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1 Introduction

Generalized Nets (GNs) are extensions of Petri Nets [4, 3]. They are a means
of modelling parallel and concurrent processes. The concept of GN was intro-
duced in year of 1982. Its properties, some of its applications and all aspects
of the theory were described in a series of more than 100 papers, published
in AMSE Press. In 1991, they were collected in [1]. Later results, published
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between 1991 and 2007, were included in [2].

The operations and relations defined over GNs are part of the algebraic aspect
of the GNs theory which is the oldest one. These operations are valid on cer-
tain conditions stated in [1, 2]. They are slightly changed over the years. The
basic definitions of operations and relations over transitions and GNs that are
relevant to the current paper are shown in the next section. Section 3 gives
short remarks on the reducing operators over GNs. The definitions of the op-
erations over reduced GNs are given in Section 4. The relations over reduced
GNss are described in Section 5.

2 Operations and Relations over Transitions and GNs

The relations and operations defined over GN’s transitions will be listed here
the way they are defined in the GN’s theory so far. These definitions are closely
related to the statements in the next sections of the current paper.
Let Z; = (L, LY ¢ th,r', M*, O l) is a transition in a GN.
The following relations over GN’s transitions are defined in [2]:
o /1 =1Uy <— (VZ 1< < 7)(]?7521 :pT‘Z’ZQ),
where pr; Z is the i-th projection of the Z, i.e.
priZ € {L, L ¢ty v Mi, 0} for (1<i<7)
o /1 CZy < (Vi:1<i<2)(priZy CpriZo)k
(pr3Za < pr3Zy < pr3Zs + praZa)&
(prsZy + praZy < pryZs + praZs)&
(Vi:5<i<6)(priZ1 C1priZe)&(priZy Ca priZa),
where C is a relation of inclusion over index matrices and Cs is a rela-
tion of inclusion over Boolean expressions [2, 1].

The following operations over GN’s transitions are defined in [2]:
e a union of two transitions is the transition
71U Zy = (L} U Ly, LY U LY min(t}, #3), max(t] + t3, 13 + 13)
—min(t},2),rL + 2, MY + M2 V(D , 00));
e an intersection of two transitions is the transition

71N Zy = (L} N Lh, LY 0 LYy, max(t1, t3), min(t] + t5, 13 + 13)
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12
—max(t%,t%),rl x 2, M*' x M2,/\(D ,00));

e a composition of two transitions is the transition

1 —32
—min(t],t3),r' or?, M o M2 V(O , O ),

where O is a result of removing all identifier which are elements of the
set L U L), from O.

IfLiNLy,=0and LY NLY =0, Zy N Zy = Zy, where Zy is the empty
transition.
Let Ey and E5 are two given GNs and for ¢ = 1, 2:

E; = <<Ai,7'rf4,7ri’ci,fi7 §79§>a <Kia7ré(a0§<>’ <n’t‘? t*>v <Xi7(1)i’bi>>'

R

The operations defined over GNs are listed below.

e The union of two GNs is defined on certain conditions in [1, 2] as fol-
lows:

EyUEy = ((A)UAy, hUn?, mhUn? ctuc?, fLluf?, 01062, 03063),

(K1 U Ky, ml U 0k U 6%),
.19
GOD, B)

(Xl UXs, &1 UPy, b1 U b2>>,

<min(T1,T2),GCD( (f,tg) m (T,—i—

’1§z'agx2 —min(71,1»))),

where

2
A10A4y = | J{2(Z € Ai)(VZ' € A3)(ZN Z' = Zy)}U
=1

2
2132 € 4)(32" € A3_i)(Z' N 2" + Zy)&(Z = Z' U Z")}.
=1
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e The composition of two GNs is defined on certain conditions in [1, 2] as
follows:

