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Abstract: The notion of Intuitionistic Fuzzy Set (IFS for short) theory by Krassimir Atanassov
strikes a paradigm shift in solving decision making problems, which is one of the crucial prob-
lems in our real life. Ranking of IFS and Interval Valued Intuitionistic Fuzzy Sets (IVIFS for
short) is very often required in decision making. In this paper, we develop an aggregation opera-
tor for aggregating Intuitionistic fuzzy sets as well as interval valued intuitionistic fuzzy sets. It
appears to be more elegant and simple than the existing aggregation operators. We also propose a
score function and an accuracy function to rank the aggregated alternatives. It is illustrated with
an examples.
Keywords: Intuitionistic fuzzy sets, Interval-valued intuitionistic fuzzy sets, Aggregation opera-
tor.
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1 Introduction

Following the introduction of Fuzzy set by Zadeh in 1965, K. Atanassov introduced the notion
of IFS (see [1, 2]) which has been found a better tool to model decision problems. Multicriteria
decision making methods based on IFS theoretical tools were introduced in the decision theory in
2007 by Z. S. Xu, [5]. Xu introduced different types of aggregation operators. This was extended
to IVIFS, [7].
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In this paper, we propose an aggregation operator, score function and an accuracy function
for an intuitionistic fuzzy set.

2 Preliminaries

Definition 2.1, [2]. Let X be a given set. An Intuitionistic fuzzy set A in X is given by
A = {(x, µA(x), νA(x)) | x ∈ X} where µA, νA : X → [0, 1], µA(x) is the degree of
membership of the element x in A and νA(x) is the degree of non-membership of x in A, and 0
≤ µA(x)+νA(x)≤ 1. For each x ∈ X , πA(x) = 1−µA(x)−νA(x) is the degree of hesitation.

Definition 2.2, [2]. Let D [0, 1] be the set of all closed subintervals of the interval [0, 1].
Let X 6= φ be a given set. An interval valued intuitionistic fuzzy set A in X is given by A =
{(x, µA(x), νA(x)) : x ∈ X}, where µA : X → D[0, 1], νA : X → D[0, 1] with the condition
0 ≤ supx µA(x) + supx νA(x) ≤ 1. The intervals µA(x) and νA(x) denote, respectively, the
degree of belongingness and the degree of non-belongingness of the element x to the set A. Thus,
for each x ∈ X , µA(x) and νA(x) are closed intervals whose lower and upper end points are
respectively, denoted by µAL(x), µAU(x) and νAL(x), νAU(x).

A can also be denoted by A = {(x, [µAL(x), µAU(x)], [νAL(x), νAU(x)]) : x ∈ X}, where
0 ≤ µAU(x) + νAU(x) ≤ 1, µAL(x) ≥ 0 and νAL(x) ≥ 0.

We will denote the set of all the IVIFS in X by IVIFS(X).
Now we define some aggregation operators which are already in literature.

Definition 2.3, [7]. The arithmetic average operator for alternatives Aj (j = 1, 2, ..., n) is defined
by F (A1, A2, ..., An) = (1−

∏
(1− µAj(x)),

∏
(νAj(x))). And the geometric average operator is

defined by G(A1, A2, ..., An) = (
∏
µAj(x), 1−

∏
(1− νAj(x))).

Definition 2.4, [7]. The weighted arithmetic average operator for alternatives Aj

(j = 1, 2, ..., n) is defined by Fw(A1, A2, ..., An) = (1−
∏

(1− µAj(x))wj ,
∏

(νAj(x))wj), where

wj is the weight of Aj(j = 1, 2, ..., n), wj ∈ [0, 1] and
n∑

j=1

wj = 1. Also the weighted geometric

average operator is defined by

Gw(A1, A2, ..., An) = (
∏

(µAj(x))wj , 1−
∏

(1− νAj(x))wj),

where wj is the weight of Aj(j = 1, 2, ..., n), wj ∈ [0, 1] and
n∑

j=1

wj = 1.

Definition 2.5, [7]. Let Aj(j = 1, 2, ..., n) ∈ IVIFS(X). The weighted geometric average opera-
tor for IVIFSs is defined by

Gw(A1, A2, A3, ..., An) = ΠAj
wj =

= ([ΠµAjL
wj(x),ΠµAjU

wj(x)], [1− Π(1− νAjL(x))wj , 1− Π(1− νAjU(x))wj ]),

where wj is the weight of Aj(j = 1, 2, ..., n), wj ∈ [0, 1] and
n∑

i=1

wj = 1.
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By assuming wj = 1/n(j = 1, 2, ..., n) then Gw is called an geometric average operator for
A1, A2, ..., An. Clearly Gw is an IVIFS.

Also, for Aj(j = 1, 2, ..., n) ∈ IVIFS(X).The weighted arithmetic average operator is defined
by

Fw(A1, A2, A3, ..., An) =
∑
j

wjAj

([1− Π(1− µAjL(x))wj , 1− Π(1− µAjU(x))wj ], [ΠνAjL
wj(x),ΠνAjU

wj(x)]),

where wj is the weight of Aj (j = 1, 2, ..., n), wj ∈ [0, 1] and
n∑

i=1

wj = 1.

By assuming wj = 1/n(j = 1, 2, ..n) then Fw is called an arithmetic average operator for
A1, A2, ..An.

3 New aggregation operators, score function
and accuracy function

Definition 3.1. For IF alternatives Ai, i = 1, 2, ..., n based on criteria Cj , j = 1, 2, ...,m if aij in-
dicates the degree that the alternative Ai satisfies the criterion Cj and bij indicates the degree that
the alternativeAi does not satisfies the criterionCj . Then the mean based aggregation operator de-
noted by Aim = [Ail, Aiu], where, Ail =

∑
wjaij and

Aiu =
∑
wj(1− bij). wj are the weights for the criteria Cj , with

m∑
j=1

wj = 1.

