
Issues in IFSs and GNs, Vol. 13, 2017, 72–84

Simulation of Generalized Nets by using GNDraw

Nikolay Ikonomov1, Peter Vassilev2, Simeon Ribagin2

1Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
e-mail: nikonomov@math.bas.bg

2Institute of Biophysics and Biomedical Engineering
Bulgarian Academy of Sciences

105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
e-mails: peter.vassilev@gmail.com

sim_ribagin@mail.bg

Abstract: This article describes basic simulation of a Generalized Net. This
is added as an extension to the existing application for creating Generalized
Nets, GNDraw, which is written in the Java programming language.
Keywords and phrases: Generalized Net, Simulation, Software, Java.
2000 Mathematics Subject Classification: 68Q85.

1 Introduction

Generalized Nets (see [1, 2]) are an apparatus for modelling of parallel and
concurrent processes, developed as an extension of the concept of Petri nets
and some of their modifications.

The application GNDraw was written specifically for the creation of Gen-
eralized Nets by using simple text commands [3]. Naturally, this is extended
with a simulation of a Generalized Net, which has the following capabilities:
priority of transitions, places and tokens; capacity of places; integer, float and
string function types for the characteristics of places and tokens.

The simulation has to be defined by the following commands after the ones
for drawing the Generalized Net:

72

simulation
transition:name:priority
place:name:priority:capacity:func_type:func_descr
token:name:start_place:priority:func_type:init_value

Each definition for transition, place, token has to be placed on its own row
after the word simulation. The name for transition and place has to reflect
the name from the definition of the net, while the name of the token has to
be unique. Priority and capacity have to be natural numbers. Starting
place start_place of the token has to be a valid name of a place.

Function type func_type can be integer or float, everything else is con-
sidered a string. Initial value init_value should be a number, otherwise
it is loaded as string. Function description can be +2, −3, +4.1 (plus sign is
optional), otherwise it is appended to the token characteristics.

Default values: priority of transition, place, token have default values
of 0, capacity of place – 10, func_type of place and token – integer,
init_value of token – 0, func_descr of place – 1.

2 Simulation

Let’s focus on this basic example:

Example 1
transitions
Z1 : l1 -> l2
Z2 : l2 -> l3
Z3 : l3 i[1] -> l4
Z4 : l4 -> l5
columns
Z1; Z2, Z3; Z4
adjustY
Z1@1; Z4@2
simulation
place:l2:2:1:integer:+2
place:l4:2:1:integer:+4
token:core1:l1:5:integer:0
token:core2:l1:3:integer:0

73

The Generalized Net is defined from the word transitions to the word
simulation. Then the simulation definitions follow: place l2 has priority 2,
capacity 1 and function +2; place l4 has function +4; two tokens have starting
place of l1, and token core1 enters the net first, due to its higher priority.

The initial view of the net is shown on Figure 1. The function of l1 is 1,
the initial value of both tokens is zero, therefore both tokens receive value 1.

Let us advance with one iteration, shown on Figure 2. The priority of
core1 is greater than the priority of core2, so core1 moves first. Since the
capacity of l2 is only one token, then core1 moves to l2, while core2 stays
at l1. The function of l2 is +2, so core1 now has value 3.

Second iteration is shown on Figure 3. Now core1 moves to l3, and
core2 moves to l2. The function of l3 is 1, therefore the value of core1
changes to 4, while the value of core2 changes to 3.

Third iteration on Figure 4: core1 moves to l4, and core2 moves to l3;
the function of l4 is +4, the value of core1 becomes 8; the function of l3 is 1,
the value of core2 becomes 4.

Fourth iteration on Figure 5: core1 moves to l5 (its value is now 9), and
core2 moves to l4 (its value is now 8).

And last iteration on Figure 6: core2 also moves to l5. Final value of
core1 is 9, same for core2.

3 Objects for simulation

The Generalized Net consists of several objects: transitions, places, tokens,
arcs. This application has implemented objects for transition, place and token.
They exhibit the following properties:

• Transition – name of the transition, list of input places, list of output
places, priority.
• Place – name of the place, name of the transition that has this place as

output (left transition), name of the transition that has this place as in-
put (right transition), priority, capacity, function type, function descrip-
tion, list of tokens presently at this place, list of tokens that have passed
through this place.
• Token – name of the token, priority, function type, initial value, status

of the token, name of the place where the token is presently at, list of
places that the token has passed through.

