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Abstract: One of the main restrictions of the relational data model is the lack of support for 

flexible, imprecise and vague information in data encoding and retrieval. Fuzzy set theory and 

more specifically intuitionistic fuzzy sets provides an effective solution to model the data 

imprecision in relational databases. Several works in the last 30 years have used fuzzy set theory 

to extend relational data model to permit representation and retrieval of imprecise data. However, 

to the best of our knowledge, such approaches have not been designed to scale-up to very large 

datasets. In this paper, we develop MapReduce algorithms to enhance the standard relational 

operations with IFS predicates. 
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1 Introduction 

The mainstream relational database queries use a Boolean logic to characterize users’ answers. 

This means that the query condition is either satisfied or not satisfied. The use of Boolean logic 
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poses a restriction in expressing preference or ranking of query results. For instance, it seems 

quite natural for an online hotel-room search to answer questions such as: “Give me all hotel-

rooms which are not too expensive and are close to city centre”. 

Intuitionistic fuzzy sets (IFS) [2, 3], and possibility theory [4] provide an effective solution 

to represent and process imprecise relational information. The IFS theory is an extension of the 

classical fuzzy set theory [12]. Each element of an intuitionistic fuzzy set has degrees of 

membership (µ) and non-membership (ν), which potentially do not sum up to 1.0 thus leaving a 

degree of indefiniteness or hesitation margin (π). As extension to the classical definition of a 

fuzzy set is given by  

A
~

 = {⟨x, µA (x) ⟩ |x ∈  X} 

where: µA(x)∈  [0, 1] is the membership function of the fuzzy set A
~

, an Intuitionistic fuzzy set   

A is given by 

A = {⟨x, µA(x), vA(x) ⟩ | x ∈  X} 

where: µA : X → [0, 1] and vA : X → [0, 1] such that 0 ≤  µA(x) + vA(x) ≤ 1 and µA(x), vA(x) 

∈  [0, 1] denote a degree of membership and a degree of non-membership of x ∈  A, respectively. 

Obviously, each fuzzy set may be represented by the following intuitionistic fuzzy set   

A = {⟨x, µA∼ (x), 1− µ  A∼(x) ⟩|x ∈  X} 

For each Intuitionistic fuzzy set in X, we will call πA(x) = 1 − µA(x) − vA(x) an intuitionistic fuzzy 

index (or a hesitation margin) of x ∈  A which expresses a lack of knowledge of whether x belongs 

to A or not. For each x ∈  A,  0 ≤ πA(x) ≤ 1. 

In [7, 8] we defined the main operations over intuitionistic fuzzy relations (IFR) such as 

projection, selection and join. Let R be an (IFR), i.e., 

R = {⟨x, µR(x), νR(x) ⟩ |x ∈ X}, where x = ⟨col1, …, coln⟩  

is an ordered tuple belonging to a given universe X, {col1, …, coln} is the set of attributes of the 

elements of X, µR(x) is the degree of membership of x in the relation R. In other words, R is an 

intuitionistic fuzzy subset of X with membership and non-membership functions µR and νR 

respectively. 

The selection operation defines a relation, which contains only those tuples from R for 

which a certain predicate is satisfied. We can say that the selection modifies the degrees of 

membership and non-membership of R depending on the corresponding value of the predicate: 

σP(R) = {⟨ x, min(µR(x), µ(P(x))), max(νR(x), ν(P(x))) ⟩ | x ∈ X }, 

where P is the predicate, i.e., the elements of the result relation have degree of membership, 

which is logically AND-ed with the corresponding value of the predicate P. 

Project: ∏f{⟨x, µR(x),νR(x)⟩ | x ∈ X}. 

The traditional project operator ∏f (R) selects all attributes f from all tuples in R leaving out 

other attributes not in f. The semantics of a intuitionistic fuzzy project operator 

πP{⟨x, µR(x), νR(x) ⟩ | x ∈ X} should be that it selects all attributes f from all possibilities in R. 

Projection does not affect the associated intuitionistic fuzzy measures. 

Union: P(A ∪ B) = {⟨x, max (µ A(x), µ B(x)), min (ν A(x), ν B(x)) ⟩ | x ∈ X }.   
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The intuitionistic fuzzy operator union merges two relations possibly containing 

possibilities for the same real world objects. To properly calculate the Intuitionistic fuzzy 

measures in the answer, it is beneficial to enumerate the possible worlds, i.e., consider each 

possibility of an element existing or not in the operand sets. The intersection and difference can 

be determined analogously. 