FE if 7o 4+t < T
EyoBy={ " 1 2l 1,
Es, ifTh <Th+1t5

where
By = ((A)UAy, i und,ntun, ctuc? fLuf2,601 ue, 6l uel),
(K1 U Ko, mh Un2, 03 U 6%,

o 4o 2R
(T1,GCD(t7,13), lfgf%(ﬂ + GCD(9,13) 1)),

<X1 UXo, @ UPy, b1 U b2>>

The relations over two GNs are defined in [1, 2]. They are based on the
GNs’ structure, GNs’ functioning and the results of GNs’ work. Here they are:

(1) E1 = E2 < (Vl < 7 < 4)(p7’iE1 = p?“iEQ),
where

priE1 = priFy <= (dim(priE1) = dim(priE2))&(Vj; : 1 < j; <

dim(priEy))(prjpriEy = prj,priEs)
and dim(Y") is the dimension of the set Y.

(2) By =0 By <= (V1 <i <3)(priEy = priEs),

3) F1 Cy By <= (VZl S Al)(EZQ S AQ)(Zl C Zz)&

(rh = 75| B)&e(r] = 73| B)&e(e! = 2B & = ) (6] =
)6:(0} = O E1)&e

(£ c o) &(mye = 3| B1)& (O = 0% |E1)&

(T <T) <Th +t57 < T+ t5)&(t9 = tO)&

(X1 C XQ)&(‘IJI (I)QlEl) (bl < bg’El),

where g = h|Fj represents that the function g is a restriction of the function h
over the first GN E; and for the functions g and h with Dom(g) = Dom/(h) :
g<h < (Vz € Dom(g))(g(x) = h(x)).

02 E;
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@ B CoEy <= (A1 C A9)&(D # Qf C Q)&(r}y = 3| Ey)&(n] =
w7 |E1)&

(¢! = AEN&(f! = f?|E1)&(01 @2|E1) (03 = O3|E1)&

(K C Kz) (nx = 75| E1)& (9K = 0% |E1)&

(Ty = To)&(t] = t9)& (17 < t3).

(5) E1\CLE; < (A1 C A2)&(0 # QF C Q9)&(r} = 74|E1)&(n} =
W%‘El)&
(c! = E)&(f! = f2|E1)&(0] = 03|E1)&(6} = 03| B1)&

(K1 (@ KQ)&(’/TK = WK’EI) (TQ < Tl)&(t(f = tg)&(Tl —i—t? <
(6) EléoEg < (Al C Ag)&( Ty = 7TA|E1) ( %/: 71’%|E1)&

(c' = AEN&(f! = f?|E1)&(01 = OF|E1)&(05 = 03| E1)&

(K1 C Ko)&(my = mi|En)& (T2 < T)&(t = 19)&(Ty + 17 <

(7 F1 Cp By <— (Ell Co EQ) vV (El C:) EQ) vV (EléoEg).

8) By Cy By — (A1 C A9)&(my = 74| E1)&(nl = 72| E1)&
(! = AB)&(f' = 17| E1)&(0] = 03| E1)&(0} = 03| E)&
(K1 C Kz) (T = 1| E1)& (9% = Ok |E1)&
(T1 ) (ti) = to)&(Tl +tr =15 + t;)&
(X1 C XQ) (CI)l @2’E1)&(b1 = bQ’El).

9) F1 <> FEy — (T1 —|—tf < Tz) V (Tg +t§ < Tl).

(10) El[]EQ < (Tl <Th <Th + tT) V (T2 <Ty <1+ t;)

The definitions of relations based on the results of the work done by the
GNs are shown next.
K is the set of a GN’s tokens and X is a function that assigns initial charac-
teristics to every token when it enters a GN’s input place. X;(«) is the set of
all initial characteristics of the token .

For a given token o € K; and a given initial characteristic z € Xj:

Ey(a,7) (a,2%;,), ifz e X(a)
i\, T ) = . )
‘ (o, ), otherwise
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Eifa,a) = (a,x,mf‘,xg,...,x%n), ifr e X;(a)

K - .

’ (o, ), otherwise

and x?m is the final characteristic of the token « and z¢, 25, . .. 79:?1-”_1 are

the rest of its characteristics gain while staying in the GN [1, 2].