74

Z25
Z15 -

l3i-
l1ti- l2i-

Z45
-

l5i-
Z35

-
l4i-

Figure 1: Initial view of the net.

Z25
Z15 -

l3i-
l1ti- l2ti-

Z45
-

l5i-
Z35

-
l4i-

Figure 2: First iteration.

75

Z25
Z15 -

l3ti-
l1i- l2ti-

Z45
-

l5i-
Z35

-
l4i-

Figure 3: Second iteration.

Z2

5
Z1

5 -
l3uj-

l1j- l2j-
Z4

5
-

l5j-
Z3

5
-

l4uj-

Figure 4: Third iteration.

76

Z25
Z15 -

l3i-
l1i- l2i-

Z45
-

l5ti-
Z35

-
l4ti-

Figure 5: Fourth iteration.

Z25
Z15 -

l3i-
l1i- l2i-

Z45
-

l5ti-
Z35

-
l4i-

Figure 6: Last iteration.

77

4 Algorithm for simulation

The algorithm for simulation attempts to move the tokens from their starting
place through the net, until all tokens reach an exit place or the number of
maximum iterations is reached.

The first step of the algorithm is to activate the tokens: all tokens are or-
dered by their priority, then for each token is checked if the token count at the
staring place of the token is lower than the capacity:

if (place.getTokenCount < place.getCapacity) {
place.setTokenHere(token.getName);
saveChars(token, place);
token.setStatus(1);

}

Then the token count at the place is increased, the characteristics of the place
are saved to the token characteristics, and the token is activated.

The second step is to create a list with the active tokens, ordered by their
priority. On each iteration, this list is created anew, to filter out tokens that
have reached an exit place.

The third step is to start the simulation: for each active token take the place
it is presently at (current position). If that place is connected to a transition on
the right, then the token might be able to move. Otherwise the place is an exit
place, and the token is set as inactive.

Token movement is based on priority: the total priority is the sum of the
priority of the current place and the priority of the transition that the place
connects to. The token moves to the transition with the highest total priority.

The token is now ready to move: make a list with the output places of
that transition, and order them by their priority, select the one with the highest
priority, and set it to outPlace.

if (outPlace.getTokenCount < outPlace.getCapacity) {
outPlace.setTokenHere(token.getName);
token.setPlace(outPlace.getName);
saveChars(token, outPlace)

}

If the token count is less than the capacity, then move the token: add the token
name to the history of outPlace, set the name of outPlace as the current
position of the token, save the characteristics of outPlace to the token.

78

After all tokens have been processed, synchronize the token movement
between the places. Each place has a list of tokens presently at it, and some
tokens may have moved from the place to another one during the iteration.
Check the current position of each token at this place: if the current position
of the token is not equal to the name of this place, then remove the token from
the list of tokens for the place.

Then the next iteration begins at the third step above. The simulation ends
when there are no more active tokens or the maximum iterations are reached,
which are defined as a parameter in the user interface of the application.

5 Second example

This example shows priority of a place and a transition:

Example 2
transitions
Z1 : l1 -> l2
Z2 : l2 l5 -> l3
Z3 : l3 i[1] l8 -> l4
Z4 : l4 -> l5 l6
Z5 : l7 -> l8
columns
Z1, Z5; Z2, Z3; Z4
adjustY
Z5@3
simulation
transition:Z2:4
place:l2:2:1:integer:+2
place:l4:2:1:integer:+4
place:l6:3:2:integer:+1
place:l8:3:2:integer:+1
token:core1:l1:3:integer:0
token:coreA:l7:2:integer:0
token:coreB:l7:7:integer:0
token:coreC:l7:1:integer:0

The third iteration of the example is shown on Figure 7. The question is:
why the token moves to l5 instead of l6, since l6 has priority 3, and by default

79

Z15
Z25

Z45
l1i- l2i- -

l3i- -
l5ti-

-
l6i-

Z35
-

l4ti-
Z55

l7i- l8ti- -

Figure 7: Third iteration of second example.

Z15
Z25

Z45
l1i- l2i- -

l3i- -
l5i-

-
l6ti-

Z35
-

l4ti-
Z55

l7i- l8ti- -

Figure 8: Fourth iteration of second example with increased priority of l6.

