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Katarı́na Čunderlı́ková1 and Renáta Bartková2
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Štefánikova 49, 814 73 Bratislava, Slovakia

2 Faculty of Natural Sciences, Matej Bel University
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1 Introduction

The extreme value theory is a part of statistics, which deals with examination of probability of
extreme and rare events with a large impact. The extreme value theory search endpoints of the
distributions. The Fisher–Tippet–Gnedenko theorem says about convergence in probability distri-
bution of maximums of independent, equally distributed random variables. An alternative to the
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maximal observation method is the method that models all observations that exceed any prede-
fined boundary (ie. threshold). This method is used in the Pickands–Balkema–de Haan theorem.
In [3] it was proved the modification of the Fisher–Tippett–Gnedenko theorem for sequence of
independent intuitionistic fuzzy observables. Now we prove the modification of the Pickands–
Balkema–de Haan theorem for sequence of independent intuitionistic fuzzy observables.

One of the preferences of the Kolmogorov concept of probability is the agreement of re-
placement the notion event with notion of a set. Therefore it seems to be important also in the
intuitionistic fuzzy probability theory to work with the notion of an intuitionistic fuzzy event as
an intuitionistic fuzzy set. In the intuitionistic fuzzy probability theory instead of the probability
P : S → [0, 1] an intuitionistic fuzzy state m : F → [0, 1] is considered, where F is a family of
intuitionistic fuzzy subsets of Ω. And instead of a random variable ξ : Ω → R an intuitionistic
fuzzy observable x : B(R)→ F is considered.

Our main idea is in a representation of a given sequence (yn)n of intuitionistic fuzzy observ-
ables yn : B(R)→ F by a probability space (Ω,S, P ) and a sequence (ηn)n of random variables
ηn : Ω → R. Then from the convergence of (ηn)n in distribution the convergence in distribution
of (yn)n follows. Of course to different sequences (yn)n different probability spaces can be ob-
tained. Anyway the transformation can be used for obtaining some new results about intuitionistic
fuzzy states on F .

Mention that the used Atanassov concept of intuitionistic fuzzy sets [1, 2] is more general as
the Zadeh notion of fuzzy sets [15, 16]. Therefore in Section 2 some basic information about
intuitionistic fuzzy states and intuitionistic fuzzy observables on families of intuitionistic fuzzy
sets are presented [13]. Further in Section 3 the independence of intuitionistic fuzzy observables
is studied. In Section 4 the basic notions from extreme value theory is studied. Finally in Section
5 the intuitionistic fuzzy excess distribution Fu is studied and the Pikands-Balkema-de Haan
theorem for intuitionistic fuzzy case is proved.

Remark that in a whole text we use a notation “IF” for short a phrase “intuitionistic fuzzy”.

2 IF-events, IF-states and IF-observables

Our main notion in the paper will be the notion of an IF-event, what is a pair of fuzzy events.

Definition 2.1. Let Ω be a nonempty set. An IF-set A on Ω is a pair (µA, νA) of mappings
µA, νA : Ω→ [0, 1] such that µA + νA ≤ 1Ω.

Definition 2.2. Start with a measurable space (Ω,S). Hence S is a σ-algebra of subsets of Ω.
An IF-event is called an IF-set A = (µA, νA) such that µA, νA : Ω→ [0, 1] are S-measurable.

The family of all IF-events on (Ω,S) will be denoted by F , µA : Ω −→ [0, 1] will be called
the membership function, νA : Ω −→ [0, 1] be called the non-membership function.

If A = (µA, νA) ∈ F , B = (µB, νB) ∈ F , then we define the Lukasiewicz binary operations
⊕,� on F by

A⊕B = ((µA + µB) ∧ 1, (νA + νB − 1) ∨ 0)),

A�B = ((µA + µB − 1) ∨ 0, (νA + νB) ∧ 1))
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and the partial ordering is given by

A ≤ B⇐⇒ µA ≤ µB, νA ≥ νB.

Example 2.3. Fuzzy event f : Ω −→ [0, 1] can be regarded as an IF-event, if we put

A = (f, 1− f).

If f = χA, then the corresponding IF-event has the form

A = (χA, 1− χA) = (χA, χA′ ).

