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1 Introduction  
InterCriteria Analysis (ICrA) is an approach [1] aiming to go beyond the nature of the criteria 
involved in a process of evaluation of multiple objects against multiple criteria, and, on this 
basis, to discover any existing correlations between the criteria themselves. Given in details in 
[1], ICrA has been developed further in [8, 19].  
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Up to now ICrA has been applied in several problem fields, namely: 
• for the purposes of temporal, threshold and trends analyses of an economic case-study 

of European Union member states’ competitiveness [7, 9]; 
• analysis of Genetic Algorithms (GA) performance for parameter identification 

problems [14, 17]; 
• for evaluation of the performance of hybrid schemes using GA and Ant Colony 

Optimization (ACO) [16];  
• for evaluation of pollution indicators of rivers [13]; 
• to universities ranking [10]; 
• in radar detection threshold analysis [11]; 
• for Neural Network preprocessing procedure [18]; 
• etc. 
In this paper ICrA is applied for analysis of dynamic parameter adaptation for the Bat 

Algorithm (BA) using a Type-1 fuzzy system (T1FS) and Interval Type-2 fuzzy system 
(IT2FS) [15]. The modification of the BA with T1FS and IT2FS is a deeper integration of a 
fuzzy system that works in conjunction with the algorithm and its parameters. The 
modification of BA aims to reach optimal results leveraging the convergence speed of the 
algorithm and avoiding premature convergence to a local minimum. It is feasible to proceed 
with the study of the BA. 

The BA is a metaheuristic optimization method proposed by Yang in 2010 [22]. tTis 
algorithm is based on the behavior of micro bats which use echolocation pulses with different 
emission and sound. There are some modifications of the BA in which the main feature of the 
algorithm is a convergence speed making it ideal for problem solving, where a quick solution 
is required [12, 20, 21, 23, 24].  

This paper is organized as follows: in Section 2 we describe the background of ICrA, in 
Section 3 we present the results from T1FS and IT2FS parameter adaptation of BA, in Section 
4 we propose the ICrA of T1FS and IT2FS parameter adaptation, in Section 5 we describe the 
conclusions. 

2 Background of InterCriteria Analysis 
Following [1] and [5] we will obtain an Intuitionistic Fuzzy Pair (IFP) [2] as the degrees of 
“agreement” and “disagreement” between two criteria applied on different objects. We remind 
briefly that an IFP is an ordered pair of real non-negative numbers ,a b〈 〉  such that: 1.a b+ ≤  

By O  we denote the set of all objects 1 2, , , nO O O…  being evaluated, and by ( )C O  the set 
of values assigned by a given criteria C  to the objects, i.e., 

def

1 2{ , , , },nO O O O= …  
def

1 2( ) { ( ), ( ), , ( )}nC O C O C O C O= … . 

Let ( ).i ix C O=  Then the following set can be defined: 

def
*  ( ) { , | , ( .& ) ( )}i j i jC O x x i j x x C O C O= 〈 〉 ≠ 〈 〉∈ ×  
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Further, if ( )ix C O=  and ( )jy C O= , x y≺  will be written iff i j< . 

In order to compare two criteria we must construct the vector of all internal comparisons of 
each criteria, which fulfill exactly one of three relations R, R  and .R  In other words, we 
require that for a fixed criterion C  and any ordered pair *, ( )x y C O〈 〉∈  it is true: 

 , , ,x y R y x R〈 〉∈ ⇔ 〈 〉∈  (1) 

 , , ( ),x y R x y R R〈 〉∈ ⇔ 〈 〉∉ ∪  (2) 

 *( ).R R R C O∪ ∪ =  (3) 

From the above it is seen that we need only consider a subset of ( ) ( )C O C O×  for the 
effective calculation of the vector of internal comparisons (denoted further by ( )V C ) since 
from (1) - (3) it follows that if we know what is the relation between x  and y  we also know 
what is the relation between y  and x . Thus we will only consider lexicographically ordered 
pairs , .x y〈 〉  Let, for brevity , ( ), ( ) .i j i jC C O C O= 〈 〉  Then for a fixed criterion C we construct 

the vector: 

1,2 1,3 1, 2,3 2,4( ) { , , , , , , ,nV C C C C C C= … … 2, 3,4 3, 1,, , , , , }n n n nC C C C −… … . 

