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1 Introduction

In 1966, Imai and Iseki [11] introduced two classes of abstract algebras, viz., BC'K-algebras and
BC'I-algebras. It is known that the class of BC K-algebra is a proper subclass of the class of
B(C'I-algebras. Neggers and Kim [15] introduced a new concept, called B-algebras, which are
related to several classes of algebras such as BCI/BCK-algebras. Kim and Kim [13] introduced
the notion of BG-algebra which is a generalization of B-algebra. The concept of intuitionistic
fuzzy subset(IFS) was introduced by Atanassov [3], which is a generalization of the notion of
fuzzy sets [17]. The intuitionistic fuzzy modal operators [ and <) were introduced by Atanassov
[3] which are analogous to the modal logic operator of necessity and possibility and have no
counterparts in ordinary fuzzy set theory. The extension on both the operators [ and < is the
new operator D, which represents both of them. Further the extension of all the operators is the
operator Fy, g called («, 5)-modal operator. The effect of all the modal operator on IFSs is again
an IFSs. The modal operators play a very significant role in the study of IFSs. A lot of operators
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were defined and studied in [2,4-10, 14, 16]. The concept of fuzzy subalgebras of BG-algebras
was introduced by Ahn and Lee in [1]. Here in this paper, we study the effect of modal operators
in particular («, 5)-modal operator on intuitionistic fuzzy BG-algebra.

2 Preliminaries

Definition 2.1. A BG-algebra is a non-empty set X with a constant 0 and a binary operation x

satisfying the following axioms:
1) zxxz =0,
(1) zx0 ==z,
(i) (z*xy)*(0xy) ==z, Vr,ye X.
For brevity, we also call X a BG-algebra.

Example 2.2. Let X = {0, 1, 2, 3, 4} with the following cayley table

Table 1: Example of BG-algebra.

101 2 3 4
0/]0 4 3 2 1
11 0 4 3 2
212 1 0 4 3
313 21 0 4
414 3 2 1 0

Then (X, %, 0) is a BG-algebra.

Definition 2.3. A non-empty subset S of a BG-algebra X is called a subalgebra of X if vxy € .S,
forallz,y € S.

Definition 2.4. A fuzzy subset ;. of a BG-algebra X is called a fuzzy subalgebra of X if u(xxy) >
min{p(z), u(y)}, forall x,y € X.

Definition 2.5. An intuitionistic fuzzy set (IFS) A of a non empty set X is an object of the form
A = {{z,pa(x),va(x))|z € X}, where py : X — [0,1] and vy : X — |0, 1] with the
condition 0 < py(z) + va(z) < 1,Vo € X. The numbers pia(x) and v4(z) denote respec-
tively the degree of membership and the degree of non-membership of the element x in set A.
For the sake of simplicity, we shall use the symbol A = (4, va) for the intuitionistic fuzzy set
A = {{x,pa(x),va(x))| © € X}. The function ms(x) = 1 — pa(z) — va(zx) forall z € X.
is called the degree of uncertainty of x € A. The class of IFSs on a universe X is denoted by
IFS(X).
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Definition 2.6. If A = {(z, pa(z),va(z))|x € X} and B = {{z, up(z),vp(z))|r € X} are any
two IFSs of a set X, then
AC Bifandonlyifforall x € X, pua(x) < pp(x) and va(x) > vp(z),
A= Bifandonlyifforall x € X, pa(x) = up(x) and vs(z) = vg(x),
AN B = {(z, (ua N pp)(x), (vaUvs)(z))|r € X},
where (1a N pp)(x) = min{pa(x), up(z)} and (v4 Uvg)(x) = max{va(z),ve(z)},
AU B = {(z, (ua U pp)(x), (vaNvp)(z))|r € X},
where (j1a U pp)(x) = max{ua(x), up(z)} and (va Nvg)(x) = min{va(x), ve(z)}.