Definition 3.2. For IVIF alternatives Ai, i = 1, 2, ..., n based on criteria Cj ,
j = 1, 2, ...,m, if [aij, bij] indicates the degree that the alternative Ai satisfies the criterion Cj

and [cij, dij] indicates the degree that the alternative Ai does not satisfies the criterion Cj . Then,
the mean based aggregation operator denoted by Aim = [Ail, Aiu], where,

Ail =

∑
wj(aij + bij)

2

and
Aiu =

∑
wj(1−

cij + dij
2

),

where wj are the weights for the criteria Cj , with
∑
wj = 1.

Note 3.3. Aim = [Ail, Aiu] ⊆ [0, 1].

Definition 3.4. For an alternative Ai, whose mean based aggregated value given by
Aim = [Ail, Aiu], score for Ai is S(Ai) = Ail+Aiu

2
.

Definition 3.5. For alternatives Ai, Aj , with score given by S(Ai) = Ail+Aiu

2
, if score of Ai =

Score of Aj , then we can compare them by comparing their Ail. In other words, if score function
of two alternatives are equal, then their accuracy function can be given by Ac(Ai) = Ail the lower
limit of the aggregated value.
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Theorem 3.6. For two comparable alternatives A1 and A2 based on criteria C1 and C2 such that
A1 ⊃ A2, then their scores S(A1) > S(A2).

Proof: Let the IVIF alternatives A1 and A2 be such that a11 > a21, a12 > a22, b11 > b21, b12 >

b22, c11 < c21, c12 < c22, and d11 < d21, d12 < d22. Then the score of A1 is

S(A1) =
A1l + A1u

2
=

∑
wj(a1j + b1j)

2
+
∑

wj(1− (
c1j + d1j

2
))

=
w1(a11 + b11)

2
+
w2(a12 + b12)

2
+ w1(1− (

c11 + d11
2

)) + w2(1− (
c12 + d12

2
))

(1)

And the score of A2 is

S(A2) =
A2l + A2u

2
=

∑
wj(a2j + b2j)

2
+
∑

wj(1− (
c2j + d2j

2
))

=
w1(a21 + b21)

2
+
w2(a22 + b22)

2
+ w1(1− (

c21 + d21
2

)) + w2(1− (
c22 + d22

2
))

(2)

From (1) and (2), S(A1)− S(A2) is positive. �

Theorem 3.7 For two comparable alternatives A1 and A2 based on criteria C1 and C2 such that
A1 ⊃ A2, then accuracy value of A1 is greater than that of A2.

Proof: Let the alternatives A1 and A2 be such that a11 > a21, a12 > a22, b11 > b21,

b12 > b22, c11 < c21, c12 < c22, and d11 < d21, d12 < d22.
We denote the accuracy of A1 by Ac(A1) and that of A2 by Ac(A2).
Then

Ac(A1)− Ac(A2) =

=

(
w1(a11 + b11)

2
+
w2(a12 + b12)

2

)
−
(
w1(a21 + b21)

2
+
w2(a22 + b22)

2

)
is a positive number. Which shows A1 is better than A2.

3.1 Illustration 1

For two IF alternatives A1 and A2 based on two weighted criteria C1(weight w1 = 0.4) and C2

(weight w2 = 0.6) as follows

C1 C2

A1 (0.4, 0.5) (0.55, 0.25)

A2 (0.3, 0.6) (0.5, 0.4)

Based on our aggregation operator we can find the lower limit for the aggregated interval for A1

as A1l = 0.4 × 0.4 + 0.6 × 0.55 = 0.49. The upper limit for the aggregated interval for A1,
i.e., A1u = 0.4 × 0.5 + 0.6 × 0.75 = 0.65. Therefore, aggregated interval corresponding to A1

is [0.49, 0.65]. Similarly for A2, A2l = 0.42 and A2u = 0.52. Therefore, aggregated interval
corresponding to A2 is [0.42, 0.52]. The score for A1 is 0.49+0.65

2
= 0.57 and score for A2 is 0.47.

In this method, the alternative A1 is better than A2.
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3.2 Illustration 2

For two IVIF alternatives A1 and A2 based on two weighted criteria C1(weight w1 = 0.4) and C2

(weight w2 = 0.6) as follows

C1 C2

A1 [0.4, 0.5], [0.2, 0.3] [0.6, 0.7], [0.1, 0.2]

A2 [0.3, 0.4], [0.5, 0.55] [0.4, 0.5], [0.3, 0.5]

The lower limit for the aggregated interval for A1 as A1l = 0.4× 0.45 + 0.6× 0.65 = 0.57. The
upper limit for the aggregated interval forA1 asA1u = 0.4×0.75+0.6×0.85 = 0.81. Therefore,
aggregated interval corresponding to A1 is [0.57, 0.81]. Similarly for A2, the aggregated interval
is [0.41, 0.55]. The score for A1 is 0.57+0.81

2
= 0.69 and score for A2 is 0.48. In this method, the

alternative A1 is better than A2. In both the above cases, no need to find the accuracy values of
the alternatives. If necessary, use Definition 3.5.

4 Conclusion

Decision making is one of the crucial problems in real life. Usually we have to deal with multicri-
teria decision making problems. In this paper, we propose an aggregation operator to aggregate
the criteria for intuitionistic fuzzy alternatives as well as for interval valued intuitionistic fuzzy
alternatives. We also propose score function and accuracy function to rank the alternatives.
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