It can be easily seen that it has exactly ( 1) / 2n n −  elements. Further, to simplify our 

considerations, we replace the vector ( )V C  with ˆ( )V C , where for each 1 ( 1) / 2k n n≤ ≤ −  for 
the k -th component it is true: 

1 iff ( ) ,
( ) 1 iff ( ) ,

0 otherwise.

k

k k

V C R
V C V C R

− ∈⎧
⎪= − ∈⎨
⎪
⎩

 

Then when comparing two criteria we determine the degree of “agreement” between the 
two as the number of matching components (divided by the length of the vector for 
normalization purposes). This can be done in several ways, e.g. by counting the matches or by 
taking the complement of the Hamming distance. The degree of “disagreement” is the number 
of components of opposing signs in the two vectors (again normalized by the length). This also 
may be done in various ways. A pseudocode of the Algorithm 1 [17] used in this study for 
calculating the degrees of agreement and disagreement between two criteria C  and C ′  is 
presented in Fig. 1.  

It is obvious (from the way of calculation) that for , ,C Cμ ′  , ,C Cν ′  we have , ' ,' ,C C C Cμ μ=  

, ' ,' .C C C Cν ν= Also, , ,,C C C Cμ ν′ ′〈 〉  is an IFP. In the most of the obtained pairs , ,,C C C Cμ ν′ ′〈 〉 , the 

sum , ,C C C Cμ ν′ ′+  is equal to 1. However, there may be some pairs, for which this sum is less 

than 1. The difference 

, , ,1C C C C C Cπ μ ν′ ′ ′= − −  

is considered as a degree of “uncertainty”. 
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Figure 1. Algorithm 1: Calculating “agreement” and “disagreement” between two criteria [17] 

3 T1FS and IT2FS parameter adaptation of Bat Algorithm 

3.1 Fuzzy adaptation of the BA parameters  
The detailed description of the theoretical background of the applied BA and proposed fuzzy 
adaptation of the parameters are presented in [15].  

For the purpose of fuzzy adaptation of the BA parameters the selected BA parameters are 
as follows: “Iteration”, “Beta” and “PulseRate”. These three parameters are integrated into the 
Type-1 fuzzy system and Interval Type-2 fuzzy system. 

The “Iteration” variable is defined by the Eq. (4), and has a range from 0 to 1. This 
variable can be seen as the percentage of the current iteration. 

 Current IterationIteration
Maximum of Iterations

=   (4) 

The “Beta” variable is located between [0, 1] which is increasing with the stepiterations 
and the variable “PulseRate” value is between [0, 1], which is decreasing with the step 
iterations. 

The main difference between a T1FS and an IT2FS, is that the degree of membership is 
also fuzzy, and is represented by the footprint of uncertainty (FOU), so if we shift from Type-1 

Require: Vectors ˆ( )V C  and ˆ( )V C ′  12: Degree of Disagreement ( ˆ ˆ( ), ( )V C V C ′ ) 

    13: V  ← ˆ ˆ( ) ( )V C V C ′−  

1: Degree of Agreement ( ˆ ˆ( ), ( )V C V C ′ ) 14: ,C Cν ′ ← 0  

2: V  ← ˆ ˆ( ) ( )V C V C ′−   15: for i ← 1 to
( 1)

2
n n −

 do 

3: ,C Cμ ′  ← 0  16:  if abs( ) 2iV =  then 

4: for i ← 1 to
( 1)

2
n n −

 do 17:   ,C Cν ′  ← ,C Cν ′ + 1 

5:  if 0iV =  then 18:  end if 
6:   ,C Cμ ′  ← ,C Cμ ′ +1 19: end for 

7:  end if 20: ,C Cν ′  ← 
2

( 1)n n − ,C Cν ′  

8: end for  21: return ,C Cν ′  

9: ,C Cμ ′  ← 
2

( 1)n n − ,C Cμ ′  22: end function 

10: return ,C Cμ ′   
11: end function  
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to Type-2, theoretically we need a degree of FOU, so that this degree was manually modified 
until the best possible FOU is obtained. 