In this case A ⊕ B corresponds to the union of sets, A � B to the product of sets and ≤ to the
set inclusion.

In the IF-probability theory ( [13]) instead of the notion of probability we use the notion of
state.

Definition 2.4. Let F be the family of all IF-events in Ω. A mapping m : F → [0, 1] is called an
IF-state, if the following conditions are satisfied:

(i) m((1Ω, 0Ω)) = 1 , m((0Ω, 1Ω)) = 0;

(ii) if A�B = (0Ω, 1Ω) and A,B ∈ F , then m(A⊕B) = m(A) + m(B);

(iii) if An ↗ A (i.e. µAn ↗ µA, νAn ↘ νA), then m(An)↗m(A).

Probably the most useful result in the IF-state theory is the following representation theo-
rem (see [11]):

Theorem 2.5. To each IF-state m : F → [0, 1] there exists exactly one probability measure
P : S → [0, 1] and exactly one number α ∈ [0, 1] such that

m(A) = (1− α)

∫
Ω

µAdP + α

(
1−

∫
Ω

νAdP

)
for each A = (µA, νA) ∈ F .

The third basic notion in the probability theory is the notion of an observable. Let J be the
family of all intervals in R of the form

[a, b) = {x ∈ R : a ≤ x < b}.

Then the σ-algebra σ(J ) is denoted by B(R) and it is called the σ-algebra of Borel sets, its
elements are called Borel sets.

Definition 2.6. By an IF-observable onF we understand each mapping x : B(R)→ F satisfying
the following conditions:

(i) x(R) = (1, 0), x(∅) = (0, 1);
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(ii) if A ∩B = ∅, then x(A)� x(B) = (0, 1) and x(A ∪B) = x(A)⊕ x(B);

(iii) if An ↗ A, then x(An)↗ x(A).

If x : B(R) −→ F is an IF-observable, and m : F −→ [0, 1] is an IF-state, then the IF-
distribution function of x is the function F : R −→ [0, 1] defined by the formula

F(t) = m
(
x((−∞, t))

)
for each t ∈ R.

Similarly as in the classical case the following two theorems can be proved ( [13]).

Theorem 2.7. Let F : R −→ [0, 1] be the IF-distribution function of an IF-observable x :

B(R) −→ F . Then F is non-decreasing on R, left continuous in each point t ∈ R and

lim
n→−∞

F(t) = 0, lim
n→∞

F(t) = 1.

Theorem 2.8. Let x : B(R) −→ F be an IF-observable, m : F −→ [0, 1] be an IF-state. Define
the mapping mx : B(R) −→ [0, 1] by the formula

mx(C) = m(x(C)).

Then mx : B(R) −→ [0, 1] is a probability measure.

Theorem 2.7 enables us to define IF-expectation and IF-dispersion of an IF-observable.

Definition 2.9. Let F : R −→ [0, 1] be the IF-distribution function of an IF-observable x :

B(R) −→ F . If there exists
∫
R
t dF(t), then we define the IF-expectation of x by the formula

E(x) =

∫
R

t dF(t).

Moreover if there exists
∫
R
t2 dF(t), then we define the IF-dispersion D2(x) by the formula

D2(x) =

∫
R

t2 dF(t)−
(
E(x)

)2
=

∫
R

(t− E(x))2 dF(t).

3 Independence

In the paper we shall work only with independent IF-observables. Of course first we must need the
existence of the joint IF-observable. For this reason we shall define the product of IF-events ( [9]).

Definition 3.1. If A = (µA, νA) ∈ F , B = (µB, νB) ∈ F , then their product A.B is defined by
the formula

A ·B =
(
µA · µB, 1− (1− νA) · (1− νB)

)
=
(
µA · µB, νA + νB − νA.νB

)
.

The next important notion is the notion of a joint IF-observable and its existence (see [12]).
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Definition 3.2. Let x, y : B(R) → F be two IF-observables. The joint IF-observable of the
IF-observables x, y is a mapping h : B(R2)→ F satisfying the following conditions:

(i) h(R2) = (1, 0), h(∅) = (0, 1);

(ii) if A,B ∈ B(R2) and A ∩B = ∅, then h(A ∪B) = h(A)⊕ h(B)

and h(A)� h(B) = (0, 1);

(iii) if A,A1, . . . ∈ B(R2) and An ↗ A, then h(An)↗ h(A);

(iv) h(C ×D) = x(C) · y(D) for each C,D ∈ B(R).