A Cartesian product of two relations R × S is identical to the Cartesian product operation 

defined in the intuitionistic fuzzy sets theory [8], which uses the logical AND between the 

degrees of membership. 

Let S be another intuitionistic fuzzy relation: S = {⟨ y, µS(y), νS(y) ⟩ | y ∈ Y}, then: 

R × S = {⟨⟨x, y⟩, min(µR(x), µS(y)), max(νR(x), νS(y)) ⟩ | ⟨x, y⟩ ∈ X × Y}. 

The definition of these operations is based on the notion of a probabilistic conjunction 

(logical AND). This type of conjunction is applied when the operands carry probabilistic 

semantics, i.e. they express a probability, not a degree of membership.  

The focus of this paper is to develop MapReduce algorithms to scale-up the IFR operations 

to large scale crisp datasets. We formulate t-selection, projection, union, difference, intersection 

and Cartesian product operations with IFS predicates. 

2 Operations on IFR queries with MapReduce 

2.1 MapReduce framework 

MapReduce is one of the most common platforms for processing big data, based their functioning 

on the primitive operations map and reduce [10], defined initially as part of the functional 

programming language, LISP. Many standard algorithms have been extended to comply [6, 9] with 

the shared-nothing architecture of MapReduce model of computation consists of two main 

functions: Map and Reduce. A large input file is broken into chunks and stored in a distributed file 

system. During the execution of a MapReduce job, the mapper tasks read an input split and call the 

Map function on each single record in the input split to produce a set of intermediate key-value 

pairs. The intermediate key-value pairs are hashed to one or more reducers based on their keys. 

The key-value pairs sent to each reducer are sorted and grouped by their keys. A reduce function 

is called for every key and all its associated values to produce a chunk of final output (Figure 1). 

 

 

Figure 1. MapReduce Framework 
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The cost of a MapReduce job is expressed in terms of (M, I, R) where M is the map cost 

across all records, I is the communication cost of passing intermediate key-value pairs to the 

reducers and R the total computation cost of all reducers. 

2.2 Fuzzy relational operations in MapReduce 

This section describes MapReduce algorithms for IFR operations on a large crisp dataset. The 

selection, union, intersection, and difference operations do not require much modifications to the 

crisp counterparts.  

2.2.1.  IFR selection 

The selection operator is a map-only job that reads a record r from relation R, computes the 

degree ⟨µR(x), νR(x)⟩ to which r satisfies a given condition and emits r and d = min(µR(x), 

µ(P(x))), max(νR(x), ν(P(x))) as key and value, respectively.  

 

Algorithm-1 IFR selection map-only job 

  1 Map: 

  Input: r : an input record, ⟨µR(x), νR(x)⟩ membership & non-membership of r in R,  

  P: Selection predicate 

  2: Parse P and retrieve the fuzzy sets corresponding in P 

  3: compute d = min(µR(x), µ(P(x))), max(νR(x), ν(P(x))) 

  4: emit key = r, value = d. 

 

The cost of the selection operation is the cost of the Map function across all records, O(|R|), 

where |R| is the number of records in R. 

2.2.2 IFR Projection 

The Map function for IFR projection πF(R) reads each input record r in R and emits the F 

attributes of r.F, as key and the membership and non-membership degrese of r in R as values. A 

reducer receives a key r.F, produced by any of the map tasks, and a set of membership and non-

membership degrees associated with it. It emits r.F and the maximum of its membership degrees 

and the minimum of its non-membership degrees. 

 

Algorithm-2 MapReduce job for IFR projection 

  1: Map: 

  Input: r an input record, F: projection attributes, ⟨µR(x), νR(x)⟩: membership of r in R 

  2: emit key = r.F, value = ⟨µR(x), νR(x)⟩ 

       1: Reduce: 

       Input: u: projected attributes of an input record, value = listi:ri.F= u⟨μR(ri), vR(ri)⟩ 

       2: emit key = u, values = (maxi:ri.F= u(μR(ri), min(vR(ri))) 

 

The cost of IFR projection is: M + I + R = |R | + |πF(R)| + |πF(R)| 



133 

2.2.3 IFR Union 

The Map function for fuzzy union R ∪ S reads an input record r (from R or S) and emits r and 

its ⟨membership, non-membership⟩ degrees (in R or S). The reduce function computes the 

maximum membership and minimum non-membership degree for each input record it receives 

as a key.  