Fig. 2 shows the rule set from the original T1FS for parameter adaptation. These rules stay 
the same in the change from T1FS to IT2FS. The set of If-Then fuzzy rules are granulated into 
3 rules in order to cover all iterations and the search space. To start in Low “Iteration” the 
parameter “Beta” is Low and the “PulseRate” is High, going to the Middle “Iteration” the 
parameter “Beta” is Middle and “PulseRate” is Middle start to cover much of the search space, 
in the High “Iteration” the same procedure is repeated − the parameter “Beta” is High and 
“PulseRate” is Low, in this way achieving the exploitation of the search space. 

 

 
Figure 2. Rule set from original T1FS for parameter adaptation 

The IT2FS is designed for the parameter adaptation. We develop this system manually, this 
is, we change the levels of FOU of each point of each membership function, but each point has 
the same level of FOU, also the input and output variables have only interval Type-2 triangular 
membership functions [15]. 

3.2 Simulation results 
The results of the performed computational exeperiments with the five benchmark 
mathematical functions [15] used to evaluate the performance of the BA with T1FS are shown 
in next three tables. Table 1 presents the average results, Table 2 − the best results and Table 3 
− the worst results. The row “Dim” represents the benchmark functions dimension. 

Table 1. T1FS − average results 

Dim 10 20 30 40 50 
Sphere 2.45E-07 3.42E-06 7.93E-06 1.68E-05 2.69E-05 
Ackley 8.16E-09 1.06E-08 1.56E-08 8.84E-09 6.76E-09 

Rastrigin 2.71E-09 1.09E-09 6.43E-10 0.994959 2.33E-09 
Zakharov 8.18E-12 1.68E-12 1.70E-11 8.33E-12 7.22E-12 

SumSquare 1.56E-06 3.08E-05 0.000156 0.000411 0.001042 
Dim 60 70 80 90 100 

Sphere 3.99E-05 5.53E-05 7.68E-05 0.000106 9.34E-05 
Ackley 1.68E-08 3.32E-08 1.72E-08 5.01E-09 3.51E-09 

Rastrigin 1.12E-09 7.03E-10 7.47E-10 0.994959 5.07E-10 
Zakharov 3.29E-12 2.27E-11 4.45E-12 2.83E-12 3.70E-12 

SumSquare 0.049183 0.00553 0.091078 0.083557 1.288607 
 
 

1. If (Iteration is Low) then (Beta is Low) (PulseRate is High) (1) 
2. If (Iteration is Middle) then (Beta is Middle) (PulseRate is Middle) (1) 
3. If (Iteration is High) then (Beta is High) (PulseRate is Low) (1) 
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Table 2. T1FS − best results 

Dim 10 20 30 40 50 
Sphere 1.41E-07 3.11E-06 7.50E-06 1.60E-05 2.37E-05 
Ackley 8.74E-10 9.90E-10 1.05E-08 3.17E-09 3.37E-09 

Rastrigin 2.02E-10 1.66E-10 2.67E-10 0.994959 6.52E-11 
Zakharov 2.56E-12 3.48E-13 3.97E-12 3.84E-12 1.95E-12 

SumSquare 1.54E-06 2.31E-05 0.000141 0.000353 0.000732 
Dim 60 70 80 90 100 

Sphere 3.67E-05 4.70E-05 7.16E-05 9.47E-05 8.68E-05 
Ackley 1.39E-08 4.66E-09 6.60E-10 4.00E-10 1.19E-09 

Rastrigin 2.62E-10 2.05E-11 3.25E-10 0.994959 1.31E-10 
Zakharov 1.80E-12 7.16E-12 2.95E-12 9.35E-13 1.26E-12 

SumSquare 0.001994 0.003792 0.004906 0.01076 0.009488 
 
 

Table 3. T1FS − worst results 

Dim 10 20 30 40 50 
Sphere 8.14E-07 3.76E-06 1.05E-05 2.27E-05 4.08E-05 
Ackley 8.81E-09 1.32E-07 2.57E-08 2.44E-08 1.04E-08 

Rastrigin 2.24E-08 7.15E-09 1.04E-08 0.994959 1.43E-08 
Zakharov 3.74E-11 1.60E-11 1.70E-10 7.89E-11 2.40E-11 