(11) By C By <= (K; C K9)&(X1 C X2)&(Va € Ky)(Vz € X4)
(Br(a,z) = Ea(a, ),

(12) F1 Cy By <— (K1 C KQ)&(Xl C XQ)&
(\V/Oé € Kl)(VSL' c Xl)(ail,’ig,...,is <<y << < fZ’fl)
(Er{a, 2} = Ex{a, x}),

(13) Fi ~ By < (E1 C EQ)&(EQ C El).

(14) F| ~, By <— (El Cx EQ)&(EQ Cx El).

3 Reducing Operators over GNs
Let X be the class of all GNs,
Q= {A,WA,WL,C, f, 01,09, K, WK,QK,T,tO,t*,X,CI’,b} U {AZ|1 <1< 7},

where A; = pr; A(1 <i <7),ie. A; € {L',L" t1,ta,7, M, O} be the set of
all GN’s components.

LetY € Qthen XY be the class of those GNs which lack the Y component
[1,2].

There is no GN without graphical structure (the component A), without
input and output places in its transitions (the components A; and As respec-
tively) or one without tokens (the component K'). Therefore

yA—ynA —nd K

IfYi,Ys,...,Y, € Qfors > 1then XY1:Y2Ys js called (Y7, Ya, ..., Ys)
- class of reduced GNs.

The reducing operators defined over GNs bring together an ordinary GN
and its reduced ones. They are closely connected to the corresponding classes
of reduced GNs [1, 2].

If Y is a component of a given GN E then the operator Ry reduces E to a
GN without the component Y, Ry (E) € ¥V
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The reducing operators Ry for Y € () can be represented through one
universal operator R:

(VE € S)(VY € Q)(R(E,Y) = Ry (E)).
ForYi,Yo € Q: R(R(E,Yl),YQ) = R(R(E, YQ),Yl),VE €.

4 Operations over Reduced GNs

The operations over GNs listed above can be transferred over reduced ones in
the following way. The result of applying a reducing operator over a union of
two GNis is equal to the union of the two corresponding reduced GNss.

Theorem 4.1. For every two GNs E1, Es € ¥ and VY € ().
Ry(E1 U EQ) = Ry(El) U Ry(EQ).

Proof. A complete proof will be given for only a part of the GN components
that can be reduced. The proof for the rest of them will be analogous to the
presented ones.

LetY = my4.

R, (E)) = ((As, %, mh, ¢ f1,00,05), (K, e, 0 ), (T, 19, 87), (X, @4, i),
i=1,2
Ry, (BE1)UR, , (B) = ((A10Ay, %, mrUns ¢t Uc?, FLUf2, 01 U3, 05U63),

(K, U Ky, ke Un%, 0k U 6%,
t;‘.tl-o
GOD(, )
<X1 UXs, &1 U Py, b1 U bz>> = Rﬂ'A(El U EQ).

(min(Ty,Ts), GCD(t9,13), 1H<12&<X2(E + —min(T,T3))),

Since 7y, ¢, f,01,00, K, mx, 0k, X, P and b are treated as sets, just like
7 4, the proof of the theorem statement is analogous when one of them is the
reduced component.

Let Y = T'. Therefore the values of T' components are assumed to be 0.

RT(EZ) = <<Ai,71'f4, 7['2,07;, fia ia 0§>7 <Ki77r§(7 0}(>7 <*7t$7t:>7 <X27 (I)iu b2>>7
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1t = 1,2 RT(El) U RT(EQ) = <<A16A2,7T‘14 U 7T124,7T%/ U ﬂ%,cl U 02,f1 U
f2,01 003,05 003),

tr.t9 th.t5
<K1 UK27 W%(Uﬂ-%{a 0}(U9%(>5 <*7 GCD(ttlja tg)’ maX(GCl%(t}l’,tg) ) G’CDQ(t?l’,tg) )>7

<X1 UXs, &1 U Py, b1 U b2>> = RT(E1 U EQ).