80

priority of a place is zero? Priority of a place is the sum of its own priority and
the priority of the transition it connects to. Place l5 connects to transition Z2,
which has priority 4, therefore the total priority of l5 is 4, and that is greater
than the priority of l6.

The priority of l6 has been increased to 6, and the fourth iteration is shown
on Figure 8. This is the final state of the net, since there are 4 active tokens,
capacity of l6 is 2 tokens only, of l4 is 1 and of l8 is 2. There are two tokens,
core1 and coreB, at l6, one token coreA at l4, and one token coreC at l8.

6 Third example

This example shows all capabilities of the algorithm:

Example 3
transitions
Z1 : l1 -> l2
Z2 : l2 l5 -> l3
Z3 : l3 l8 l11 -> l4 l9
Z4 : l4 -> l5 l6
Z5 : l7 -> l8
Z6 : l9 -> l10 l11
columns
Z1, Z5; Z2, Z3; Z4, Z6
adjustY
Z5@2; Z6@1
simulation
transition:Z2:4
transition:Z4:7
place:l4:2:1:integer:+4
place:l6:3:2:integer:+1
place:l7:4:2:integer:+1
place:l9:8:1:integer:+1
token:core1:l1:3:integer:0
token:coreA:l7:2:integer:0
token:coreB:l7:7:integer:0
token:coreC:l7:1:integer:0
token:coreD:l7:5:integer:0

81

Z15
Z25

Z45
l1i- l2i- -

l3ti- -
l5ti-

-
l6i-

Z35
Z55 -

l4ti-
Z65

l7i- l8i- -
l9i- -

l10i-

-
l11i-

Figure 9: Third iteration of third example with priority of Z4 = 7.

Z15
Z25

Z45
l1i- l2i- -

l3ti- -
l5i-

-
l6i-

Z35
Z55 -

l4i-
Z65

l7i- l8i- -
l9ti- -

l10ti-

-
l11i-

Figure 10: Third iteration of third example with priority of Z4 = 5.

82

This example has 4 tokens that have to enter net at place l7. Since capacity
of l7 is 2, only coreB and coreD enter the net, based on their priority.

The third iteration on Figure 9 has core1 at l3, coreB at l5, and coreD
at l4. The tokens rotate between these three places.

The tokens move through the lower circuit Z6, when priority of Z4 is de-
creased to 5 or less, as shown on Figure 10. The third iteration has coreB at
place l10, coreD at l9, and core1 at l3, which stays there for this iteration,
since capacity of l9 is 1. The priorities of l10 and l11 are equal, one of them is
selected at random, based on the internal data structure.

7 GNDraw

The application GNDraw is written in the Java programming language [4]. It
can be launched from the file GNDraw.jar [5]. The user interface is shown
on Figure 11: left panel is for input of the Generalized Net, center panel for
viewing and exporting the net, right panel is for simulation.

The simulation panel has a parameter for maximum iterations, controls for
switching between the iterations, and a panel for displaying the token move-
ment. Each iteration displays different states of the Generalized Net, that were
saved during simulation.

Figure 11: User interface.

83

8 Conclusion

Generalized Nets can be used for the construction of models of both theoretical
and real processes. These models must be simulated in order to determine the
behavior of the modeled process. For that purpose an extension of a previously
developed software application GNDraw was designed. The new extension to
the application enables basic simulation, in addition to the existing construc-
tion of a Generalized Net model through a graphical user interface. Advanced
simulation techniques are planned as future development.

Acknowledgments

P. Vassilev explained in detail the theory behind the simulation of a Gener-
alized Net, tested the program and provided suggestions, which were imple-
mented. S. Ribagin tested the program and found some issues, which were
corrected in version 0.9.4.

This work is partially supported by the Bulgarian National Science Fund
under Grant Ref No DN-02-10 “New Instruments for Knowledge Discovery
from Data, and their Modelling”.

References

[1] Atanassov, K., Theory of Generalized Nets (An algebraic aspect), Ad-
vances in Modelling & Simulation, AMSE Press, Vol. 1, 1984, No. 2,
27–33.

[2] Atanassov, K., On Generalized Nets Theory, “Prof. M. Drinov” Academic
Publishing House, Sofia, 2007.

[3] Ikonomov, N., GNDraw – Software Application for Creating Generalized
Nets, Issues in Intuitionistic Fuzzy Sets and Generalized Nets, in press.

[4] https://java.com/

[5] http://justmathbg.info/files/math/GNDraw094.zip

84

