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1 Introduction

In this paper we will work with probability defined on intuitionistic fuzzy sets (shortly IF -sets).
First we will describe the structures which we will work with. Then the relations between the dif-
ferent structures and their properties will be showed. Let start with the definition of the important
term in probability theory - state. Consider a measurable space (Ω,S) with a σ-algebra S. Let J
be the family of all measurable functions f : Ω → [0, 1]. To define the state on J we need two
binary operations. In this paper we will use the Lukasiewicz operations

f ⊕ g = min(f + g, 1Ω),

f � g = max(f + g − 1Ω, 0Ω).

These binary operations play the same role as the union and the intersection in the set theory.
A state on J is a mapping mJ : J → [0, 1] satisfying the following conditions
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1. mJ (0Ω) = 0,mJ (1Ω) = 1.

2. If f � g = 0Ω then mJ (f ⊕ g) = mJ (f) +mJ (g).

3. If fn ↗ f then mJ (fn)↗ mJ (f).

Since J contains the functions f : Ω → [0, 1] then J represent the family of fuzzy sets. In the
fuzzy set theory f is called membership function. Let us now look at the more general structure
- intuitionistic fuzzy sets. The Atanassov IF -set [1, 2] is a pair A = (µA, νA) of fuzzy sets
µA : Ω → [0, 1], νA : Ω → [0, 1] such that µA + νA ≤ 1Ω. Similarly as in the fuzzy set theory
the function µA is called the membership function. The second function, νA is called the non-
membership function. Denote by F the family of all IF -sets such that µA, νA are S-measurable.
On the set F there is defined the following ordering

A = (µA, νA) ≤ (µB, νB) = B ⇐⇒ µA ≤ µB, νA ≥ νB.

By this ordering for each A ∈ F it holds

(0Ω, 1Ω) ≤ A ≤ (1Ω, 0Ω).

The family J can be considered as a subset of F if for f ∈ J we put A = (f, 1 − f). Then
µA + νA = 1.

For A,B ∈ F we could define the Lukasiewicz operations

A⊕B = (min(µA + µB, 1Ω),max(νA + νB − 1Ω, 0Ω)),

A�B = (max(µA + µB − 1Ω, 0Ω),min(νA + νB, 1Ω)).

A state on F is a mapping m : F → [0, 1] satisfying the following conditions [6]

1. m((0Ω, 1Ω)) = 0,m((1Ω, 0Ω)) = 1,

2. A�B = (0Ω, 1Ω) =⇒ m(A⊕B) = m(A) +m(B),

3. An ↗ A =⇒ m(An)↗ m(A).

In this contribution we will also work with MV -algebras ( [19,21,22]). For the first recall the
definition of a lattice ordered group (`-group).

Definition 1. By an `-group G we consider an algebraic system (G,+,≤) such that

1. (G,+) is commutative group,

2. (G,≤) is lattice,

3. a ≤ b⇒ a+ c ≤ b+ c.
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We will use the form of MV -algebra which is generated by fuzzy sets ( [25], [26], [27]). Let
u ∈ G, u > 0. Then an MV -algebraM is a set M = [0, u] for which it holds

a⊕ b = (a+ b) ∧ u,

a� b = (a+ b− u) ∧ 0.

The element u is supposed to be a strong unit of G. Then an MV -algebra state ( [13, 15, 16, 20])
is a mapping m̄ :M→ [0, 1] satisfying the following conditions:

1. m̄(0) = 0, m̄(u) = 1.

2. a� b = 0⇒ m̄(a⊕ b) = m̄(a) + m̄(b).

3. an ↗ a⇒ m̄(an)↗ m̄(a).

2 Representation of states by probabilities

Let us look at the representation of states from two points of view. The first will be general
representation, the second local representation.

2.1 General representation of states

Very interesting is the relation between probability measure and state. In [3] there was proved the
Butnaria-Klement theorem:

Theorem 2. To any state mJ : J → [0, 1] there exists a probability measure P : S → [0, 1] such
that

mJ (f) =

∫
Ω

fdP

for any f ∈ J .

This theorem has been generalized also for Atanassov IF -sets. The generalization of the
Butnaria-Klement theorem have the form:

Theorem 3. If m : F → [0, 1] is a state then there exists a probability measure P : S → [0, 1]

and α ∈ [0, 1] such that

m(A) =

∫
Ω

µAdP + α

(
1−

∫
Ω

(µA + νA)dP

)
for any A = (µA, νA) ∈ F .

