SOME PROPERTIES OF INTUITIONISTIC FUZZY LEVEL SUBGROUPS

N.PALANIAPPAN & K.ARJUNAN

Professor of Mathematics, Alagappa University, Karaikudi – 630003, Tamilnadu, India. palaniappan1950@yahoo.co.in Department of Mathematics, Dr.Zakir Hussain College, Ilayangudi – 630702, Tamilnadu, India arjunan 1975@yahoo.co.in

ABSTRACT.

In this paper, we made an attempt to study the algebraic nature of an intuitionistic fuzzy level subgroups .

2000 AMS SUBJECT CLASSIFICATION: 03F55, 08A72, 20N25

KEY WORDS: Fuzzy sets, intuitionistic fuzzy sets, intuitionistic fuzzy subgroups, intuitionistic fuzzy normal subgroups, homomorphism, anti-homomorphism, isomorphism, anti-isomorphism, intuitionistic fuzzy level subsets, intuitionistic fuzzy level subgroups.

INTRODUCTION

After the introdution of fuzzy sets by L.A.Zadeh , several researchers explored on the generalization of the notion of fuzzy set .The concept of intuitionistic fuzzy sets was introduced by K.T.Atanassov [1], as a generalization of the notion of fuzzy set. Choudhury.F.P. and Chakraborty.A.B. and Khare.S.S. [2] defined a fuzzy subgroup and fuzzy homomorphism. Palaniappan.N & Muthuraj.R [3] defined the homomorphism and anti-homomorphism of fuzzy and an anti-fuzzy subgroups. Palaniappan.N & Muthuraj.R [4] defined an anti-fuzzy group and lower level subgroups. Salah Abou-Zaid [5] defined on generalized characteristic fuzzy subgroups of a finite group . We introduce the concept of an intuitionistic fuzzy level subgroups and established some results.

1. PRELIMINARIES

- **1.1 Definition :** Let X be a non-empty set. A fuzzy subset A of X is a function A: $X \rightarrow [0,1]$.
- **1.2 Definition :** An intuitionistic fuzzy set (IFS) A in X is defined as an object of the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$, where $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $x \in X$ satisfying $0 \le \mu_A(x) + \nu_A(x) \le 1$.
- **1 .3 Definition :** Let G be a group. An intuitionistic fuzzy subset A of G is said to be an intuitionistic fuzzy subgroup of G (IFSG) if
 - (i) $\mu_A(xy) \ge \min\{\mu_A(x), \mu_A(y)\}\$
 - (ii) $\mu_A(x^{-1}) \ge \mu_A(x)$
 - (iii) $v_A(xy) \le \max\{v_A(x), v_A(y)\}$
 - (iv) $v_A(x^{-1}) \le v_A(x)$, for all $x, y \in G$.
- **1.4 Definition :** Let G be a group. An intuitionistic fuzzy subgroup A of G is said to be an intuitionistic fuzzy normal subgroup of G (IFNSG) if
 - (i) $\mu_A(xy) = \mu_A(yx).$
 - (ii) $v_A(xy) = v_A(yx)$, for all $x, y \in G$.

- **1.5 Definition :** Let G and G^1 be any two groups, then the function f: $G \to G^1$ is said to be a homomorphism if f(xy) = f(x)f(y) for all $x, y \in G$.
- **1. 6 Definition :** Let G and G^1 be any two groups, then the function f: $G \to G^1$ is said to be an isomorphism if f(xy) = f(x)f(y) and f is a bijection, for all $x, y \in G$.
- **1.7 Definition :** Let G and G^1 be any two groups, then the function f: $G \to G^1$ is said to be an anti-homomorphism if f(xy) = f(y)f(x) for all $x, y \in G$.
- **1. 8 Definition :** Let G and G^1 be any two groups, then the function $f: G \to G^1$ is said to be an anti-isomorphism if f(xy) = f(y)f(x) and f is a bijection, for all $x, y \in G$.
- **1.9 Definition :** Let A be an intuitionistic fuzzy subset of X. For $t \in [0, 1]$, the level subset of A is the set, $A_t = \{x \in X : \mu_A(x) \ge t \text{ and } \nu_A(x) \le t\}$. This is called an intuitionistic fuzzy level subset of A.
- **1.10 Definition :** Let A be an IFSG of a group G. The subgroup A_t , for $t \in [0, 1]$ and $t \le \mu_A(e)$ and $t \ge \nu_A(e)$ are called level subgroups of A.
- **1.1 Theorem**: Let G and G^1 be any two groups. Let $f: G \longrightarrow G^1$ be an isomorphism. Then
 - (i) $f(e) = e^{1}$ where e and e^{1} are the identities of G and G^{1} respectively.
 - (ii) $f(a^{-1}) = [f(a)]^{-1}$, for all a in G.