Definition 2.7. If A = {(z, pa(z),va(z))|x € X} and B = {(x, pp(z),vg(x))|z € X} are any
two IFSs of a set X, then their cartesian product is defined by

Ax B ={{(z,y), (pa x p)(x,y), (va x vp)(x,y))|z,y € X},

where (4 X pp)(x,y) = min{pa(z), up(y)} and (va x vp)(z,y) = max{va(z),vs(y)}.

Definition 2.8. For any IFS A = {(z, pa(x),va(z))|z € X} of X and o € [01], the operators
O:IFS(X) - IFS(X),$: IFS(X) = IFS(X),D, : IFS(X) — IFS(X) are defined as

(i) O(A) = {(x, pa(x),1 — pa(z))|x € X} is called necessity operator

(ii) $(A) = {{x,1 —va(z),va(zx))|x € X} is called possibility operator

(iii) Do (A) = {(x, pa(z) + ama(z),va(z) + (1 —a)ma(x)) |z € X} is called a-modal operator.
Clearly J(A) C A C {(A) and the equality hold, when A is a fuzzy set also Dy(A) = O(A) and
D1(A) = O(A). Therefore the a-model operator D, (A) is an extension of necessity operator
O(A) and possibility operator {(A).

Definition 2.9. For any IFS A = {(x,ua(z),va(x))|z € X} of X and for any o, € [01]
such that o + B < 1, the (o, 3)-modal operator F, 3 : IFS(X) — IFS(X) is defined as

Fo5(A) = {(x, pa(z) + ama(z), va(x) + fra(x))|x € X}, where ma(x) =1 — pa(z) — va(z)
for all x € X. Therefore we can write

Fop(A) as Fog(A)(x) = (15, 5() (1), VE, 5(4)(2))
where i, ,(x) = pa(z) + ama(x) and vi, ,4)(2)) = va(x) + Bra(z).
Clearly, Fy1(A) =0(A), F1o(A) = $(A) and Foi1—a(A) = D,(A).

Definition 2.10. Let X and Y be two non empty sets and f : X — Y be a mapping. Let A and
B be IFS’s of X and Y respectively . Then the image of A under the map f is denoted by f(A) and

is defined by f(A)(y) = (pra)(y), vea)(y)), where

) V{palz) sz e fHy)} ) Mpalz) rx e fH(y)}
ey (y) = vray(y) =

0 otherwise 1 otherwise
also pre image of B under f is denoted by f~'(B) and is defined as f~'(B)(x) = (pus-1(5)(x),
1) (@) = (e (F(2)), vm(F(2))); o € X.

Remark 2.11. 114(z) < ppa)(f(x)) and va(x) > viay(f(x)) Vo € X however equality hold
when the map f is bijective.
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Definition 2.12. An IFS A of a BG-algebra X is said to be an IF BG-subalgebra of X if

() paz*y) = min{pa(r), paly)},
(i) va(z xy) < max{va(z),va(y)} Vx,y € X.

Example 2.13. Consider a BG-algebra X = {0, 1,2} with the following cayley table:

Table 2: Example of IF BG-subalgebra.

10 1 2
0/0 1 2
111 0 1
202 2 0

The intuitionistic fuzzy subset A = {(z, pa(x),va(z))|x € X} given by p14(0) = pa(l) =
0.6, 1a(2) = 0.2and v4(0) = va(1) = 0.3,v4(2) = 0.5 is an IF BG-subalgebra of X.

Definition 2.14. An IFS A of a BG-algebra X is said to be an IF normal subalgebra of X if

(1) pa((x*a)* (y*b)) > min{pa(z *y), palaxb)},

() va((z*a) = (y*b)) < max{va(r*y),valaxb)}, Va,ye X.

3 Modal operator I, s on intuitionistic fuzzy subalgebras

In this section, we study the effect of modal operator on IF subalgebra of BG-algebra X.

Theorem 3.1. If A is an IF subalgebra of BG-algebra X, then F, s(A) is also an IF subalgebra
of BG-algebra X.