SumSquare 1.62E-06 5.61E-05 0.000337 0.001209 0.003227 
Dim 60 70 80 90 100 

Sphere 5.49E-05 8.25E-05 1.16E-04 1.43E-04 1.33E-04 
Ackley 5.69E-08 1.33E-07 3.27E-07 3.50E-08 6.58E-08 

Rastrigin 2.01E-08 2.87E-09 3.96E-09 0.994959 1.20E-09 
Zakharov 3.93E-12 2.52E-10 1.79E-11 1.26E-11 1.56E-11 

SumSquare 1.405737 0.025541 2.527893 2.102634 38.28994 
 
 

The results of the performed computational exeperiments with the five benchmark 
mathematical functions [15] used to evaluate the performance of the BA with IT2FS are 
shown, respectivelly in Table 4 (average results), Table 5 (best results) and Table 6 (worst 
results). 

The application of IT2FS in BA, as shown in the above tables, obtains the best values for 
the most benchmark functions [15]. Considering the average results the better results for the 
most benchmark functions shows BA with T1FS. This does not mean that one is better than the 
other. The results show that the application of IT2FS in the BA parameters adaptation is as 
effective approach as T1FS in the BA parameters adaptation. Implementation of IT2FS gives 
us the possibility to attack more complex problems certainty skilled to find good solutions 
integrating higher level uncertainty. 
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Table 4. IT2FS − average results 

Dim 10 20 30 40 50 
Sphere 3.17E-07 2.90E-06 8.88E-06 1.72E-05 2.74E-05 
Ackley 3.84E-08 1.20E-08 1.94E-08 1.92E-09 1.50E-08 

Rastrigin 9.95E-01 9.95E-01 7.00E-10 1.9899 9.95E-01 
Zakharov 6.93E-12 1.06E-11 1.64E-11 7.69E-12 2.90E-12 

SumSquare 1.78E-06 2.91E-05 0.001949 0.039674 0.464369 
Dim 60 70 80 90 100 

Sphere 4.45E-05 5.40E-05 7.25E-05 9.35E-05 1.29E-04 
Ackley 1.53E-08 5.51E-09 6.42E-09 9.37E-09 9.82E-09 

Rastrigin 1.00E-09 9.95E-01 1.99E+00 1.9899 9.95E-01 
Zakharov 7.17E-12 7.86E-12 1.68E-11 3.73E-12 7.63E-12 

SumSquare 18.52372 29.50533 101.8667 243.2728 200.1128 
 
 

Table 5. IT2FS − best results 

Dim 10 20 30 40 50 
Sphere 1.57E-07 2.57E-06 8.55E-06 1.52E-05 2.52E-05 
Ackley 1.54E-08 3.15E-09 8.82E-09 3.25E-10 1.49E-09 

Rastrigin 9.95E-01 9.95E-01 8.00E-11 1.9899 9.95E-01 
Zakharov 8.30E-14 1.70E-12 3.52E-12 4.53E-13 1.72E-13 

SumSquare 1.25E-06 2.54E-05 0.000126 0.000302 0.000726 
Dim 60 70 80 90 100 

Sphere 3.66E-05 5.10E-05 6.02E-05 8.18E-05 1.14E-04 
Ackley 7.03E-09 1.54E-09 2.27E-09 4.20E-09 2.09E-09 

Rastrigin 3.00E-10 9.95E-01 1.99E+00 1.9899 9.95E-01 
Zakharov 1.31E-12 1.00E-12 2.15E-12 2.20E-13 3.78E-13 

SumSquare 0.001424 0.003745 0.007301 0.008817 0.015054 
 
 

Table 6. IT2FS − worst results 

Dim 10 20 30 40 50 
Sphere 6.27E-07 4.83E-06 1.22E-05 2.08E-05 4.47E-05 
Ackley 3.56E-07 2.23E-08 1.37E-07 2.42E-08 1.69E-07 

Rastrigin 9.95E-01 9.95E-01 4.00E-09 1.9899 9.95E-01 
Zakharov 6.49E-11 5.13E-11 9.29E-11 6.02E-11 8.21E-11 

