NIFS 13 (2007), 3, 11-16

THE HOMOMORPHISM AND ANTI - HOMOMORPHISM OF INTUITIONISTIC

FUZZY SUBGROUPS AND INTUITIONISTIC FUZZY NORMAL SUBGROUPS

N. PALANIAPPAN
Professor of Mathematics, Alagappa University, Karaikudi - 630003.T.N., India.

K. ARJUNAN
Department of Mathematics, Dr.Zakir Hussain College, Ilayangudi - 630702. T.N., India.

ABSTRACT.

In this paper, we made an attempt to study the algebraic nature of intuitionistic fuzzy subgroups and intuitionistic fuzzy normal subgroups under homomorphism and anti-homomorphism.
KEY WORDS: Fuzzy sets, intuitionistic fuzzy sets ,intuitionistic fuzzy subgroups , intuitionistic fuzzy normal subgroups , homomorphism, anti-homomorphism.

Introduction

After the introdution of fuzzy sets by L.A.Zadeh, several researchers explored on the generalization of the notion of fuzzy set.The concept of IFS was introduced by K.T.Atanassov [1], as a generalization of the notion of fuzzy set. F.P. Choudhury. and AB. Chakraborty. and S.S. Khare. [2] defined a fuzzy subgroups and fuzzy homomorphism. N. П $\alpha \lambda \alpha v i \alpha \pi \pi \alpha v$ and P. Mитпираю [3] defined the homomorphism and anti- homomorphism of fuzzy and anti-fuzzy subgroups. We introduce the concept of homomorphism and anti-homomorphism in intuitionistic fuzzy subgroups and intuitionistic fuzzy normal subgroups and established some results.

1. Preliminaries

1.1 Definition : Let X be a non-empty set. A fuzzy subset A of X is a function $\mathrm{A}: \mathrm{X} \rightarrow[0,1]$.
1.2 Definition : An intuitionistic fuzzy set (IFS) A in X is defined as an object of the form $\mathrm{A}=\left\{\left\langle\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{x})\right\rangle / \mathrm{x} \in \mathrm{X}\right\}$, where $\mu_{\mathrm{A}}: \mathrm{X} \rightarrow[0,1]$ and $v_{\mathrm{A}}: \mathrm{X} \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $\mathrm{x} \in \mathrm{X}$ satisfying $0 \leq \mu_{\mathrm{A}}(\mathrm{x})+\nu_{\mathrm{A}}(\mathrm{x}) \leq 1$.
1.3 Definition : Let G be a group. An intuitionistic fuzzy subset A of G is said to be an intuitionistic fuzzy subgroup of G (IFSG) if
(i) $\quad \mu_{\mathrm{A}}(\mathrm{xy}) \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$.
(ii) $\quad \mu_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) \geq \mu_{\mathrm{A}}(\mathrm{x})$.
(iii) $v_{\mathrm{A}}(\mathrm{xy}) \leq \max \left\{\mathrm{v}_{\mathrm{A}}(\mathrm{x}), \mathrm{v}_{\mathrm{A}}(\mathrm{y})\right\}$.
(iv) $\quad v_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) \leq v_{\mathrm{A}}(\mathrm{x}) \quad$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{G}$.
1.4 Definition : Let G be a group. An intuitionistic fuzzy subset A of G is said to be an intuitionistic fuzzy normal subgroup of G (IFNSG) if
(i) $\quad \mu_{A}(x y)=\mu_{A}(y x)$.
(ii) $\quad v_{A}(x y)=v_{A}(y x)$ for all $x, y \in G$.
1.5 Definition : Let G and G^{1} be any two groups, then the function $f: G \rightarrow G^{1}$ is said to be a homomorphism if $f(x y)=f(x) f(y)$ for all $x, y \in G$.
1.6 Definition : Let G and G^{1} be any two groups, then the function $f: G \rightarrow G^{1}$ is said to be an anti-homomorphism if $f(x y)=f(y) f(x)$ for all $x, y \in G$.
1.7 Definition : Let X and X^{1} be any two sets. Let $f: X \rightarrow X^{1}$ be any function and let A be an IFS in X, V be an IFS in $f(X)=X^{1}$, defined by $\mu_{V}(y)=\sup \mu_{A}(x)$ and $v_{V}(y)=\inf v_{A}(x)$ for all $x \in X$ and $y \in X^{1}$. A is called a preimage of V under f and is denoted by $f^{-1}(V)$.
1.1 Theorem. Let $f: G \longrightarrow G^{1}$ be a homomorphism. Then
(i) $\quad f(e)=e^{1}$ where e and e^{1} are the identities of G and G^{1} respectively .
(ii) $\mathrm{f}\left(\mathrm{a}^{-1}\right)=[\mathrm{f}(\mathrm{a})]^{-1}$ for all a in G .

