THE HOMOMORPHISM AND ANTI – HOMOMORPHISM OF INTUITIONISTIC FUZZY SUBGROUPS AND INTUITIONISTIC FUZZY NORMAL SUBGROUPS

N. PALANIAPPAN Professor of Mathematics, Alagappa University, Karaikudi – 630003.T.N., India. **K. ARJUNAN** Department of Mathematics, Dr.Zakir Hussain College, Ilayangudi – 630702. T.N., India.

ABSTRACT.

In this paper, we made an attempt to study the algebraic nature of intuitionistic fuzzy subgroups and intuitionistic fuzzy normal subgroups under homomorphism and anti-homomorphism.

KEY WORDS: Fuzzy sets, intuitionistic fuzzy sets ,intuitionistic fuzzy subgroups , intuitionistic fuzzy normal subgroups , homomorphism, anti-homomorphism.

Introduction

After the introduction of fuzzy sets by L.A.Zadeh, several researchers explored on the generalization of the notion of fuzzy set. The concept of IFS was introduced by K.T.Atanassov [1], as a generalization of the notion of fuzzy set. F.P. Choudhury. and A.B. Chakraborty. and S.S. Khare. [2] defined a fuzzy subgroups and fuzzy homomorphism. N. $\Pi\alpha\lambda\alpha\nu\alpha\pi\pi\alpha\nu$ and P. Muthupaqe [3] defined the homomorphism and anti- homomorphism of fuzzy and anti-fuzzy subgroups. We introduce the concept of homomorphism and anti-homomorphism in intuitionistic fuzzy subgroups and intuitionistic fuzzy normal subgroups and established some results.

1. Preliminaries

1.1 Definition : Let X be a non–empty set. A fuzzy subset A of X is a function $A:X \rightarrow [0,1]$.

1.2 Definition : An intuitionistic fuzzy set (IFS) A in X is defined as an object of the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$, where $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $x \in X$ satisfying $0 \le \mu_A(x) + \nu_A(x) \le 1$.

1.3 Definition : Let G be a group. An intuitionistic fuzzy subset A of G is said to be an intuitionistic fuzzy subgroup of G (IFSG) if

- (i) $\mu_A(xy) \ge \min\{\mu_A(x), \mu_A(y)\}.$
- (ii) $\mu_A(x^{-1}) \ge \mu_A(x)$.
- (iii) $v_A(xy) \le \max\{v_A(x), v_A(y)\}.$
- (iv) $v_A(x^{-1}) \leq v_A(x)$ for all $x, y \in G$.

1.4 Definition : Let G be a group. An intuitionistic fuzzy subset A of G is said to be an intuitionistic fuzzy normal subgroup of G (IFNSG) if

- (i) $\mu_A(xy) = \mu_A(yx)$.
- (ii) $v_A(xy) = v_A(yx)$ for all $x, y \in G$.

1.5 Definition : Let G and G¹ be any two groups, then the function f: $G \rightarrow G^1$ is said to be a homomorphism if f(xy) = f(x)f(y) for all $x, y \in G$.

1.6 Definition : Let G and G^1 be any two groups, then the function f: $G \to G^1$ is said to be an anti-homomorphism if f(xy) = f(y)f(x) for all $x, y \in G$.

1.7 Definition : Let X and X¹ be any two sets. Let $f:X \to X^1$ be any function and let A be an IFS in X,V be an IFS in $f(X)=X^1$, defined by $\mu_V(y) = \sup \mu_A(x)$ and $\nu_V(y) = \inf \nu_A(x)$ for all $x \in X$ and $y \in X^1$. A is called a preimage of V under f and is denoted by $f^{-1}(V)$.

1.1 Theorem . Let $f: G \rightarrow G^1$ be a homomorphism . Then

(i) $f(e) = e^1$ where e and e^1 are the identities of G and G^1 respectively.

(ii)
$$f(a^{-1}) = [f(a)]^{-1}$$
 for all a in G.

Proof : It is trivial.

1.2 Theorem . Let $f: G \rightarrow G^1$ be an anti-homomorphism .Then

(i) $f(e) = e^1$ where e and e^1 are the identities of G and G¹ respectively.

(ii) $f(a^{-1}) = [f(a)]^{-1}$ for all a in G.

Proof : It is trivial.