Proof: It is trivial.

- **1.2 Theorem** . Let G and G^1 be any two groups. Let $f:G\to G^1$ be an anti-isomorphism . Then
 - (i) $f(e) = e^{1}$ where e and e^{1} are the identities of G and G^{1} respectively.
 - (ii) $f(a^{-1}) = [f(a)]^{-1}$, for all a in G.

Proof: It is trivial.

2. SOME PROPOSITIONS

2.1 Proposition : Let A be an IFSG of a group G. Then for $t \in [0, 1]$ such that $t \le \mu_A(e)$ and $t \ge \mu_A(e)$, A_t is a subgroup of G.

Proof: For all x, y in A_t , we have

$$\begin{split} & \mu_A(x) \geq t \text{ and } \nu_A(x) \leq t, \\ & \mu_A(y) \geq t \text{ and } \nu_A(y) \leq t. \end{split}$$

Now.

$$\begin{array}{l} \mu_A(xy^{\text{-}1}) \geq \min \ \{\mu_A(x) \ , \ \mu_A(y)\} \ \text{as A is an IFSG of a group G} \\ \geq \min \ \{t, \ t\} \\ = t \end{array}$$

Therefore $\mu_A(xy^{-1}) \ge t$.

Also,
$$v_A(xy^{-1}) \le max \{v_A(x), v_A(y)\}$$
 as A is an IFSG of a group G $\le max \{t, t\}$

which implies that $v_A(xy^{-1}) \le t$.

That is $\mu_A(xy^{-1}) \ge t$ and $\nu_A(xy^{-1}) \le t$.

Therefore $xy^{-1} \in A_t$.

Hence A_t is a subgroup of a group G.

2.2 Proposition : Let A be an IFSG of a group G. For $t_1, t_2 \in [0, 1]$ and $t_1, t_2 \leq \mu_A(e)$ and $t_1, t_2 \leq \nu_A(e)$ with $t_2 < t_1$ of A, the two level subgroups A_{t1} , A_{t2} are equal iff there is no x in G such that $t_1 > \mu_A(x) > t_2$ and $t_2 < \nu_A(x) < t_1$.

Proof: Assume that $A_{t1} = A_{t2}$.

Suppose that there exists a $x \in G$ such that $t_1 > \mu_A(x) > t_2$ and $t_2 < \nu_A(x) < t_1$.

Then $A_{t1} \subseteq A_{t2}$.

For $x \in A_{t2}$, but not in A_{t1} ,

which is contradiction to $A_{t1} = A_{t2}$.

Therefore there is no $x \in G$ such that $t_1 > \mu_A(x) > t_2$ and $t_2 < \nu_A(x) < t_1$. Conversely,

If there is no $x \in G$ such that $t_1 > \mu_A(x) > t_2$ and $t_2 < \nu_A(x) < t_1$, then $A_{t1} = A_{t2}$. (by the definition of level set).

2.3 Proposition : Let G be a group and A be an intuitionistic fuzzy subset of G such that A_t is a subgroup of G. For $t \in [0, 1]$ such that $t \le \mu_A(e)$ and $t \ge \nu_A(e)$, A is an IFSG of G.

Proof: Let G be a group and x, y in G.

Let $\mu_A(x) = t_1$ and $\mu_A(y) = t_2$, $\nu_A(x) = t_1$ and $\nu_A(y) = t_2$.

Suppose $t_1 \le t_2$, then $x, y \in A_{t1}$.

As A_{t1} is a subgroup of G, then $xy^{-1} \in A_{t1}$.

Now
$$\mu_A(xy^{-1}) \ge t_1 = \min \{t_1, t_2\}$$

= $\min \{\mu_A(x), \mu_A(y)\}$

which implies that

$$\mu_A(xy^{-1}) \ge \min \{\mu_A(x), \mu_A(y)\}.$$

And

$$v_A(xy^{-1}) \le t_1 < t_2 = \max \{t_1, t_2\}$$

= $\max \{v_A(x), v_A(y)\}$

which implies that

$$v_A(xy^{-1}) \le \max \{v_A(x), v_A(y)\}.$$

Hence A is an IFSG of a group G.