Let Y = t°. Therefore the values of t° components are assumed to be 1.
Rio(E1)URpo(Es) = <<A1UA2,7r114U7r124,7T£U7r%,01U02,flqu,H%UO%,
0 U 63)
2 2/
<K1 U KQ,W}{ @] 7'[‘%(, 9}( U 9%{>,

(min(Tl, Tg), *, max(Tl + f{, T + t;) - min(Tl, T2)>,
<X1 @] XQ, d, U (I>2,b1 U b2>> = Rto(El U EQ)

LetY =t*.

If ¢* component (or the duration of the GN functioning) is reduced from
E and E», it cannot be evaluated in the union Ry« (E7) U Ry« (E>) either. This
component is reduced in Ry« (E1) U Ry (E») asitis in Ry (E1 U E5). All other
components in the two GNs are obviously equal. Hence, the statement of the
theorem is valid.

A proof in the case of reduced transitions’ components will be provided
next. L', L and r components cannot be reduced otherwise the GN integrity
will be lost.

LetY = t¢;.

When ¢; component is reduced from a GN, ©; is not defined. It can be
assumed that each of the transitions can be activated right after it stops func-
tioning. In that case the value of ¢; component is assumed to be t; + %9, i.e.
the old value for the starting moment plus the duration of the transition func-
tioning.

Rt1 (EZ) - <<A;<,7Tf4, ﬂ-ia Cia fiv iv 9%>7 <Ki,7'('}(7 9}(% <E7t?7t:>) <X17 (P’ia bZ>>a
where Af = {Z7|Zf = (L, L!,» th,r', M', 0)&Z; = (L}, LI/, 1}, th, 1",
. (2
M, o)eA},i=12.
The duration of a transition’s functioning which is a union of two transi-

tions with a reduced #; component can be evaluated as max(t1, #3).

Rtl (El)URtl (EQ) = <<ATGA§7 7T114U7T124, W%,Uﬂ-%7 ClUCQa flUf27 G%UH%, 0%U0%>7
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<K1 UK277T}(U7T%{79}{U9%<>7
tf.t?

GOD{15)

<X1 UXs, &1 Uy, b1 U b2>>,

(min(Ty,T»), GCD(t9,13), 1n<12a<x2(ﬂ + —min(T1,T3))),

where

2
1043 = (J{ZI(Z € A)(VZ' € A5_)(Z N Z' = Zy)}U
i=1

2
{2137 € 43)(32" € A5_)(Z' 12" # Zy)&(Z = Z' U Z")},
i=1

1 2
Z'0Z" = (LyULhy, LYULY, , max(t3,t3), 7 +r2, M+ M2 v(O , 0°)).

Applying the reducing operator 7, over the GN E; U E5 will result to the
same set of transition with reduced ¢; component as ATUA3.

R, (E1) U Ry, (E2) = Ry, (E1 U Es).

LetY = ¢s.

When t, component is reduced from a GN, O is not defined. The values
of to components are assumed to be 1. The duration of a transition’s func-
tioning which is a union of two transitions with a reduced 2 component can
be evaluated as max(t1,t3) — min(ti,3) + 1, the same as the value of this
duration in the reduced GN Ry, (Eq U E»).

LetY = M.

If M component (or the arcs’ capacities) is reduced from F; and E», it
cannot be evaluated in the union Ry;(E1)U Ry (E2) either. This component is
reduced in Ry (E1)URy (E2) asitisin Ry (E; U Esy). All other components
in the two GNs are obviously equal. Hence, the statement of the theorem is
valid.

LetY = O.

If O component (or the transition’s type) is reduced from E; and FEo,
it cannot be evaluated in the union F; U Fs either. This component is also
reduced in the resulting union R - (E1) UR - (E2). The assertions for the

last two cases are analogous to the previous ones. O
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Corollary 4.1.1. For every two GNs F1, Es € ¥ and VY € Q:

Ry (E1 0 Es) = Ry (E) o Ry (E»).