2. IFSG of G under homomorphism

2.1 Theorem. The homomorphic image of an IFSG of G is an IFSG. **Proof:** Let $f: G \longrightarrow G^1$ be a homomorphism. That is f(xy) = f(x)f(y) for all $x, y \in G$. Let V = f(A) where A is an IFSG of G. We have to prove that V is an IFSG of G^1 . Now, for f(x), f(y) in G^{1} , $\mu_V(f(x)f(y)) = \mu_V(f(xy))$ as f is a homomorphism. = $\mu_A(xy)$, since $\mu_A(x) = \mu_V(f(x))$. $\geq \min\{ \mu_A(x), \mu_A(y) \}$ as A is an IFSG of G. $= \min\{ \mu_V(f(x)), \mu_V(f(y)) \}$ which implies that $\mu_V(f(x)f(y)) \ge \min\{ \mu_V(f(x)), \mu_V(f(y)) \}.$ For f(x) in G^1 , $\mu_V([f(x)]^{-1}) = \mu_V(f(x^{-1}))$ as f is a homomorphism. $= \mu_A(x^{-1})$, since $\mu_A(x) = \mu_V(f(x))$. $\geq \mu_A(x)$ as A is an IFSG of G. $= \mu_V(f(x))$ which implies that $\mu_V([f(x)]^{-1}) \ge \mu_V(f(x))$. $v_V(f(x)f(y)) = v_V(f(xy))$ as f is a homomorphism. = $v_A(xy)$, since $v_A(x) = v_V(f(x))$. $\leq \max\{v_A(x), v_A(y)\}$ as A is an IFSG of G. $= \max \{ v_V(f(x)), v_V(f(y)) \}$ which implies that $v_V(f(x)f(y)) \le \max\{v_V(f(x)), v_V(f(y))\}$. $v_V([f(x)]^{-1}) = v_V(f(x^{-1}))$ as f is a homomorphism. $= v_A(x^{-1})$, since $v_A(x) = v_V(f(x))$. $\leq v_A(x)$ as A is an IFSG of G. $= v_V(f(x))$ which implies that $v_V([f(x)]^{-1}) \leq v_V(f(x))$. Hence V is an IFSG of G^1 .

2.2 Theorem. The homomorphic pre image of an IFSG of G^1 is an IFSG.

Proof: Let $f: G \rightarrow G^1$ be a homomorphism. That is f(xy) = f(x)f(y) for all x, y \in G. Let V = f(A) where V is an IFSG of G^1 . We have to prove that A is an IFSG of G. Let x, y \in G, $\mu_A(xy) = \mu_V(f(xy))$, since $\mu_A(x) = \mu_V(f(x))$. $=\mu_V(f(x)f(y))$ as f is a homomorphism. $\geq \min\{\mu_V(f(x)), \mu_V(f(y))\}\$ as V is an IFSG of G¹. $= \min\{ \mu_A(x), \mu_A(y) \}$ which implies that $\mu_A(xy) \ge \min\{ \mu_A(x), \mu_A(y) \}.$ $\mu_A(x^{-1}) = \mu_V(f(x^{-1}))$, since $\mu_A(x) = \mu_V(f(x))$. $=\mu_V([f(x)]^{-1})$ $\geq \mu_V(f(x))$ as V is an IFSG of G¹. $= \mu_A(\mathbf{x})$ which implies that $\mu_A(x^{-1}) \ge \mu_A(x)$. $v_A(xy) = v_V(f(xy))$, since $v_A(x) = v_V(f(x))$. $=v_{V}(f(x)f(y))$ as f is a homomorphism. $\leq \max\{v_V(f(x)), v_V(f(y))\}\$ as V is an IFSG of G¹. $= \max\{ v_A(x), v_A(y) \}$ which implies that $v_A(xy) \le \max\{v_A(x), v_A(y)\}$. $v_A(x^{-1}) = v_V(f(x^{-1}))$, since $v_A(x) = v_V(f(x))$. $=v_{V}([f(x)]^{-1})$ $\leq v_V(f(x))$ as V is an IFSG of G¹. $= v_A(x)$ which implies that $v_A(x^{-1}) \le v_A(x)$. Hence A is an IFSG of G.

3. IFSG of G under anti-homomorphism

3.1 Theorem . The anti-homomorphic image of an IFSG of G is an IFSG . Let $f: G \longrightarrow G^1$ be an anti-homomorphism. Proof: That is f(xy) = f(y)f(x) for all x, y \in G. Let V = f(A) where A is an IFSG of G. We have to prove that V is an IFSG of G^1 . Now, let f(x), $f(y) \in G^1$, $\mu_V(f(x)f(y)) = \mu_V(f(yx))$ as f is an anti-homomorphism. = $\mu_A(yx)$, since $\mu_A(x) = \mu_V(f(x))$. $\geq \min\{\mu_A(x), \mu_A(y)\}\$ as A is an IFSG of G. $= \min\{ \mu_V(f(x)), \mu_V(f(y)) \}$ which implies that $\mu_V(f(x)f(y)) \ge \min\{\mu_V(f(x)), \mu_V(f(y))\}.$ For x in G, $\mu_V([f(x)]^{-1}) = \mu_V(f(x^{-1}))$ as f is an anti-homomorphism. $= \mu_A(x^{-1})$, since $\mu_A(x) = \mu_V(f(x))$. $\geq \mu_A(x)$ as A is an IFSG of G. $= \mu_V(f(x))$ which implies that $\mu_V([f(x)]^{-1}) \ge \mu_V(f(x))$.