Proof : It is trivial
1.2 Theorem . Let $f: G \longrightarrow G^{1}$ be an anti- homomorphism .Then
(i) $f(e)=e^{1}$ where e and e^{1} are the identities of G and G^{1} respectively .
(ii) $\mathrm{f}\left(\mathrm{a}^{-1}\right)=[\mathrm{f}(\mathrm{a})]^{-1}$ for all a in G .

Proof : It is trivial.

2. IFSG of G under homomorphism

2.1 Theorem. The homomorphic image of an IFSG of G is an IFSG.

Proof: Let $f: G \longrightarrow G^{1}$ be a homomorphism. That is $f(x y)=f(x) f(y)$ for all $x, y \in G$.
Let $V=f(A)$ where A is an IFSG of G. We have to prove that V is an IFSG of G^{1}. Now, for $\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})$ in G^{1},

$$
\begin{aligned}
\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) & =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{xy})) \quad \text { as } \mathrm{f} \text { is a homomorphism. } \\
& =\mu_{\mathrm{A}}(\mathrm{xy}), \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\} \text { as } \mathrm{A} \text { is an IFSG of G. } \\
& =\min \left\{\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})), \mu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}))\right\}
\end{aligned}
$$

which implies that $\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \geq \min \left\{\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})), \mu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}))\right\}$.
For $f(x)$ in G^{1},
$\mu_{\mathrm{V}}\left([\mathrm{f}(\mathrm{x})]^{-1}\right)=\mu_{\mathrm{V}}\left(\mathrm{f}\left(\mathrm{x}^{-1}\right)\right)$ as f is a homomorphism .

$$
=\mu_{\mathrm{A}}\left(\mathrm{x}^{-1}\right), \quad \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))
$$

$$
\geq \mu_{\mathrm{A}}(\mathrm{x}) \quad \text { as } \mathrm{A} \text { is an IFSG of } \mathrm{G} .
$$

$$
=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))
$$

which implies that $\mu_{\mathrm{V}}\left([\mathrm{f}(\mathrm{x})]^{-1}\right) \geq \mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))$.

$$
\begin{aligned}
\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) & =\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{xy})) \text { as } \mathrm{f} \text { is a homomorphism. } \\
& =v_{\mathrm{A}}(\mathrm{xy}), \text { since } v_{\mathrm{A}}(\mathrm{x})=\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& \leq \max \left\{v_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{y})\right\} \text { as } \mathrm{A} \text { is an IFSG of } \mathrm{G} . \\
& =\max \left\{\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{x})), \mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{y}))\right\}
\end{aligned}
$$

which implies that $v_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \leq \max \left\{\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{x})), \mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{y}))\right\}$.

$$
\begin{aligned}
\mathrm{v}_{\mathrm{V}}\left([\mathrm{f}(\mathrm{x})]^{-1}\right) & =\mathrm{v}_{\mathrm{V}}\left(\mathrm{f}\left(\mathrm{x}^{-1}\right)\right) \text { as } \mathrm{f} \text { is a homomorphism. } \\
& =v_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) \text {, since } \mathrm{v}_{\mathrm{A}}(\mathrm{x})=\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& \leq \mathrm{v}_{\mathrm{A}}(\mathrm{x}) \text { as } \mathrm{A} \text { is an IFSG of } \mathrm{G} . \\
& =\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))
\end{aligned}
$$

which implies that $v_{\mathrm{V}}\left([\mathrm{f}(\mathrm{x})]^{-1}\right) \leq v_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))$.
Hence V is an IFSG of G^{1}.
2.2 Theorem . The homomorphic pre image of an IFSG of G^{1} is an IFSG.