Proof: Letw,y € X, then Fo g(v%y) = (F, 50)(T*Y), VE, 1) (T *Y)). Where pg, ,a)(T*y) =
pa(r*y) +ama(z xy) and vi, ,a)(x *y) = va(x *y) + Bra(z xy)

Now

1F, sa) (@ x y) = pa(z *y) + ama(z * y)
= pia(z xy) + ol — pa(z = y) — valz *y))
=a+ (1 —a)ua(r *y) — ava(z * y)
> a+ (1 —a)min(pa(z), pay)) — amax(va(z), va(y))
= ofl — max(va(z),va(y))} + (1 — &) min(pa(z), pa(y))
= amin(l —va(z),1—va(y))} + (1 — a) min(ua(z), pa(y))
= min{a(l —va(z)) + (1 = ) pa(z), (1 — va(y)) + (1 — @)pa(y)}
= min{pa(z) + (1l — pa(z) —va(z)), pa(y) + a(l — pa(y) —valy))}
= min{ﬂFaﬁ(A) (), MFW(A)(?J)}
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S E, gy (T xy) > min{pg, (), 1, 50)(Y) }
Similarly we can prove

VF, (A) (z*xy) < maX{VFa,a(A) (z), VFQ,B(A)(Q)}
Hence F, g(A) is an IF subalgebra of BG-algebra X.
Remark 3.2. The converse of above Theorem need not be true as shown in Example below.

Example 3.3. Consider a BG-algebra X = {0, 1,2} with the following cayley table:

Table 3: Illustration of converse of Theorem 3.1.

*|0 1 2
o[o 1 2
11101
212 2 0

The IF subset A = {{x, pua(z),va(x))|x € X} given by 14(0) = 0.48, 14(1) = 0.5, ua(2) =
0.3 and va(0) = 0.3,v4(1) = 0.4,v4(2) = 0.5 is not an IF BG-subalgebra of X. Since 114(0) =
0.48 2 min{pa(1), pa(1)} = pa(l) = 0.5.

Now take o = 0.7, 8 = 0.3, + < 1, then I, 3(A) = {(7, ir, 44)(2), VE, 4a)(2)) |2 €
X} is MF0.7,043(A)(0) = 0.63, :uFo.7,0.3(A)(1) = 0.57, MF0.7,0.3(A)(2) = 0.44 and VF0,7,0,3(A)(0> =
0.36, vpy ;054 (1) = 0.43, Uk, 05(4)(2) = 0.56. It can easily verified that Fy73(A) is an IF
BG-subalgebra of X.

Corollary 3.4. If A is an IF subalgebra of BG-algebra X, then
(i) O(A) is also an IF subalgebra of BG-algebra X ;

(ii) O(A) is also an IF subalgebra of BG-algebra X ;

(iii) D, (A) is also an IF subalgebra of BG-algebra X.

Theorem 3.5. If A is an IF subalgebra of BG-algebra X, then
(i) 17, 5(4)(0) > pir, 4a)()

(ii) VFa,ﬁ(A)(O) < VFQ”B(A)(ZU) Ve e X.

Proof: We have

P ) (0) = pr, p(a)( * 2)
> min{ g, 5(a) (%), tE, 54)(7) }
= MFa,B(A)(x)
and
VFy 5(4)(0) = VF, 5(4) (2 * 1)
< max{vg, 5)(7),VE, 44 (7)}

= VFaﬁ(A)(x) Vo e X.
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Theorem 3.6. If A and B are two IF subalgebras of BG-algebra X, then

(i) AN B is also an IF subalgebra of BG-algebra X.

(ii) A X B is also an IF subalgebra of BG-algebra X x X.