5 Relations over Reduced GNs

The relations over GNs shown above can be transferred to reduced GNs in the
following way. If two GNs are in a certain relation, then the reduction of the
same components from both of the GNs does not violate the relation. This
statement can be formulated formally as follows:

Theorem 5.1. For every two GNs E1, Fs € 3, for each relation Rel defined
over GNs and VY € €):

ifRel(El, EQ), then Rel(Ry(El), Ry(Eg)).
Proof. In order to prove the theorem, the statement
szel (E1 s EQ), thenRel(Ry (El ), Ry (Eg))

should be proven valid for each relation Rel defined over GNs. A detailed
proofs will be given only for the relations =, C,,” C,, <>, [] and C. This set
of relations is selected based on the fact that they are the basis for the defini-
tions of other relations or because of the close proximity of their definitions to
other ones. The proofs for the rest of the relations will be skipped since they
are very close to other that will be presented.

The proof for each of the chosen relations will include cases of reduction
for part of the GN components. One general statement for all of the relations
can be made. If the reduced component Y is not a part of the relation’s defini-
tion, it does not affect the validity of the statement.

(1) Now, the theorem statement will be proven for the relation 1 = FEs.

If the reduced component Y is a part of pr; Ey, i € [1;4] and k = 1, 2, then
Vj # i :prjEy = prjEs follows directly from £y = Fj.

An example of reducing a component from the first projection of the GN
will be shown here. This first projection has the form:

prlEk - <Ak77r11277r’[€/70k7fk70k70§>7 k= 172
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LetY =¢c.

In the case of reduced c component (capacities of the places) the GNs have
the following form:

Rc(Ek) = <<Ak:a W,’Za 77][6/3 *, fk7 9]1{:? 9]2€>? <K/€a W?{? 9];(>a <Tk7 tza t]t>7 <Xka q)k7
br)), k=1,2
priE1 = priEs, Vi € [2;4] follows directly from the definition of the

relation £; = FEs. None of these components is reduced from E; and FE5
therefore pr;R.(E1) = priR.(E2), Vi € [2;4].

The proof comes down to evaluating the validity of the statement
priRe(Er) = priRe(E2).

The fourth component in priEi,k = 1,2 is reduced. The other ones
have kept their original values. From E; = Ej follows prjpriR.(E,) =
pripriRe(E2),Vj # 4.
prapriRe(E1) = 0 and prapriR.(Es) = 0, therefore prapriR.(E1) =
prapriRe(Ez).

(

pripriR.(Ey) = prijpriRc(E2),Vj € [1;7] = priR.(E1) = priR.(E2),
hence R.(F1) = R.(E2)

The proof for the components 74,7y, f, 91,02 is analogous since they
are sets.

LetY =t4.

In the case of reduced ¢; component (the moment of transition firing) the
GNs have the following form:

Ry, (Ey) = (A}, mh,wf, o, f%,08,05), (Ki, 75, 0%), (Th, 19, 1), (X, P,
b)),k = 1,2, where A7 = {Z;|Z; = (LL, LU, %, & % M*, 0")&2, =
(Lo, LY th i ok Mk, oy e Ay,

E, = Ey = pr;Ey = priFEs, Vi € [2;4]. None of these components is
reduced from F and E therefore pr; Ry, (E1) = priRe, (Es), Vi € [2;4]

priEy = priEy = (dim(A4;1) = dim(A2)&(Vj 1 1 < 5 <
dim(Al))(ijAl = ijAQ).

Each transition in the reduced GN corresponds to exactly one transition
in the original GN. All of the transitions’ components are transferred to the
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corresponding reduced GNs without any change, except for the £; component,
which is reduced. So (Vj : 1 < j < dim(A}))(pr; AT = prjA3).

(dim (A7) = dim(A3))&(Vj : 1 < j < dim(A}))(prj AT = prjA;) =

priRy, (E1) = priRy, (Ea).
pTiRtl <E1> = p?‘iRtl (EQ),Vi € [1; 4] — Rt1 (El) = Rt1 (Eg)

For the rest of the components from the first projection or any other pro-
jections of the GN the proof is analogous. Therefore the statement is valid for
the relation =.

(2) For the relation F; =, F» the proof of the statement is analogous to the
one for £y = E» since the definitions of the two relations are very similar (see
Section 2).