$$\begin{split} \nu_V(f(x)f(y)) &= \nu_V(f(yx)) \quad \text{as f is an anti-homomorphism.} \\ &= \nu_A(yx) \ , \ \text{since } \nu_A(x) = \nu_V(f(x)). \\ &\leq \max\{ \nu_A(x) \ , \nu_A(y) \} \ \text{as A is an IFSG of G.} \\ &= \max\{ \nu_V(f(x)), \nu_V(f(y)) \} \\ \text{which implies that } \nu_V(f(x)f(y)) &\leq \max\{ \nu_V(f(x)), \nu_V(f(y)) \}. \\ \nu_V([f(x)]^{-1}) &= \nu_V(f(x^{-1})) \ \text{as f is an anti-homomorphism }. \\ &= \nu_A(x^{-1}) \ , \ \text{since } \nu_A(x) = \nu_V(f(x)). \\ &\leq \nu_A(x) \ \text{ as A is an IFSG of G.} \\ &= \nu_V(f(x)) \\ \text{which implies that } \nu_V([f(x)]^{-1}) &\leq \nu_V(f(x)). \\ \text{Hence V is an IFSG of G}^1 \ . \end{split}$$

3.2 Theorem. The anti-homomorphic pre image of an IFSG of G^1 is an IFSG. **Proof:** Let $f: G \rightarrow G^1$ be an anti-homomorphism. That is f(xy) = f(y)f(x) for all x, y \in G. Let V = f(A) where V is an IFSG of G^1 We have to prove that A is an IFSG of G. Let x, y \in G, $\mu_A(xy) = \mu_V(f(xy))$, since $\mu_A(x) = \mu_V(f(x))$. $=\mu_V(f(y)f(x))$ as f is an anti-homomorphism. $\geq \min\{ \mu_V(f(x)), \mu_V(f(y)) \}$ as V is an IFSG of G^1 . $= \min\{ \mu_A(x), \mu_A(y) \}$ which implies that $\mu_A(xy) \ge \min\{ \mu_A(x), \mu_A(y) \}.$ $\mu_A(x^{-1}) = \mu_V(f(x^{-1}))$, since $\mu_A(x) = \mu_V(f(x))$. $=\mu_V([f(x)]^{-1})$ as f is an anti-homomorphism. $\geq \mu_V(f(x))$ as V is an IFSG of G¹. $= \mu_A(x)$ which implies that $\mu_A(x^{-1}) \ge \mu_A(x)$. $v_A(xy) = v_V(f(xy))$, since $v_A(x) = v_V(f(x))$. $=v_V(f(y)f(x))$ as f is an anti-homomorphism. $\leq \max\{v_V(f(x)), v_V(f(y))\}$ as V is an IFSG of G¹. $= \max\{ v_A(x), v_A(y) \}$ which implies that $v_A(xy) \le \max\{v_A(x), v_A(y)\}$. $v_A(x^{-1}) = v_V(f(x^{-1}))$, since $v_A(x) = v_V(f(x))$. $=v_V([f(x)]^{-1})$ as f is an anti homomorphism. $\leq v_{V}(f(x))$ as V is an IFSG of G¹. $= v_A(x)$ which implies that $v_A(x^{-1}) \leq v_A(x)$. Hence A is an IFSG of G.