Proof: (i) We have AN B = {(z, jianp)(x), vaup)(2)) |z € X},

where juanp)(x) = (1ta N pp)(x) = min{pa(z), pp(z)} and

Vau) () = (vaUvp)(z) = max{va(z), ve(x)},

Let x,y € X. Since both A, B are subalgebras of X, therefore

pra(z x y) = min{pa(a), pay)} and va(z  y) < max{va(z),va(y)}

Also pip(x *y) = min{pp(z), pp(y)} and vp(z = y) < max{vp(z), va(y)}
Now

panp) (@ xy) = min{pa(z xy), palz = y)}

min{min{pa(z), pa(y)}, min{pp(@), ps(y)}}
min{min{a (), pp(z)}, min{pa(y), pe(y)}}
min{ans) (@), ans) (y)}
= parpy(@*xy) > min{pans) (), tans)(y)}

Similarly we can prove

v

V(AUB) (l’ * y) < maX{V(AuB) (x), V(AUB)(y>}

Hence AN B is also an IF subalgebra of BG-algebra X.
(ii) Similar to proof of (i)

Theorem 3.7. If A and B are two IF subalgebras of BG-algebra X, then
(i) F, 3(AN B) is also an IF subalgebra of BG-algebra X.
(ii) F, s(A x B) is also an IF subalgebra of BG-algebra X xX.

Proof: (i) We have F,5(A N B)(z) = {(z,r, sanB)(T), VE, saup)(z))|r € X}, where

tans)(2) = (pa N pp)(x) = min{pa(z), pp(z)} and
V(AUB) (z) = (va Uvgp)(z) = max{va(x), vp(x)},
Let z,y € X. Since both A, B are subalgebras of X, therefore

pa(z xy) > min{pa(z), pa(y)} and va(z * y) < max{va(r),va(y)}
Also pp(z *y) > min{pup(z), up(y)} and vp(r * y) < max{vg(z),vs(y)}
Now

MFaﬂ(AmB)(x *Y)

= pan) (T * y) + amanp) (T * y)

= panB) (T *y) + a{l — panp) (T * y) — vaus) (T * y)}

= a+ (1 — a)uuns) (T *y) — aviaup) (z * y)

= a(l —max(va(z *y),va(y *y))) + (1 — o) min(pa(@ x y), palx * y))
> (1 — o) min{min(pa(x), pa(y)), min(pup(z), pp(y))} + o —

amax{max(va(x),va(y)), max(vg(z),vs(y)))}
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= (1 — a) min{min(pa(z), pp(2)), min(pa(y), ps(y))} + o —
amax{max(va(z), vp(r)), max(va(y), ve(y)))}
= (1 — a) min{panp) (), tans) (Y)} + o — amax{vaus) (), vaus) (¥) }
= (1 — a) min{panp)(®), pans) ()} + omin{l — vaup) (), 1 — vaus) (y)}
= min{(1 — @)panp) () + a(l = vaus) (7)), (1 = )pans)(y) + a(l = vaus) (y)})
= min{uFa,B(AnB) (33)7 HFQ,B(AmB)(y)}
Therefore NFQ,B(AMB)(I *y) > min{:uFaﬁ(AﬂB) (), MF, 5(ANB) (v)}

(
(

Similarly we can prove

VE, s(auB) (T * y) < max{vr, ;auB)(T), VE, sauB)(Y) }
(ii) Similar to proof of (i)
Theorem 3.8. If {A; : i = 1,2,...,n} be n IF subalgebras of X, then

(i) Fog(NP_yA; 2 i =1,2,...,n} is also an IF subalgebra of X.
(i) Fog(XP_1A; 1 =1,2,...,n} is also an IF subalgebra of x}_, X;.

Theorem 3.9. If I, 3(A) = ({ir, 54, VF, ;4) s an IF subalgebra of X. Then the sets

s = {2 € Xlur, y00(@) = s, () (0))
XVFa,ﬁ :{x€X|VFDé,B )(x) yFaB ( )}
are subalgebras of X.