Proof: Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{1}$ be a homomorphism.
That is $f(x y)=f(x) f(y)$ for all $x, y \in G$.
Let $V=f(A)$ where V is an IFSG of G^{1}.
We have to prove that A is an IFSG of G .
Let $\mathrm{x}, \mathrm{y} \in \mathrm{G}$,

$$
\begin{aligned}
\mu_{\mathrm{A}}(\mathrm{xy}) & =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{xy})), \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \text { as } \mathrm{f} \text { is a homomorphism. } \\
& \geq \min \left\{\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})), \mu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}))\right\} \text { as } \mathrm{V} \text { is an IFSG of } \mathrm{G}^{1} . \\
& =\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}
\end{aligned}
$$

which implies that $\mu_{\mathrm{A}}(\mathrm{xy}) \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$.

$$
\begin{aligned}
\mu_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) & =\mu_{\mathrm{V}}\left(\mathrm{f}\left(\mathrm{x}^{-1}\right)\right), \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& \left.=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})]^{-1}\right) \\
& \geq \mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) \text { as } \mathrm{V} \text { is an IFSG of } \mathrm{G}^{1} . \\
& =\mu_{\mathrm{A}}(\mathrm{x})
\end{aligned}
$$

which implies that $\mu_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) \geq \mu_{\mathrm{A}}(\mathrm{x})$.

$$
\begin{aligned}
v_{\mathrm{A}}(\mathrm{xy}) & =v_{\mathrm{V}}(\mathrm{f}(\mathrm{xy})), \text { since } v_{\mathrm{A}}(\mathrm{x})=v_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& =v_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \text { as } \mathrm{f} \text { is a homomorphism. } \\
& \leq \max \left\{v_{\mathrm{V}}(\mathrm{f}(\mathrm{x})), v_{\mathrm{V}}(\mathrm{f}(\mathrm{y}))\right\} \text { as } \mathrm{V} \text { is an IFSG of } \mathrm{G}^{1} . \\
& =\max \left\{v_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{y})\right\}
\end{aligned}
$$

which implies that $v_{A}(x y) \leq \max \left\{v_{A}(x), v_{A}(y)\right\}$.

$$
\begin{aligned}
v_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) & =v_{\mathrm{v}}\left(\mathrm{f}\left(\mathrm{x}^{-1}\right)\right), \text { since } v_{\mathrm{A}}(\mathrm{x})=\mathrm{v}_{\mathrm{v}}(\mathrm{f}(\mathrm{x})) \text {. } \\
& =\mathrm{v}_{\mathrm{V}}\left([\mathrm{f}(\mathrm{x})]^{-1}\right) \\
& \leq v_{\mathrm{v}}(\mathrm{f}(\mathrm{x})) \text { as } \mathrm{V} \text { is an IFSG of } \mathrm{G}^{1} . \\
& =v_{\mathrm{A}}(\mathrm{x})
\end{aligned}
$$

which implies that $v_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) \leq v_{\mathrm{A}}(\mathrm{x})$.
Hence A is an IFSG of G.

3. IFSG of \mathbf{G} under anti-homomorphism

3.1 Theorem . The anti- homomorphic image of an IFSG of G is an IFSG .

Proof: Let $\mathrm{f}: \mathrm{G} \longrightarrow \mathrm{G}^{1}$ be an anti-homomorphism.
That is $f(x y)=f(y) f(x)$ for all $x, y \in G$.
Let $V=f(A)$ where A is an IFSG of G.
We have to prove that V is an IFSG of G^{1}.
Now, let $f(x), f(y) \in G^{1}$,
$\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}))=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{yx})) \quad$ as f is an anti-homomorphism.

$$
\begin{aligned}
& =\mu_{\mathrm{A}}(\mathrm{yx}), \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\} \text { as } \mathrm{A} \text { is an IFSG of } \mathrm{G} . \\
& =\min \left\{\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})), \mu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}))\right\}
\end{aligned}
$$

which implies that $\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \geq \min \left\{\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{x})), \mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y}))\right\}$.
For x in G ,

$$
\begin{aligned}
\mu_{\mathrm{V}}\left([\mathrm{f}(\mathrm{x})]^{-1}\right) & =\mu_{\mathrm{V}}\left(\mathrm{f}\left(\mathrm{x}^{-1}\right)\right) \quad \text { as } \mathrm{f} \text { is an anti-homomorphism } . \\
& =\mu_{\mathrm{A}}\left(\mathrm{x}^{-1}\right), \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& \geq \mu_{\mathrm{A}}(\mathrm{x}) \text { as } \mathrm{A} \text { is an IFSG of } \mathrm{G} . \\
& =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))
\end{aligned}
$$

which implies that $\mu_{\mathrm{V}}\left([\mathrm{f}(\mathrm{x})]^{-1}\right) \geq \mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))$.