(3) Now, the theorem statement will be proven for the relation £y C, E».

Based on the definition of the relation (see Section 2) the following con-
clusion can be made.

When a certain component Y is reduced from the GNs, that does not affect
the conditions for the rest of the components. They will remain valid. There-
fore in that case the proof of the theorem statement comes down to evaluating
the changed condition for this very component only in the corresponding re-
duced GNs.

The K component is never reduced.
Let Y = m4. Therefore w4 components are assumed to be empty sets.

In the case of reduced 74 component (transitions’ priorities) the GNs have
the following form:

Rﬂ'A (EZ) = <<A17 *7 7727 civ fia 037 9%)7 <K’L7 F%, 03{>7 <E7 t,?, t:<>7 <XZ7 (I)ia
bi)),i=1,2.

74 = 0 and 77124 = () in the reduced GNs R, (E:) and R, ,(E2) re-
spectfully. Therefore the statement (7Y = 7%|Ej) is valid. The rest of
the components in R, ,(E1) and R, (E2) fully correspond to the compo-

nents in £7 and Es, so the relations between them remain valid. Therefore
Rﬂ'A (El) Cx Rﬂ’A (E2)
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The proof is analogous when the reduced component is one of the follow-
ing: 7p,c, f,01,02, K, Ok and P, since they are sets and the conditions
they are part from are similar to the one for the 74 component.

LetY =1T.

In the case of reduced T component (the moment when the GN starts func-
tioning) the GNs have the following form:

RT(E’L) = <<A’La 77—?4» 7727 Cia fia ZL §>7 <K’Lv Wé{a ‘92[(>> <*a t;,')v t;k>7 <X17 (I)ia
bi)),i=1,2.

The condition (75 < T7 < Ty + t] < T + t}) in the general case comes
down to (¢t < t3) in the case of the corresponding reduced GNs because of the
missing I components. It is evaluated as true based on the relation F; C, Es.

EiCi By = Th<Ty = T+t <Ty+1,(] > 0), but
T1+t>{ §T2-|—t§ — T2+t>{ §T2+t; — tf §t;

There is no change for the rest of the components in the reduced GNs,

therefore the relation is valid for Rp(E1) and Rp(E2), ie. Rp(E1) C.
Ry(Es).

Similar conclusions can be made when t* is reduced. The proof in that
case is analogous.

LetY = ¢°.

When t° component (the elementary time-step) is reduced its values can be
assumed to be 1. Therefore the statement ¢ = t9 from the relation’s definition
is valid in the case of the reduced GNs R0 (E1) and Ry (Es), i.e. Rpo(E1) Cu
Ry (E2).

LetY = ¢;.

In the case of reduced t; component (the moment when the GN starts func-
tioning) the GNs have the following form:

Ry, (E;) = ((Ar, 'y, mh by 408, 05), (K;, mhe, 05 ), (T, 10, 45), (X, @,
bi)),i = 1,2, where A¥ = {Z¥|ZF = (L} L *,ty,v", M’ Di>&Z¢ _
(LL LUttt Mgy € Ay

The proof comes down to evaluating the validity of the statement (VZ; €
AN(VZ5 € AS5)(Zy C Z3).
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The relations between the components that are not reduced in Z7 and Z3
remain valid. These components are transferred without any change form the
original GNs to the corresponding reduced ones.

The statement
(VZ1 € A1) (V2 € A2)((praZa < pr3Zy < praZo+praZs)&(pr3Zi+prazy

< pr3Zs + pryZz))
for the original GNs F; and F comes down to
(V21 € A7)(VZ5 € A5)(praZy < praZs)
for the corresponding reduced ones R;, F'; and R; Fq. It is obviously valid

since the relation E; C, Ej is hold.

(V75 € A})(VZ; € A5)
(Vi:1<i<2)(priZi CpriZ3)&(praZi < praZ3)&
(Vi : 5 <i<6)(priZy C1priZ3)&(priZf Co priZ3))
therefore Z7 C Z5 and By C, Es.

The proof for the rest of transitions’ component is analogous.