Proof: Let x,y € up, ,a) then pp, ,a)(7) = pr, 54)(Y) = pE, 54)(0)
Now

i s (@ y)  Zmindpr, o) (@), kr, 50 ()}
= min{pur, ,4)(0), i, 54)(0)}
= 1F, 5(4)(0)

= [k, o) (T*Y) > piE, 54)(0)
Also  pr, 54)(0) = pr, s (2 * y) by Theorem 3.5
)(

Therefore  pp, ;) (x*y) = pr, 54)(0)
=Txy € Xy p
Againlet x,y € VF, 5(A) then vp, 5(4) () = VFM(A)(W = VFa,@(A)(O)
Vi, (@ xy) < max{vp, 4 (T), Ve, ,0)(Y)}
= max{vg, 4(4)(0), VFOB(A)(O)}
= VFa,mA)(O)
= Vr, ) (T *y) <R, 44)(0)
also  vr, ,4)(0) < vg, 5 (7 *y) by Theorem 3.5
Therefore vp, ,a)(T*y) = vk, 44)(0)

=T *y EX,,FQB
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Hence X, , and X, , are subalgebras of X.

Proposition 3.10. If A and B be two IFS sets of X and Y respectively and f : X — Y be a
mapping, then

(i) [T (Fap(B)) = Fas(f~1(B))

(i) (Fup(A)) € Fupl(f(A)

Theorem 3.11. If A is an IF fuzzy normal subalgebra of BG-algebra X, then F, 3(A) is also an
IF normal subalgebra of X.

Proof: Let x,y,a,b € X, then F, g((x xa) * (y *b)) = (uFaﬁ(A)((:c xa)* (y*b)), VFa’B(A)((x %
a) * (y * b)) where ,uFaﬂ(A)((x xa)*x (y*xb)) = pa((z*xa)* (y*xb)) +ama((x*a)=* (y=*0b))

and vr, ;a) (2% a) * (y x b)) = va((w * a) * (y x b)) + Bra((x * a) x (y * b))
Now

P, 5(4) (T % a) x (y x b))
=pa((x*xa)*(y*b)) +ama((xxa)*(y=b))
= pal(z*a)* (yxb)) + ol = pa((z * a) x (y * b)) —val(z * a) x (y b))
=a+ (1 —a)us((x*a)* (y*b)) —ava((x *xa) * (y * b))
> o+ (1 —a)min(ua(z *y), pala*b)) — amax(va(x *xy),va(a b))
a{l —max(va(z xy),va(a* b))} + (1 — o) min(pua(z * y), pa(a b))
=amin(l —va(zxy), 1 —valaxb)} + (1 — a)min(pua(z *xy), pala * b))
min{a(l —va(z*y)) + (1 — a)pa(zxy),a(l —vs(a*b)) + (1 — a)us(axb)}
= min{pua(@ *y) + a(l — palz *y) —valz xy)), pala xb)

+a(l —pa(a*xb) —valaxb))}
= min{ur, 44)(z * Y), ur, sa)(axD)}

CopE, g (T * a) x (Y x b)) > min{ug, ;) (% *y), fir, 5a)(a )}

Similarly we can prove

VE, s (@ % a) x (y x b)) < max{vp, ,)(¢ *y),Vr, 5a)(axb)}
Hence F, g(A) is an IF normal subalgebra of BG-algebra X.

Theorem 3.12. If A and B are two IF normal subalgebras of BG-algebra X, then
(i) F, 35(AN B) is also an IF normal subalgebra of BG-algebra X.
(ii) F,, s(A x B) is also an IF normal subalgebra of BG-algebra X x X.

Theorem 3.13. If {A; : i = 1,2,...,n} be n IF normal subalgebras of X, then
(i) Fog(NiyA; 2 i=1,2,...,n} is also an IF normal subalgebra of X.
(i) Fog(X7_1A; i =1,2,...,n} is also an IF normal subalgebra of x}_ X;.
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4 Effect of modal operators on intuitionistic fuzzy
BG-algebra under homomorphism

Definition 4.1. Let X and Y be two BG-algebras, then a mapping f : X — Y is said to be
homomorphism if f(z xy) = f(z) * f(y), Vz,y € X.

Theorem 4.2. Let f : X — Y be a homomorphism of BG-algebras. If F, 3(A) is an IF
subalgebra of Y, then f~'(F, s(A)) is also an IF subalgebra of X.