$$
\begin{aligned}
\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) & =\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{yx})) \text { as } \mathrm{f} \text { is an anti-homomorphism. } \\
& =\mathrm{v}_{\mathrm{A}}(\mathrm{yx}) \text {, since } \mathrm{v}_{\mathrm{A}}(\mathrm{x})=\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& \leq \max \left\{\mathrm{v}_{\mathrm{A}}(\mathrm{x}), \mathrm{v}_{\mathrm{A}}(\mathrm{y})\right\} \text { as } \mathrm{A} \text { is an IFSG of } \mathrm{G} . \\
& =\max \left\{\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{x})), \mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{y}))\right\}
\end{aligned}
$$

which implies that $v_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \leq \max \left\{\nu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})), \nu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}))\right\}$.

$$
\begin{aligned}
v_{\mathrm{v}}\left([\mathrm{f}(\mathrm{x})]^{-1}\right) & =\mathrm{v}_{\mathrm{V}}\left(\mathrm{f}\left(\mathrm{x}^{-1}\right)\right) \text { as } \mathrm{f} \text { is an anti-homomorphism } \\
& =v_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) \text {, since } v_{\mathrm{A}}(\mathrm{x})=\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& \leq v_{\mathrm{A}}(\mathrm{x}) \text { as } \mathrm{A} \text { is an IFSG of } \mathrm{G} . \\
& =v_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))
\end{aligned}
$$

which implies that $v_{\mathrm{V}}\left([\mathrm{f}(\mathrm{x})]^{-1}\right) \leq \nu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))$.
Hence V is an IFSG of G^{1}.
3.2 Theorem . The anti-homomorphic pre image of an IFSG of G^{1} is an IFSG.

Proof: Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{1}$ be an anti-homomorphism.
That is $f(x y)=f(y) f(x)$ for all $x, y \in G$.
Let $V=f(A)$ where V is an IFSG of G^{1}.
We have to prove that A is an IFSG of G.
Let $\mathrm{x}, \mathrm{y} \in \mathrm{G}$,

$$
\begin{aligned}
\mu_{\mathrm{A}}(\mathrm{xy}) & =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{xy})), \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})) \text { as } \mathrm{f} \text { is an anti-homomorphism. } \\
& \geq \min \left\{\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})), \mu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}))\right\} \text { as } \mathrm{V} \text { is an IFSG of } \mathrm{G}^{1} . \\
& =\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}
\end{aligned}
$$

which implies that $\mu_{\mathrm{A}}(\mathrm{xy}) \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$.

$$
\begin{aligned}
\mu_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) & =\mu_{\mathrm{V}}\left(\mathrm{f}\left(\mathrm{x}^{-1}\right)\right), \quad \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& =\mu_{\mathrm{V}}\left([\mathrm{f}(\mathrm{x})]^{-1}\right) \text { as } \mathrm{f} \text { is an anti-homomorphism } . \\
& \geq \mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) \text { as } \mathrm{V} \text { is an IFSG of } \mathrm{G}^{1} . \\
& =\mu_{\mathrm{A}}(\mathrm{x})
\end{aligned}
$$

which implies that $\mu_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) \geq \mu_{\mathrm{A}}(\mathrm{x})$.

$$
\begin{aligned}
v_{A}(x y) & =v_{V}(f(x y)) \text {, since } v_{A}(x)=v_{V}(f(x)) . \\
& =v_{V}(f(y) f(x)) \text { as } f \text { is an anti-homomorphism. } \\
& \leq \max \left\{v_{V}(f(x)), v_{V}(f(y))\right\} \text { as } V \text { is an IFSG of } G^{1} . \\
& =\max \left\{v_{A}(x), v_{A}(y)\right\}
\end{aligned}
$$

which implies that $v_{A}(x y) \leq \max \left\{v_{A}(x), v_{A}(y)\right\}$.

$$
\begin{aligned}
v_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) & =v_{\mathrm{V}}\left(\mathrm{f}\left(\mathrm{x}^{-1}\right)\right), \quad \text { since } v_{\mathrm{A}}(\mathrm{x})=\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& =\mathrm{v}_{\mathrm{V}}\left([\mathrm{f}(\mathrm{x})]^{-1}\right) \text { as } \mathrm{f} \text { is an anti homomorphism } . \\
& \leq v_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) \text { as } \mathrm{V} \text { is an IFSG of } G^{1} . \\
& =v_{\mathrm{A}}(\mathrm{x})
\end{aligned}
$$

which implies that $v_{A}\left(x^{-1}\right) \leq v_{\mathrm{A}}(\mathrm{x})$.
Hence A is an IFSG of G.