Theorem 3.3. For each two IF-observables x, y : B(R)→ F there exists their joint IF-observable.

Proof. See [12]

Definition 3.4. Let m be an IF-state. IF-observables x1, x2, ...xn : B(R) −→ F are independent
if for the n-dimensional IF-observable hn : B(Rn) −→ F there holds

m
(
hn(A1 × A2 × . . .× An)

)
= m

(
x1(A1)

)
·m
(
x2(A2)

)
· . . . ·m

(
xn(An)

)
for each A1, A2, ..., An ∈ B(R).

Theorem 3.5. LetRN be the set of all sequences (ti)i of real numbers. Let (xn)n be a sequence of
independent IF-observables in (F ,m) with the same IF-distribution function. Then there exists a
probability space (RN , σ(C), P ) with the following property. Define for each n ∈ N the mapping
ξn : RN −→ R by the formula

ξn((ti)i) = tn.

Then (ξn)n is a sequence of independent random variables in a space (RN , σ(C), P ). If there
exists E(xn) then E(ξn) = E(xn). If there exists D2(xn) then D2(ξn) = D2(xn).

Proof. Notation: A set C ⊂ RN is called a cylinder, if there exists n ∈ N , and D ∈ B(Rn) such
that

C = {(ti)i : (t1, ..., tn) ∈ D}.

By C we shall denote the family of all cylinders in RN , by σ(C) the σ-algebra generated by C.
Construction: Consider the measurable space (RN , σ(C)) a sequence (xn)n of independent

IF-observables xn : B(R) −→ F (i.e. x1, . . . , xn are independent for each n ∈ N ), and the states
mn : B(Rn) −→ [0, 1] defined by

mn(B) = m(hn(B))

for each B ∈ B(Rn).
The states mn are consisting, i.e.

mn+1(B ×R) = m
(
hn+1(B ×R)

)
= (m ◦ hn+1)(B ×R) =

(mx1 × . . .×mxn ×mxn+1)(B ×R) =

= m
(
hn(B)

)
·m
(
x(R)

)
= m

(
hn(B)

)
· 1 = mn(B)
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for each B ∈ B(Rn).
Therefore by the Kolmogorov consistency theorem (see [14]) there exists the probability mea-

sure P : σ(C) −→ [0, 1] such that

P
(
π−1
n (B)

)
= mn(B) = m

(
hn(B)

)
for each B ∈ C, where C is the family of all cylinders in RN and πn : RN → Rn is a projection
defined by πn

(
(ti)
∞
1

)
= (t1, . . . , tn).

Let n ∈ N , A1, ..., An ∈ B(R). Then

P
(
ξ−1

1 (A1) ∩ ... ∩ ξ−1
n (An)

)
= P

(
{(ti)∞1 : ti ∈ Ai, i = 1, 2, ..., n}

)
= P

(
π−1
n (A1 × ...× An)

)
= m

(
hn(A1 × ...× An)

)
= m

(
x1(A1)

)
· ... ·m

(
xn(An)

)
= P

(
π−1
{1}(A1)

)
· ... · P

(
π−1
{n}(An)

)
= P

(
ξ−1

1 (A1)
)
· ... · P

(
ξ−1
n (An)

)
.

Let F : R −→ [0, 1] be the IF-distribution function of IF-observables xn, G : R −→ [0, 1] be
the distribution function of random variables ξn. Then

G(t) = P
(
ξ−1
n ((−∞, t))

)
= P

(
π−1
n (R× . . .×R× (−∞, t))

)
=

= m
(
hn(R× ...×R× (−∞, t))) = m

(
xn((−∞, t))

)
= F(t).

If there exists IF-mean value E(xn), then

E(xn) =

∫
R

t dF(t) =

∫
R

t dG(t) = E(ξn).

Similarly the equality D2(ξn) = D2(xn) can be proved.

We need the notion of convergence IF-observables yet (see [8]).