Proof: Since 71 (F,5(A)) = F,5(f7'(A))
It is enough to show that F,, 5(f~*(A)) is an IF BG subalgebras of X.
Letz,y € X, then

[E, s(p-1an(T*Y) = pr, g f(T*Y)
= pr, 5 (f(2) * f(y))
> min{ur, ,a)(f(2)), tr, 50 (f ()}
= min{pr, ;1) (T); lE, 551 (A)(Y) }
e, o(r-ran(@xy) = min{ur, 1) (@), wr, 1) (Y)}

Similarly we can show

Vi, -ty (@ xy) < max{ve, 1) (), Ve, o104y (0))
Hence f~'(F, 3(A)) is also an IF BG subalgebras of X.

Corollary 4.3. Let f : X — Y be a homomorphism of BG-algebras.
(i) If J(A) is an IF subalgebra of Y, then f~*(L0(A)) is also an IF subalgebra of X.
(ii) If O(A) is an IF subalgebra of Y, then f~({(A)) is also an IF subalgebra of X.

Theorem 4.4. Let f : X — Y be a homomorphism of BG-algebras. If F,, 3(A) is an IF normal
subalgebra of Y, then f~'(F, s(A)) is also an IF normal subalgebra of X.

Theorem 4.5. Let f : X — Y be an onto homomorphism of BG-algebras. If F,, s(A) is an IF
fuzzy subalgebra of X, then f(F, g(A)) is also an IF fuzzy subalgebra of Y.

Proof: Let y1,yo € Y. Since f is onto, therefore there exists 1,2, € X such that f(z;) =

Y1, f(x2) = 12
F(Fas(A)) (W1 * y2) = (fy(rn sa) (Y1 % Y2)s Vicr, 5a) (Y1 * Y2))
Now pif(F, 5(a)) (1 * Y2) = lE, 54) (21 * 72) Where Yy * yo = f(21) * f(22) = f(z1 % 22)

1f (Fap(A)) (Y1 % Y2)
= MFQ,B(A)(fBl * To)
= MFQYB(A)(% * T3)
= pa(xy * o) + ama(xy * 22)

= pa(ry * o) + a1l — pa(wy * x9) — va(Ty * 22)]
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=a+ (1 —a)ua(zy * x9) — ava(wy * xo)

>a+ (1 —a)min{pa(zy), pa(z2)} — amax{va(zy),va(xs)}

= {1 — mac{va(er), va(z)}} + (1 — o) mingjua(e), ae)}

= amin{l —v4(z1),1 —va(z2)} + (1 — @) min{pa(zy), palzs)}

= min{(1 — a)pa(z1) + (1 —va(21)), (1 = @)pa(@z) + (1 — va(e2))}
= min{pa(z1) + a(l —va(r1) — pa(r1)), palee) + (1 = valzs) — palzs))}
= min{pa(xy) + ama(zy), pa(z) + ama(zs)}

= min{ir, 5(a) (1), 1r, 5(a) (22)}

= min{ps(r, 5(a) (f(21)), Hpra o a0 (f (22))}

= min{pp(r, 5(a) (Y1) 1p(Ea ) (92)}

g (Fa Ay (Y ok y2) = min{ e, o) (1) 1) (Y2) )

Similarly we can show

Vi(F, 5(A) (W1 * y2) < maX{Vf(Fa,ﬁ(A))(?/l), Vf(Fa,ﬁ(A))(w)}

Hence f(F, 3(A)) is an IF fuzzy subalgebra of Y.

Corollary 4.6. Let f : X — Y be a homomorphism of BG-algebras.
(i) If O(A) is an IF subalgebra of X, then f((A)) is also an IF subalgebra of Y.
(ii) If $(A) is an IF subalgebra of X, then f({(A)) is also an IF subalgebra of Y.

Theorem 4.7. Let f : X — Y be an onto homomorphism of BG-algebras. If F,, g(A) is an IF
fuzzy normal subalgebra of X, then f(F, g(A)) is also an IF fuzzy normal subalgebra of Y .
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