2.4 Proposition : Let A be an IFSG of a group G. If $t \in [0, 1]$ and $t \le \mu_A(e)$ and $t \ge \nu_A(e)$, and if A_{t1} , A_{t2} are level subgroups of A, then $A_{t1} \cap A_{t2}$ is also a level subgroup of A.

Proof: Let $t_1, t_2 \in [0, 1]$.

Case (i) If $t_1 \le t_2$, then $A_{t2} \subseteq A_{t1}$.

Therefore $A_{t1} \cap A_{t2} = A_{t2}$, but A_{t2} is a level subgroup of A.

Case (ii) If $t_2 < t_1$, then $A_{t1} \subseteq A_{t2}$.

Therefore $A_{t1} \cap A_{t2} = A_{t1}$, but A_{t1} is a level subgroup of A.

Case (iii) If $t_2 = t_1$, then $A_{t1} = A_{t2}$.

In all the three cases $A_{t1} \cap A_{t2}$ is a level subgroup of A.

This proposition can be extended to any arbitrary elements of level subgroup of A.

- **2.5 Proposition :** Let A be an IFSG of a group G. If $t \in [0, 1]$ and $t \le \mu_A(e)$ and $t \ge \nu_A(e)$, and if A_{ti} , $i \in I$ are level subgroups of A, then $\bigcap_{i \in I} A_{ti}$ is also a level subgroup of A.
- **2.6 Proposition :** Let A be an IFSG of a group G. If $t \in [0, 1]$ and $t \le \mu_A(e)$ and $t \ge \nu_A(e)$, and if A_{t1} , A_{t2} are level subgroups of A, then A_{t1} U A_{t2} is also a level subgroup of A.

Proof: Let $t_1, t_2 \in [0, 1]$.

Case (i) If $t_1 \le t_2$, then $A_{t2} \subseteq A_{t1}$.

Therefore $A_{t1} \cup A_{t2} = A_{t1}$, but A_{t1} is a level subgroup of A.

Case (ii) If $t_2 \le t_1$, then $A_{t1} \subseteq A_{t2}$.

Therefore $A_{t1} \cup A_{t2} = A_{t2}$ but A_{t2} is a level subgroup of A

Case (iii) If $t_2 = t_1$, then $A_{t1} = A_{t2}$.

In all the three cases $A_{t1} U A_{t2}$ is a level subgroup of A.

This proposition can be extended to any arbitrary elements of level subgroup of A.

2.7 Proposition : Let A be an IFSG of a group G. If $t \in [0, 1]$ and $t \le \mu_A(e)$ and $t \ge \nu_A(e)$ and if A_{ti} , $i \in I$ are level subgroups of A, then $U_{i \in I} A_{ti}$ is also a level subgroup of A.

Remark: This result is not true in the case of subgroups.

In the following proposition • is the composition operation of functions :

- **2.8 Proposition :** Let A be an intuitionistic fuzzy subgroup (IFSG) of a group H and f is an isomorphism from a group G onto H. Then we have the following:
 - i) Aof is an IFSG of a group G.
 - ii) If A is an intuitionistic fuzzy normal subgroup (IFNSG) of a group H, then Aof is an intuitionistic fuzzy normal subgroup (IFNSG) of a group G.

```
Proof: Let x, y \in G and A be an IFSG of a group H. Then we have,
         \mu_{A} \circ f(xy^{-1}) = \mu_{A}(f(xy^{-1}))
                     = \mu_A(f(x)f(y^{-1})) as f is an isomorphism
                    = \mu_A(f(x)(f(y))^{-1}) by theorem 1.1
                    \geq \min \{ \mu_A(f(x)), \mu_A(f(y)) \} as A is an IFSG of a group H
                    \geq \min \{ \mu_A \circ f(x), \mu_A \circ f(y) \}
which implies that
        \mu_{A} \circ f(xy^{-1}) \ge \min \{ \mu_{A} \circ f(x), \mu_{A} \circ f(y) \}.
And
      v_A \circ f(xy^{-1}) = v_A(f(xy^{-1}))
                    = v_A(f(x)f(y^{-1})) as f is an isomorphism
                    = v_A(f(x)(f(y))^{-1}) by theorem 1.1
                    \leq \max \{ v_A(f(x)), v_A(f(y)) \} as A is an IFSG of a group H
                    \leq \max \{ v_A \circ f(x), v_A \circ f(y) \}
which implies that
      v_A \circ f(xy^{-1}) \le \max \{v_A \circ f(x), v_A \circ f(y)\}.
     Therefore Aof is an IFSG of a group G.
        Hence (i) is proved.
Let x, y \in G and A be an IFNSG of a group H. Then we have,
             \mu_A \circ f(xy) = \mu_A(f(xy))
                       = \mu_A(f(x)f(y)) as f is an isomorphism
                       = \mu_A(f(y)f(x)) as A is an IFNSG of a group H
                       = \mu_A(f(yx)) as f is an isomorphism
                       = \mu_A \circ f(yx)
which implies that
             \mu_A \circ f(xy) = \mu_A \circ f(yx).
Now,
         v_A \circ f(xy) = v_A(f(xy))
                   = v_A(f(x)f(y)) as f is an isomorphism
                   = v_A(f(y)f(x)) as A is an IFNSG of a group H
                   = v_A(f(yx)) as f is an isomorphism
                    = v_A \circ f(yx)
```