(4) Now, the theorem statement will be proven for the relation £y’ C,E».

The proof will be focused on the case of reduced transition’s components
only. The rest of them will be skipped because they are part of conditions same
as in the previous relation. The proof for them will be analogous to the stated
above.

LetY =¢;.

In the case of reduced t; component (the moment when the GN starts func-
tioning) the GNs have the following form as it is mentioned above:

Ry, (B;) = ((Ar,m'y, w400, 05), (K;, mhe, 05 ), (T, 12, 65), (X, @,
bi)),i = 1,2, where A} = {Z}|Z} = <L27Lgl,*,té,ri,Mi, Di>&ZZ- _
(L, LYt b, ME, 0) € A,

The relation £y’ C,E> is hold valid, so A; C A, follows directly from the

definition.

Each transition in A; corresponds to exactly one transition in A}. There-
fore A} C A3.
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Qétl(El) =priA} —proAj C Qétl(&) = pri A} — proAS.

The rest of the components in the reduced GNs Ry, (E1) and Ry, (E») fully
correspond to the components of E; and E5. Their relations remain as in
Ell COEQ.

Therefore Ry, (E1)" CoRy, (Es).

(5) Proving the statement of the theorem for the relations Ey C!, Ey, E1C,Fo,
Ey Co E5 and By Cy Es is analogous to the previous one. Their definitions
are very similar to the definition of the previously shown relation.

(6) The relations F1 <> F5 and F1[|E> are not defined for reduced GNs of
class 7 or X", i.e. when T or t* components are reduced. The statements
are valid in every other case of reduced component because the conditions in
their definitions are based on the time components only.

(7) Now, the theorem statement will be proven for the relation £;  FEs. This
relation is based on the work that has been done during the GNs functioning.
Since the definition of the relation (see Section 2) uses only the components
K, X and @, they will be the ones that the proof will focus on. The reduction
of any other component will not affect the state of the relation.

The K component cannot be reduced by definition (see Section 3).

A common conclusion can be made for all the cases of reduced compo-
nents. Removing any GN component does not affect the sets of tokens K;.

LetY = X.

If X component is reduced, it can be assumed that X; = (). The GN’s to-
kens don’t have any initial characteristics. Therefore Rx (E;)(o, x) = (o, x)
by definition.

Since F1 T E», then K1 C Ks. The sets of tokens in the reduced GNs
Rx E; are the same as in the original ones. Therefore the relation between K
and K remain valid for the reduced GNs.

All conditions of the relation are met:
(K1 C Ky)(Va € K;)Rx (Ey) (o, x) = (o, x).
Therefore Rx (El) C Rx<E2>.
LetY = &.
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If ® component is reduced, there is no characteristic function to assign new
characteristics to every token. Therefore for the reduced GNs Rg (E;):

(Vo € K;)(Vx € X;)Ro(E;)(a, ) = (o, x).

Since E1 T E5 is hold valid, then K7 C K9& X1 C Xo.

But the sets of tokens in the reduced GNs Rg F; are the same as in the
original ones. The functions that assigns initial characteristics to every token
that enters the reduced GNs are also the same as the original ones.

(Va € K1)(Vx € X1)(Rao(E;) (o, x) = (o, x)), hence Ry (F1) C Ra(E2).

Removing any other component than X and ® does not affect the sets of
tokens K; and their initial characteristics X;, neither

Ry (E1)(a,z) : Ry (E;)(a,z) = Ei(a, x)

Therefore the corresponding reduced GNs Ry (E;) are in the same relation as
the original ones F;.

(8) Proving the statement of the theorem for the relations £} T, Eo, Bl = Eo
and F; ~, F» is analogous to the previous one. The definition of F; T, F» is
very similar to the definition of the previously shown relation, while the other
two relations are based on [ and [ respectively.

6 Conclusion

Two theorem were formulated and proven regarding the way reducing opera-
tors affect the operations and relations defined over GNs.

Applying the reducing operators over a union or a composition of two GNs
results in a union or a composition of the corresponding reduced ones. The use
of these operators preserve the relations between the nets.
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