4. IFNSG of G under homomorphism

4.1 Theorem . The homomorphic image of an IFNSG of G is an IFNSG.

Proof: Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{1}$ be a homomorphism.
That is $f(x y)=f(x) f(y)$ for all $x, y \in G$.
Let $V=f(A)$ where A is an IFNSG of G.

We have to prove that V is an IFNSG of G^{1}.
Now, for $f(x), f(y) \in G^{1}$,
$\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}))=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{xy}))$ as f is a homomorphism.
$=\mu_{\mathrm{A}}(\mathrm{xy})$, since $\mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))$.
$=\mu_{\mathrm{A}}(\mathrm{yx})$ as A is an IFNSG of G.
$=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{yx}))$, since $\mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))$.
$=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x}))$ as f is a homomorphism
which implies that $\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}))=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x}))$.

$$
\begin{aligned}
v_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) & =v_{\mathrm{V}}(\mathrm{f}(\mathrm{xy})) \text { as } \mathrm{f} \text { is a homorphism. } \\
& =v_{\mathrm{A}}(\mathrm{xy}), \text { since } v_{\mathrm{A}}(\mathrm{x})=v_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& =v_{\mathrm{A}}(\mathrm{yx}) \text { as } A \text { is an IFNSG of } \mathrm{G} . \\
& =v_{\mathrm{V}}(\mathrm{f}(\mathrm{yx})), \text { since } v_{\mathrm{A}}(\mathrm{x})=v_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& =v_{\mathrm{V}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})\} \text { as } \mathrm{f} \text { is a homomorphism }
\end{aligned}
$$

which implies that $v_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}))=\mathrm{v}_{\mathrm{V}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x}))$.
Hence V is an IFNSG of G^{1}.
4.2 Theorem . The homomorphic pre image of an IFNSG of G^{1} is an IFNSG.

Proof: Let $\mathrm{f}: \mathrm{G} \longrightarrow \mathrm{G}^{1}$ be a homomorphism.
That is $f(x y)=f(x) f(y)$ for all $x, y \in G$.
Let $V=f(A)$ where V is an IFNSG of G^{1}.
We have to prove that A is an IFNSG of G .
Let $\mathrm{x}, \mathrm{y} \in \mathrm{G}$,

$$
\begin{aligned}
\mu_{\mathrm{A}}(\mathrm{xy}) & =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{xy})), \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \text { as } \mathrm{f} \text { is a homomorphism. } \\
& =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})) \text { as } \mathrm{V} \text { is an IFNSG of } \mathrm{G}^{1} . \\
& =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{yx})) \text { as } \mathrm{f} \text { is a homomorphism. } \\
& \left.=\mu_{\mathrm{A}}(\mathrm{yx})\right\}, \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))
\end{aligned}
$$

which implies that $\mu_{\mathrm{A}}(\mathrm{xy})=\mu_{\mathrm{A}}(\mathrm{yx})$.

$$
\begin{aligned}
v_{\mathrm{A}}(\mathrm{xy}) & =v_{\mathrm{V}}(\mathrm{f}(\mathrm{xy})), \text { since } v_{\mathrm{A}}(\mathrm{x})=v_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& =v_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \text { as } \mathrm{f} \text { is a homomorphism. } \\
& =v_{\mathrm{V}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})) \text { as } \mathrm{V} \text { is an IFNSG of } \mathrm{G}^{1} . \\
& =v_{\mathrm{V}}(\mathrm{f}(\mathrm{yx})) \text { as } \mathrm{f} \text { is a homomorphism. } \\
& =v_{\mathrm{A}}(\mathrm{yx}), \text { since } v_{\mathrm{A}}(\mathrm{x})=v_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))
\end{aligned}
$$

which implies that $v_{A}(x y)=v_{A}(y x)$.
Hence A is an IFNSG of G.

