> ... > (λk,ξk)≥ (0,1). Then there exists a nested collection of subspaces of X as {θ} ⊆
V [λ0,ξ0] $V [λ1,ξ1] $ ...$V [λk,ξk] = X .

Let BVi be the basis of V [λi,ξi], i = 0,1, ..,k such that BV0 $ BV1 $ .......$ BVk .......(*).
Let B be an intuitionistic fuzzy basis corresponding to (*) defined as in Definition 2.20. Let
n∈ µ

[a]
dim(V )

⇒ µdim(V )(n)≥ a⇒∨{c : (c,d)∈ (0,1]× [0,1) with c+d ≤ 1 and |B[c,d] |≥ n} ≥ a.

Then there exists (c,d) ∈ [0,1]× [0,1]\{(0,1)} with c+d ≤ 1 such that c ≥ a and | B[c,d] |≥ n.
Now dim(µ

[a]
V ) =| µ [a]

B |≥| µ
[c]
B |≥| B

[c,d] |≥ n.

Conversely suppose that n≤ dim(µ
[a]
V ) =| µ [a]

B | . Now a ∈ (λi+1,λi], for some i. Hence | µ [a]
B |=|

µ
[λi]
B | = | BVi |=| B[λi,ξi] |. Then µdim(V )(n) = ∨{c : (c,d) ∈ [0,1]× [0,1] \ {(0,1)} with c+ d ≤

1 and | B[c,d] |≥ n} ≥ λi ≥ a⇒ n ∈ µ
[a]
dim(V )

. Hence n ∈ µ
[a]
(dim(V ))

⇔ n≤ dim(µ
[a]
V ) .

Similarly it can be proved that n ∈ ν
[b]
dim(V )

⇔ n≤ dim(ν
[b]
V ). �

Proposition 3.8. Let X be a vector space with dimX = m and V1,V2 ∈ IFV S(X). Then we have
the following results:

(1) For all (a,b) ∈ [0,1]× [0,1] with a+b≤ 1, µ
[a]
V1∩V2

= µ
[a]
V1
∩µ

[a]
V2

and ν
[b]
V1∩V2

= ν
[b]
V1
∩ν

[b]
V2

.

(2) For all (a,b) ∈ [0,1]× [0,1] with a+b≤ 1, µ
[a]
(V1+V2)

= µ
[a]
V1

+µ
[a]
V2

and ν
[b]
(V1+V2)

= ν
[b]
V1

+ν
[b]
V2

.

Proo f . We only give the proof of (2). For any (a,b) ∈ [0,1]× [0,1] with a+b≤ 1, we have
x ∈ µ

[a]
(V1+V2)

⇔ sup
x=x1+x2

{µV1(x1)∧µV2(x2)} ≥ a

⇔ there exist x1,x2 such that x1 + x2 = x and µV1(x1)∧µV2(x2)≥ a
⇔ there exist x1,x2 such that x1 + x2 = x and x1 ∈ µ

[a]
V1

and x2 ∈ µ
[a]
V2

.

Similarly it can be proved that ν
[b]
(V1+V2)

= ν
[b]
V1

+ν
[b]
V2

. �

Proposition 3.9. Let X be a vector space with dimX = m and V1,V2 ∈ IFV S(X). Then
dim(V1 +V2)+dim(V1∩V2) = dim(V1)+dim(V2).

Proo f . For any (a,b) ∈ [0,1]× [0,1] with a+ b ≤ 1, let n ∈ µ
[a]
(dim(V1+V2)+dim(V1∩V2))

. Then there

exist k, l such that n = k + l and k ∈ µ
[a]
(dim(V1+V2))

and l ∈ µ
[a]
(dim(V1∩V2))

. Then by Proposition

3.7, k ≤ dim(µ
[a]
(V1+V2)

) = dim(µ
[a]
(V1)

+ µ
[a]
(V2)

) and l ≤ dim(µ
[a]
(V1∩V2)

) = dim(µ
[a]
(V1)
∩ µ

[a]
(V2)

). Thus

n≤ dim(µ
[a]
(V1)

+µ
[a]
(V2)

)+dim(µ
[a]
(V1)
∩µ

[a]
(V2)

) = dim(µ
[a]
(V1)

)+dim(µ
[a]
(V2)

).

Then there exist k′ and l′ such that n = k′+ l′ and k′ ≤ dim(µ
[a]
(V1)

) and l′ ≤ dim(µ
[a]
(V2)

). Now

by Proposition 3.7, k′ ∈ µ
[a]
dim(V1)

and l′ ∈ µ
[a]
dim(V2)

. Therefore n = k′+ l′ ∈ µ
[a]
dim(V1)

+ µ
[a]
dim(V2)

=

µ
[a]
(dim(V1)+dim(V2))

. Hence µ
[a]
(dim(V1+V2)+dim(V1∩V2))

⊆ µ
[a]
(dim(V1)+dim(V2))

.

Similarly, ν
[b]
(dim(V1+V2)+dim(V1∩V2))

⊆ ν
[b]
(dim(V1)+dim(V2))

.

Also, it can be proved that for any (a,b) ∈ [0,1]× [0,1] with a + b ≤ 1, µ
[a]
(dim(V1)+(dim(V2)

⊆

µ
[a]
(dim(V1+V2)+dim(V1∩V2))

and ν
[b]
(dim(V1)+(dim(V2)

⊆ ν
[b]
(dim(V1+V2)+dim(V1∩V2))

. Thus for any (a,b) ∈

[0,1]× [0,1] with a+ b ≤ 1, µ
[a]
(dim(V1)+(dim(V2)

= µ
[a]
(dim(V1+V2)+dim(V1∩V2))

and ν
[b]
(dim(V1)+(dim(V2)

=

ν
[b]
(dim(V1+V2)+dim(V1∩V2))

. Hence dim(V1 +V2)+dim(V1∩V2) = dim(V1)+dim(V2). �
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