This theorem is called Representation theorem for probabilities on IF -states and it was proved
in [4–6,10,18]. The Butnaria-Klement theorem can be obtained as a consequence if νA = 1−µA.
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2.2 Local representation of states

In this section we will look at the relations between the observables and random variables. Let
start with definitions of these structures [21].

Definition 4. An observable is a mapping x : B(R)→ F satisfying the following conditions

1. x(R) = (1Ω, 0Ω),

2. A ∩B = ∅ ⇒ x(A)� x(B) = (0Ω, 1Ω) and x(A ∪B) = x(A)⊕ x(B),

3. An ↗ A⇒ x(An)↗ x(A).

where A,An, B ∈ F for n = 1, 2, . . ..

Definition 5. A random variable is such function ξ : Ω → R that for any A ∈ B(R) it holds
ξ−1(A) ∈ F .

It is easy to prove (see [21]) that:

Proposition 6. For any random variable ξ : Ω→ R it holds

1. ξ−1(R) = Ω,

2. ξ−1(A ∪B) = ξ−1(A) ∪ ξ−1(B),

3. ξ−1(An)↗ ξ−1(A).

Proposition 7. Let Ω = RN . Define the function ξn : RN → R by the formula ξn((ti)
∞
i=1) = tn.

Then ξ is the random variable.

Denote by C the system of all sets of the form

A = {(ti)∞i=1; t1 ∈ A1, . . . tn ∈ An}

where n ∈ N and A1, . . . , An ∈ B(R) are Borel sets. To any sequence (xn)n of observables there
exist the probability space (RN , σ(C), P ) such that convergences of (xn)n and (ξn)n are in corre-
lation. Of course, the space (RN , σ(C), P ) depends on a concrete sequence (xn)n. For different
sequences various spaces can be obtain. We could speak about following types of convergences
(for the proof see [19, 21]).

Proposition 8. Let (xn)n be a sequence of observables, (ξn)n be the sequence of corresponding
random variables. Then

1. (xn)n converges to F : R→ R in distribution if and only if (ξn)n converges to F ;

2. (xn)n converges to 0 in state m : F → [0, 1] if and only if (ξn)n converges to 0 in measure
P : S → [0, 1];

3. if (ξn)n converges P -almost everywhere to 0 then (xn)n converges m-almost everywhere
to 0.
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3 Embedding of fuzzy spaces to MV -algebra

Recall that IF -set can be geometrically regarded as a function A : Ω→ ∆ where

∆ = {(x, y);x ≥ 0, y ≥ 0, x+ y ≤ 1}

(see Figure 1).

Figure 1. Elements of IF -sets

Let us take MV -algebraM such that G = R2. Then the addition of two elements is defined as

C = A+B = (µA + µB, νA + νB − 1Ω).

This addition represents the addition of two vectors with fixed point (0, 1) (see Figure 2). There-
fore there is a natural question about the possibility to embedding the IF -set to MV -algebra.

Figure 2. Addition in MV -algebra

For any point A = (µA, νA) ∈M it holds (see Figure 3)

(µA, νA) + (0Ω, 1Ω − νA) = (µA, 0Ω).
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Figure 3. Embedding IF -set to MV -algebra

From this reason we can define the function m̄ :M→ [0, 1] by the formula

m̄(µA, νA) = m(µA, 0Ω)−m(0Ω, 1Ω − νA)

This function represent the state onM generated by a state defined on F .
Recall that there is defined another structure as generalization of fuzzy sets, called interval valued
fuzzy set (shortly IV -set) which was defined by Zadeh ( [27]). The IV -set is a pair of functions
A = (µA, νA);µA : Ω→ [0, 1], νA : Ω→ [0, 1] for which it holds νA ≥ µA. The ordering on this
set is given by

A ≤ B ⇔ µA ≤ µB, νA ≤ νB

and the operation + is defined by

A+B = (µA + µB, νA + νB).

Also the family K of all IV -sets can be embedded to an MV -algebra. Here again G = R2. Of
course the ordering in G and also the operation + are given by the same way as in the IV -sets.

Figure 4. IV -set
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4 Review of results

There are many IF -state applications. We will mention just some of them. In probability theory,
there was proved for example central limit theorem [19, 21], law of large numbers [13], martin-
gale convergence theorem [12, 24]. In IF -dynamical system it was proved Poincare recurrence
theorem [20], individual ergodic theorem [19,21], invariant states [14], entropy of IF -dynamical
system [7–9, 17, 23].
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[20] Riečan, B. (2010) Strong Poincaré recurrence theorem in MV-algebras. Mathematica
Slovaca, 60(5), 655–664.
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