Definition 3.6. Let x1, . . . , xn : B(R) → F be independent IF-observables and gn : Rn → R

be a Borel measurable function. Then the IF-observable yn = gn(x1, . . . , xn) : B(R) → F is
defined by the equality yn = hn◦g−1

n , where hn : B(Rn)→ F is the n-dimensional IF- observable
(joint IF-observable of x1, . . . , xn).

Example 3.7. Let x1, . . . , xn : B(R)→ F be independent IF-observables and hn : B(Rn)→ F
be their joint IF-observable. Then

1. the IF-observable yn =
√
n
σ

(
1
n

n∑
i=1

xi − a
)

is defined by the equality yn = hn ◦ g−1
n , where

gn(u1, . . . , un) =
√
n
σ

(
1
n

n∑
i=1

ui − a
)

;

2. the IF-observable yn = 1
n

n∑
i=1

xi is defined by the equality yn = hn◦g−1
n ,where gn(u1, . . . , un) =

1
n

n∑
i=1

ui;

3. the IF-observable yn = 1
n

n∑
i=1

(xi − E(xi)) is defined by the equality yn = hn ◦ g−1
n , where

gn(u1, . . . , un) = 1
n

n∑
i=1

(ui − E(xi));
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4. the IF-observable yn = 1
an

(
max(x1, . . . , xn)−bn

)
is defined by the equality yn = hn◦g−1

n ,

where gn(u1, . . . , un) = 1
an

(
max(u1, . . . , un)− bn

)
.

Definition 3.8. Let (yn)n be a sequence of IF-observables in the IF-space (F ,m). We say that
(yn)n converges in distribution to a function Ψ : R −→ [0, 1], if for each t ∈ R

lim
n→∞

m
(
yn((−∞, t))

)
= Ψ(t).

4 Basic notions from extreme value theory

4.1 The Fisher–Tippett–Gnedenko theorem

The next notions of the extreme value theory on real numbers can be found in [4–6] and [7].

Let X1, X2, ... be independent, equally distributed random variables of real numbers with a
distribution function F : R→ R defined by

F (x) = P (Xi < x), (i = 1, 2, ...),

where x ∈ R. Denote Mn maximum of n random variables

M1 = X1, Mn = max(X1, ..., Xn),

for n ≥ 2.

Theorem 4.1. (Fisher–Tippett–Gnedenko) LetX1, X2, ... be a sequence of independent, equally
distributed random variables. If there exists the sequences of real constant an > 0, bn and a non-
degenerate distribution function H , such that

lim
n→∞

P

(
Mn − bn
an

< x

)
= H(x),

then H is the distribution function one of the following three types of distributions:

1. Gumbel
Hµ,σ(x) = exp

(
−e−(x−µσ )

)
, x ∈ R,

2. Fréchet

Hµ,σ,α(x) =

{
0, for x ≤ µ,

exp
(
−
(
x−µ
σ

)−α)
, for x > µ, α > 0,

3. Weibull

Hµ,σ,α(x) =

{
exp

(
−
(
−x−µ

σ

)α)
, for x ≤ µ, α > 0,

1, for x > µ.
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A parameter µ ∈ R is the location parameter and a parameter σ > 0 is the scale parameter.
Gumbel, Frechet and Weibull distribution from Theorem 4.1 can be described with using a

generalized distribution of extreme values - GEV:

Hµ,σ,ε (x) =

{
exp

[
−
(
1 + ε

(
x−µ
σ

))− 1
ε

]
, 1 + ε

(
x−µ
σ

)
> 0, ε 6= 0,

exp
(
− exp

(
−x−µ

σ

))
, x ∈ R, ε = 0.

A parameter ε is called the shape parameter.

4.2 The Pickands–Balkema–de Hann theorem

In Section 4.1 the Fisher–Tippet–Gnedenko theorem says about convergence in probability distri-
bution of maximums of independent, equally distributed random variables. An alternative to the
maximal observation method is the method that models all observations that exceed any prede-
fined boundary (i.e., threshold).

Such the extremes occur ”near” the upper end of distribution support, hence intuitively asymp-
totic behavior of Mn must be related to the distribution function F in its right tail near the right
endpoint. We denote by

xF = sup{x ∈ R : F (x) < 1}

the right endpoint of F (see [4–6] and [7]).