5. IFNSG of G under anti-homomorphism

5.1 Theorem . The anti-homomorphic image of an IFNSG of G is an IFNSG.

Proof: Let $\mathrm{f}: \mathrm{G} \longrightarrow \mathrm{G}^{1}$ be an anti-homomorphism.
That is $f(x y)=f(y) f(x)$ for all $x, y \in G$.
Let $V=f(A)$ where A is an IFNSG of G.
We have to prove that V is an IFNSG of G^{1}.
Now, for $f(x), f(y) \in G^{1}$,
$\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}))=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{yx})) \quad$ as f is an anti-homomorphism.

$$
\begin{aligned}
& =\mu_{\mathrm{A}}(\mathrm{yx}), \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) \text {. } \\
& =\mu_{\mathrm{A}}(\mathrm{xy}) \text { as } \mathrm{A} \text { is an IFNSG of } G .
\end{aligned}
$$

$=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{xy}))$, since $\mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))$.
$=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x}))$ as f is an anti-homomorphism
which implies that $\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}))=\mu_{\mathrm{v}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x}))$.

$$
\begin{aligned}
v_{\mathrm{v}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) & =v_{\mathrm{V}}(\mathrm{f}(\mathrm{yx})) \text { as } \mathrm{f} \text { is an anti-homomorphism. } \\
& =v_{\mathrm{A}}(\mathrm{yx}) \text {, since } v_{\mathrm{A}}(\mathrm{x})=v_{\mathrm{v}}(\mathrm{f}(\mathrm{x})) . \\
& =v_{\mathrm{A}}(\mathrm{xy}) \text { as A is an IFNSGG of G. } \\
& \left.=v_{\mathrm{v}}(\mathrm{f}(\mathrm{xy})) \text {, since } v_{\mathrm{A}}(\mathrm{x})=v_{\mathrm{v}} \mathrm{f}(\mathrm{f})\right) . \\
& =v_{\mathrm{V}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})) \text {) as } \mathrm{f} \text { is an anti homomorphism }
\end{aligned}
$$

which implies that $v_{v}(f(x) f(y))=v_{v}(f(y) f(x))$.
Hence V is an IFNSG of G^{1}.
5.2 Theorem . The anti-homomorphic pre image of an IFNSG of G^{1} is an IFNSG.

Proof: Let $\mathrm{f}: \mathrm{G} \longrightarrow \mathrm{G}^{1}$ be anti-homomorphism.
That is $f(x y)=f(y) f(x)$ for all $x, y \in G$.
Let $V=f(A)$ where V is an IFNSG of G^{1}.
We have to prove that A is an IFNSG of G .
Let $\mathrm{x}, \mathrm{y} \in \mathrm{G}$,

$$
\begin{aligned}
\mu_{\mathrm{A}}(\mathrm{xy}) & =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{xy})), \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x})) . \\
& =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})) \text { as } \mathrm{f} \text { is an anti homomorphism. } \\
& =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \text { as } \mathrm{V} \text { is an IFNSG of } \mathrm{G}^{1} . \\
& =\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{yx})) \text { as } \mathrm{f} \text { is an anti homomorphism. } \\
& \left.=\mu_{\mathrm{A}}(\mathrm{yx})\right\}, \text { since } \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{V}}(\mathrm{f}(\mathrm{x}))
\end{aligned}
$$

which implies that $\mu_{\mathrm{A}}(\mathrm{xy})=\mu_{\mathrm{A}}(\mathrm{yx})$.

$$
\begin{aligned}
& v_{A}(x y)=v_{V}(f(x y)) \text {, since } v_{A}(x)=v_{V}(f(x)) \text {. } \\
& =v_{V}(f(y) f(x)) \text { as } f \text { is an anti homomorphism. } \\
& =v_{\mathrm{V}}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})) \text { as } \mathrm{V} \text { is an IFNSG of } \mathrm{G}^{1} \text {. } \\
& =v_{V}(f(y x)) \text { as } f \text { is an anti homomorphism. } \\
& =v_{A}(y x) \text {, since } v_{A}(x)=v_{V}(f(x))
\end{aligned}
$$

which implies that $v_{A}(x y)=v_{A}(y x)$.
Hence A is an IFNSG of G.

REFERENCES

[1] Atanassov.K.T. , Intuitionistic fuzzy sets ,fuzzy sets and systems , 20(1) (1986) 87-96.
[2] Choudhury.F.P. and Chakraborty.A.B. and Khare.S.S. ,A note on fuzzy subgroups and fuzzy homomorphism . Journal of mathematical analysis and applications 131 ,537-553 (1988).
[3] Palaniappan.N \& Muthuraj.R, The homomorphism, anti homomorphism of a fuzzy and an anti fuzzy groups, Varahmihir Jouranl of Mathematical Sciences, Vol. 4 No. 2 (2004), 387399.