 

Algorithm-3 MapReduce job for IFR  R ∪ S  

 1: Map: 

 Input: r : an input record, ⟨μ(r),ν(r)⟩ emit key = r, value = ⟨μ(r),ν(r)⟩ 

  1: Reduce: 

  Input: r : an input record, value = listi ⟨μi(r), νi(r)⟩ 

  2: emit key = r, value = (listi ⟨max(μi(r)), min(νi(r))⟩) 

2.2.4 IFR Difference 

The Map function for IFR difference R–S reads an input record r and emits r as the key. For 

value, it emits the name of the relation (R or S) to which r belongs as well as its membership and 

non-membership degree. The reduce function receives a record r as the key and a list of its 

associated relations and degrees of membership in each relation. If r belongs to R but not S, it 

will emit r and its membership degree in R. If r belongs to both R and S it will emit r and the 

minimum of its membership degrees in R and S complement. 

Each reducer performs a linear operation on the values it receives. Hence, the total cost for 

fuzzy union, intersection and difference is: 

M + I + R = O(|R |+ |S|) + O(|R |+ |S|)+ O(|R |+ |S|) 

 

Algorithm-4 MapReduce job for IFR difference R–S  

 1: Map: 

 Input: r: an input record, N name of the relation to which r belongs (R or S), 

  ⟨μN(r), νN(r)⟩ membership and non-membership of r in N respectiveley 

 2: emit key = r, value = (⟨μN(r),νN(r)⟩,  N) 

   1: Reduce: 

  Input: r : an input record, value = listN (⟨μN(r), νN(r)⟩),   

  2: if value == {(μR(r), νR(r), R)} 

  then emit key = r, value = ⟨μR(r), νR(r)⟩  

  end if 

  3: if value == {(μR(r), νR(r), R), (μS(r), ν S(r), S)} then 

  emit key = r, value = ⟨min(μR(r), μS(r)), max(μR(r), μS(r))⟩ 

  end if 

2.2.5 IFR Join 

The fuzzy R ⊗ S join operation takes a IFR comparator (such as equal, greater than and fuzzy less 

than) and computes the degree to which every pair (r ∈ R, s ∈ S) satisfies the join condition. 
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Algorithm-5 MapReduce job for IFR R⊗⊗⊗⊗S 

 1: Map: 

 Input: r : an input record, K name of the relation to which r belongs (R or S),  

⟨μK(r), νK(r)⟩, α: threshold value, A: the join attribute, A.min: a predefined lower 

bound on the values of A, L: length of α-cut of IFS equal 

 2: if ⟨μK(r), νK(r)⟩ α then 

 3: Part1 = (r.A − A.min) / L then 

 5: emit key = Part1, value = ⟨K,r,H1⟩  

 7: else 

 8: emit key = Part2, value = ⟨K,r,H2⟩   

 9: end if 

  1. Reduce: 

  2.Value Input: = list ⟨(K,r,flag)⟩ 

  3. emit key = (v1.r, v2.r), 

               Value = ⟨min(μv1.K(v1.r), μv2.K (v2.r)), max(Vv1.K(v1.r), Vv2.K(v2.r))⟩ 

 

The IFR join algorithm divides the domain of the join attribute into a number of ranges. 

Each range is called a partition and records from each relation get assigned to these partitions 

based on which range their join attribute value falls into. If the dataset is small, then one could 

also assume that each reducer could handle the data sent to it in short order. Unfortunately, all 

too often [1] neither is the case and some sub-partitioning of the data is needed to ensure load 

balancing. 

3 Conclusions 

This paper reports the implementation of a scalable flexible relational algebra in MapReduce 

based on IFS set theory. The IFS operations discussed are the IFR (selection, projection, union, 

difference and equal join. The cost of each algorithm is discussed in terms of the cost of the map 

and reduces functions as well as the communication cost. For future direction of this work, we 

will focus on two possible extensions of the current scalable IFR relational algebra specification. 

The IFR join algorithm presented in this paper can only be applied when the join condition 

is fuzzy equal. An extension of the current framework will be considered when the join condition 

includes IFS greater than or less than comparators. 
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