Definition 4.2. (Maximum domain of attraction – MDA) We say that the distribution function
F of Xi belongs to the maximum domain of attraction of the extreme value distributions H if
there exists constants an > 0, bn ∈ R such that

lim
n→∞

P

(
Mn − bn
an

< x

)
= H(x)

holds. We write F ∈ MDA(H).

Definition 4.3. (Excess distribution function) Let X be a random variable with distribution
function F and right endpoint xF . For fixed u < xF , u > 0,

Fu(x) = P (X − u ≤ x|X > u), x > 0,

is the excess distribution function of the random variable X (of the distribution function F ) over
the threshold u.

Remark 4.4. The excess distribution function Fu can be expressed in the following form

Fu(x) = P (X − u ≤ x|X > u) =
P (u < X ≤ x+ u)

P (X > u)
=
F (x+ u)− F (u)

1− F (u)
,

for 0 ≤ x ≤ xF − u.
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Definition 4.5. (Generalized Pareto distribution – GPD) Define the distribution function Gε,β

by

Gε,β (x) =

 1−
(

1 + ε · x
β

)− 1
ε
, if ε 6= 0,

1− e−
x
β , if ε = 0,

where

x ≥ 0 if ε ≥ 0,

0 ≤ x ≤ −β
ε

if ε < 0

and β > 0 is the scale parameter. Gε,β is called the generalised Pareto distribution. We can
extend the family by adding a location parameter ν ∈ R. Then we get the function Gε,ν,β by
replacing the argument x above by x− ν in Gε,β . The support has to be adjusted accordingly.

Remark 4.6. The GPD transforms into a number of other distributions depending on the value
of ε. When ε > 0, it takes the form of the ordinary Pareto distribution. This case would be most
relevant for financial time series data as it has a heavy tail. If ε = 0, the GPD corresponds to
exponential distribution, and it is called a short-tailed, Pareto II type distribution for ε < 0.

Theorem 4.7. (Pickands–Balkema–de Haan) Let F be an excess distribution. For every ε ∈ R,

F ∈ MDA(Hε) ⇐⇒ lim
u→xF

sup
0<x<xF−u

|Fu(x)−Gε,β(u)(x)| = 0

for some positive function β.

Proof. See [5].

Remark 4.8. Theorem 4.7 say that for some function β to be estimated from the data, the excess
distribution Fu converges to the generalised Pareto distribution Gε,β for large u.

Remark 4.9. The GEV
Hε, ε ∈ R,

describes the limit distribution of normalised maxima.
The GPD

Gε,β, ε ∈ R, β > 0,

appears as the limit distribution of scaled excesses over high thresholds.

5 The Pickands–Balkema–de Hann theorem for IF-case

Now we return to the IF-case. First we recall the Fisher–Tippett–Gnedenko theorem for a se-
quence of independent, equally distributed IF-observables, see [3].
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Theorem 5.1. (Fisher-Tippett-Gnedenko) Let x1, x2, ... be a sequence of independent, equally
distributed IF-observables such that D2(xn) = σ2,E(xn) = µ, (n = 1, 2, . . .). If there exists the
sequences of real constant an > 0, bn and a non-degenerate distribution function H , such that

lim
n→∞

m

(
1

an

(
Mn − bn

)(
(−∞, t)

))
= H(t),

then H is the distribution function one of the following three types of distributions:

1. Gumbel
Hµ,σ(t) = exp

(
−e−( t−µσ )

)
, t ∈ R,

2. Fréchet

Hµ,σ,α(t) =

{
0, for t ≤ µ,

exp
(
−
(
t−µ
σ

)−α)
, for t > µ, α > 0,

3. Weibull

Hµ,σ,α(t) =

{
exp

(
−
(
− t−µ

σ

)α)
, for t ≤ µ, α > 0,

1, for t > µ.

There a parameter µ ∈ R is the location parameter and a parameter σ > 0 is the scale parameter.

Let x be an IF-observable on F and F be an IF-distribution function of x. We denote by

tF = sup{t ∈ R : F(t) < 1}

the right endpoint of IF-distribution function F.