4. IFNSG of G under homomorphism

4.1 Theorem. The homomorphic image of an IFNSG of G is an IFNSG.
Proof: Let f: G → G¹ be a homomorphism. That is f(xy) = f(x)f(y) for all x, y ∈ G.
Let V = f(A) where A is an IFNSG of G. We have to prove that V is an IFNSG of G^{1} . Now, for f(x), $f(y) \in G^1$, $\mu_V(f(x)f(y)) = \mu_V(f(xy))$ as f is a homomorphism. = $\mu_A(xy)$, since $\mu_A(x) = \mu_V(f(x))$. $= \mu_A(yx)$ as A is an IFNSG of G. $=\mu_V(f(yx))$, since $\mu_A(x) = \mu_V(f(x))$. $=\mu_V(f(y)f(x))$ as f is a homomorphism which implies that $\mu_V(f(x)f(y)) = \mu_V(f(y)f(x))$. $v_V(f(x)f(y)) = v_V(f(xy))$ as f is a homomorphism. = $v_A(xy)$, since $v_A(x) = v_V(f(x))$. $= v_A(yx)$ as A is an IFNSG of G. $= v_V(f(yx))$, since $v_A(x) = v_V(f(x))$. $= v_V(f(y)f(x))$ as f is a homomorphism which implies that $v_V(f(x)f(y)) = v_V(f(y)f(x))$. Hence V is an IFNSG of G^1 . **4.2 Theorem**. The homomorphic pre image of an IFNSG of G^1 is an IFNSG. **Proof:** Let $f: G \rightarrow G^1$ be a homomorphism. That is f(xy) = f(x)f(y) for all x, y \in G. Let V = f(A) where V is an IFNSG of G^1 . We have to prove that A is an IFNSG of G. Let $x, y \in G$, $\mu_A(xy) = \mu_V(f(xy))$, since $\mu_A(x) = \mu_V(f(x))$. $=\mu_V(f(x)f(y))$ as f is a homomorphism. $= \mu_V(f(y)f(x))$ as V is an IFNSG of G¹. $= \mu_V(f(yx))$ as f is a homomorphism. $= \mu_A(yx)$, since $\mu_A(x) = \mu_V(f(x))$ which implies that $\mu_A(xy) = \mu_A(yx)$. $v_A(xy) = v_V(f(xy))$, since $v_A(x) = v_V(f(x))$. $=v_V(f(x)f(y))$ as f is a homomorphism. $= v_V(f(y)f(x))$ as V is an IFNSG of G¹. $= v_V(f(yx))$ as f is a homomorphism. $= v_A(yx)$, since $v_A(x) = v_V(f(x))$ which implies that $v_A(xy) = v_A(yx)$. Hence A is an IFNSG of G

5. IFNSG of G under anti-homomorphism

5.1 Theorem . The anti-homomorphic image of an IFNSG of G is an IFNSG. **Proof:** Let $f: G \rightarrow G^1$ be an anti-homomorphism. That is f(xy) = f(y)f(x) for all $x, y \in G$. Let V = f(A) where A is an IFNSG of G. We have to prove that V is an IFNSG of G^1 . Now, for f(x), $f(y) \in G^1$, $\mu_V(f(x)f(y)) = \mu_V(f(yx))$ as f is an anti-homomorphism. $= \mu_A(yx)$, since $\mu_A(x) = \mu_V(f(x))$. $= \mu_A(xy)$ as A is an IFNSG of G.

 $=\mu_V(f(xy))$, since $\mu_A(x) = \mu_V(f(x))$. $=\mu_V(f(y)f(x))$ as f is an anti-homomorphism which implies that $\mu_V(f(x)f(y)) = \mu_V(f(y)f(x))$. $v_V(f(x)f(y)) = v_V(f(yx))$ as f is an anti-homomorphism. = $v_A(yx)$, since $v_A(x) = v_V(f(x))$. $= v_A(xy)$ as A is an IFNSG of G. $= v_V(f(xy))$, since $v_A(x) = v_V(f(x))$. $= v_V(f(y)f(x))$ as f is an anti homomorphism which implies that $v_V(f(x)f(y)) = v_V(f(y)f(x))$. Hence V is an IFNSG of G^1 . **5.2 Theorem**. The anti-homomorphic pre image of an IFNSG of G^1 is an IFNSG. **Proof:** Let $f: G \rightarrow G^1$ be anti-homomorphism. That is f(xy) = f(y)f(x) for all x, y \in G. Let V = f(A) where V is an IFNSG of G^1 We have to prove that A is an IFNSG of G. Let $x, y \in G$, $\mu_A(xy) = \mu_V(f(xy))$, since $\mu_A(x) = \mu_V(f(x))$. $=\mu_V(f(y)f(x))$ as f is an anti homomorphism. $= \mu_V(f(x)f(y))$ as V is an IFNSG of G¹. $= \mu_V(f(yx))$ as f is an anti homomorphism. $= \mu_A(yx)$, since $\mu_A(x) = \mu_V(f(x))$ which implies that $\mu_A(xy) = \mu_A(yx)$. $v_A(xy) = v_V(f(xy))$, since $v_A(x) = v_V(f(x))$. $=v_V(f(y)f(x))$ as f is an anti homomorphism. $= v_V(f(x)f(y))$ as V is an IFNSG of G¹. $= v_V(f(yx))$ as f is an anti homomorphism. $= v_A(yx)$, since $v_A(x) = v_V(f(x))$ which implies that $v_A(xy) = v_A(yx)$. Hence A is an IFNSG of G.

REFERENCES

- [1] Atanassov.K.T., Intuitionistic fuzzy sets, fuzzy sets and systems, 20(1) (1986) 87-96.
- [2] Choudhury.F.P. and Chakraborty.A.B. and Khare.S.S. ,A note on fuzzy subgroups and fuzzy homomorphism . Journal of mathematical analysis and applications 131 ,537 -553 (1988).
- [3] Palaniappan.N & Muthuraj.R, The homomorphism, anti homomorphism of a fuzzy and an anti fuzzy groups, Varahmihir Jouranl of Mathematical Sciences, Vol. 4 No.2 (2004), 387-399.