which implies that

$$v_A \circ f(xy) = v_A \circ f(yx)$$
.

Hence Aof is an IFNSG of a group G.

- **2.9 Proposition :** Let A be an intuitionistic fuzzy subgroup (IFSG) of a group H and f is an anti-isomorphism from a group G onto H. Then we have the following:
 - (i) Aof is an IFSG of a group G.
 - (ii) If A is an intuitionistic fuzzy normal subgroup(IFNSG) of a group H, then Aof is an intuitionistic fuzzy normal subgroup(IFNSG) of a group G.

```
Proof: Let x, y \in G and A be an IFSG of a group H. Then we have,
         \mu_{A} \circ f(xy^{-1}) = \mu_{A}(f(xy^{-1}))
                      = \mu_A(f(y^{-1})f(x)) as f is an anti-isomorphism
                       = \mu_A((f(y))^{-1}f(x)) by theorem 1.2
                       \geq \min \{ \mu_A(f(x)), \mu_A(f(y)) \} as A is an IFSG of a group H
                     \geq \min \{ \mu_A \circ f(x), \mu_A \circ f(y) \}
which implies that
        \mu_{A} \circ f(xy^{-1}) \ge \min \{\mu_{A} \circ f(x), \mu_{A} \circ f(y)\}.
And
      v_A \circ f(xy^{-1}) = v_A(f(xy^{-1}))
                    = v_A(f(y^{-1})f(x)) as f is an anti-isomorphism
                    = v_A((f(y))^{-1} f(x)) by theorem 1.2
                    \leq max { \nu_A(f(x)), \nu_A(f(y)) } as A is an IFSG of a group H
                    \leq \max \{ v_A \circ f(x), v_A \circ f(y) \}
which implies that
      v_A \circ f(xy^{-1}) \le \max \{v_A \circ f(x), v_A \circ f(y)\}.
     Therefore Aof is an IFSG of a group G.
                   (i) is proved.
Let x, y \in G and A be an IFSG of a group H. Then we have,
             \mu_A \circ f(xy) = \mu_A(f(xy))
                       = \mu_A(f(y)f(x)) as f is an anti-isomorphism
                       = \mu_A(f(x)f(y)) as A is an IFNSG of a group H
                       = \mu_A(f(yx)) as f is an anti-isomorphism
                       = \mu_A \circ f(yx)
which implies that
             \mu_{A} \circ f(xy) = \mu_{A} \circ f(yx).
Now.
         v_A \circ f(xy) = v_A(f(xy))
                   = v_A(f(y)f(x)) as f is an anti-isomorphism
                   = v_A(f(x)f(y)) as A is an IFNSG of a group H
                   = v_A(f(yx)) as f is an anti-isomorphism
                    = v_A \circ f(yx)
which implies that
         v_A \circ f(xy) = v_A \circ f(yx).
   Hence Aof is an IFNSG of a group G.
```

REFERENCES

- [1] Atanassov.K.T., Intuitionistic fuzzy sets, fuzzy sets and systems, 20(1) (1986) 87-96.
- [2] Choudhury.F.P. and Chakraborty.A.B. and Khare.S.S. ,A note on fuzzy subgroups and fuzzy homomorphism , Journal of mathematical analysis and applications 131 ,537 -553 (1988).
- [3] Palaniappan.N & Muthuraj.R, The homomorphism, anti homomorphism of a fuzzy and an anti fuzzy groups, Varahmihir Journal of Mathematical Sciences, Vol. 4 No.2 (2004), 387-399.
- [4] Palaniappan.N & Muthuraj.R,anti fuzzy group and lower level subgroups, Antarctica J. Math., 1 (1) (2004) ,71-76.
- [5] Salah Abou-Zaid ,On generalized characteristic fuzzy subgroups of a finite group , fuzzy sets and systems , (1991) 235-240 .