Definition 5.2. (Maximum domain of attraction for IF-case) We say that the IF-distribution
function F of IF-observable x belongs to the maximum domain of attraction of the extreme value
distributions H if there exists constants an > 0, bn ∈ R such that

lim
n→∞

m

(
1

an

(
Mn − bn

)(
(−∞, t)

))
= H(t),

holds. We write F ∈ MDA(H).

Definition 5.3. (Excess IF-distribution function) Let F be an IF-distribution function with right
endpoint tF. For fixed u < tF, u > 0,

Fu(t) =
F(t+ u)− F(u)

1− F(u)
, 0 ≤ t ≤ tF − u

is the excess IF-distribution function of the IF-observable x (of the IF-distribution function F)
over the threshold u.

Theorem 5.4. (Pickands–Balkema–de Haan) For every ε ∈ R,

F ∈MDA(Hε) ⇐⇒ lim
u→tF

sup
0<t<tF−u

|Fu(t)−Gε,β(u)(t)| = 0

for some positive function β.
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Proof. Let (xn)n be a sequence of independent IF-observables in (F ,m) with the same IF-
distribution F.

Consider the measure space (RN , σ(C), P ) and random variables

ξn((ti)i) = tn, (n = 1, 2, ...).

Then by Theorem 3.5 the random variables ξn are independent. Denote F the distribution function
of random variable ξn.

We can see that F = F and tF = tF , because

F (t) = P
(
ξ−1
n ((−∞, t))

)
= P

(
π−1
n (R× . . .×R× (−∞, t))

)
=

= m
(
hn(R× ...×R× (−∞, t))) = m

(
xn((−∞, t))

)
= F(t).

Hence Fu = Fu.
For each n = 1, 2, 3, . . . let the Borel function gn : Rn −→ R be given by

gn(u1, . . . , un) =
1

an

(
max(u1, . . . , un)− bn

)
.

Let further the IF-observable yn : B(R) −→ F be given by stipulation

yn = hn ◦ g−1
n = gn(x1, . . . , xn) =

1

an

(
max(x1, . . . , xn)− bn

)
.

Moreover

m

(
1

an

(
Mn − bn

)(
(−∞, t)

))
= m

(
yn((−∞, t))

)
= m

(
hn
(
g−1
n ((−∞, t))

))
= P

(
π−1
n

(
g−1
n ((−∞, t))

))
= P

({
(ui)

∞
1 ; gn

(
ξ1((ui)

∞
1 ), . . . , ξn((ui)

∞
1 )
)
∈ (−∞, t)

})
= P

({
(ui)

∞
1 ;

1

an

(
max

(
ξ1((ui)

∞
1 ), ..., ξn((ui)

∞
1 )
)
− bn

)
< t
})

= P

(
1

an
(Mn − bn) < t

)
.

Therefore we obtain for every ε ∈ R,

F ∈MDA(Hε)⇐⇒ F ∈ MDA(Hε)

and
lim
u→tF

sup
0<t<tF−u

|Fu(t)−Gε,β(u)(t)| = lim
u→tF

sup
0<t<tF−u

|Fu(t)−Gε,β(u)(t)| = 0

for some positive function β.
Finally from a classical Pickands–Balkema–de Haan theorem (see Theorem 4.7) we obtain

F ∈ MDA(Hε) ⇐⇒ lim
u→tF

sup
0<t<tF−u

|Fu(t)−Gε,β(u)(t)| = 0.

Hence
F ∈MDA(Hε) ⇐⇒ lim

u→tF
sup

0<t<tF−u
|Fu(t)−Gε,β(u)(t)| = 0.

Remark 5.5. Theorem 5.4 say that for some function β to be estimated from the data, the excess
IF-distribution Fu converges to the generalised Pareto distribution Gε,β for large u.
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6 Conclusion

We have proved a very important assertion of mathematical statistics for IF-observables in IF-
theory. Evidently the results can be applied also to fuzzy sets theory. On the other hand families
of IF-events may be embedded to suitable MV-algebras. Therefore it would be useful to try to
extend the Pickands–Balkema–de Haan theorem to probability MV-algebras.

References

[1] Atanassov, K. (1999) Intuitionistic Fuzzy sets: Theory and Applications. Physica Verlag,
New York.

[2] Atanassov, K. (2012) On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
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