SumSquare 3.48E-06 7.51E-05 0.054243 1.180622 13.90583 
Dim 60 70 80 90 100 

Sphere 6.06E-05 7.24E-05 1.19E-04 1.21E-04 1.92E-04 
Ackley 3.02E-08 8.98E-09 1.53E-08 3.79E-08 1.55E-07 

Rastrigin 8.00E-09 9.95E-01 1.99E+00 1.9899 9.95E-01 
Zakharov 1.29E-10 4.95E-11 8.35E-11 2.53E-11 1.55E-10 

SumSquare 555.6535 884.9757 3044.999 7186.608 5960.815 
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4 ICrA of T1FS and IT2FS parameter adaptation 
of Bat Algorithm 

Based on Algorithm 1 ICrA has been applied on the results presented in Tables 1-6. The ten 
different function dimensions, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100, are considered as 
ICrA “objects”. The five benchmark functions are considered as ICrA “criteria”. Presented 
Tables 1-6 are considered as six Index Matrices [3, 4]. Obtained degrees of “agreement” 
( ,C Cμ ′ ), degrees of “disagreement” ( ,C Cν ′ ) and degrees of “uncertainty” ( ,C Cπ ′ ), in the case 
of BA with T1FS and BA with IT2FS, are as follows: 

Table 7. ICrA for T1FS − average results 
,C Cμ ′  Sphere Ackley Rastrigin Zakharov Sum Square 

Sphere 1.00 0.49 0.40 0.38 0.93 
Ackley 0.49 1.00 0.36 0.67 0.47 

Rastrigin 0.40 0.36 1.00 0.47 0.38 
Zakharov 0.38 0.67 0.47 1.00 0.40 

Sum Square 0.93 0.47 0.38 0.40 1.00 

,C Cν ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 0.00 0.51 0.58 0.62 0.07 
Ackley 0.51 0.00 0.62 0.33 0.53 

Rastrigin 0.58 0.62 0.00 0.51 0.60 
Zakharov 0.62 0.33 0.51 0.00 0.60 

Sum Square 0.07 0.53 0.60 0.60 0.00 

,C Cπ ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 0.00 0.00 0.02 0.00 0.00 
Ackley 0.00 0.00 0.02 0.00 0.00 

Rastrigin 0.02 0.02 0.00 0.02 0.02 
Zakharov 0.00 0.00 0.02 0.00 0.00 

Sum Square 0.00 0.00 0.02 0.00 0.00 
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Table 8. ICrA for T1FS − best results 

,C Cμ ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 1.000 0.444 0.533 0.400 1.000 

Ackley 0.444 1.000 0.311 0.644 0.444 

Rastrigin 0.533 0.311 1.000 0.489 0.533 

Zakharov 0.400 0.644 0.489 1.000 0.400 

Sum Square 1.000 0.444 0.533 0.400 1.000 

      

,C Cν ′  Sphere Ackley Rastrigin Zakharov Sum Square 

Sphere 0.000 0.556 0.444 0.600 0.000 

Ackley 0.556 0.000 0.667 0.356 0.556 

Rastrigin 0.444 0.667 0.000 0.489 0.444 

Zakharov 0.600 0.356 0.489 0.000 0.600 

Sum Square 0.000 0.556 0.444 0.600 0.000 

 

,C Cπ ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 0.00 0.00 0.02 0.00 0.00 
Ackley 0.00 0.00 0.02 0.00 0.00 

Rastrigin 0.02 0.02 0.00 0.02 0.02 
Zakharov 0.00 0.00 0.02 0.00 0.00 

Sum Square 0.00 0.00 0.02 0.00 0.00 
 

Table 9. ICrA for T1FS − worst results 

,C Cμ ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 1.000 0.667 0.400 0.333 0.933 
Ackley 0.667 1.000 0.244 0.489 0.689 

Rastrigin 0.400 0.244 1.000 0.467 0.378 
Zakharov 0.333 0.489 0.467 1.000 0.356 

Sum Square 0.933 0.689 0.378 0.356 1.000 
 
,C Cν ′  Sphere Ackley Rastrigin Zakharov Sum Square 

Sphere 0.000 0.333 0.578 0.667 0.067 
Ackley 0.333 0.000 0.733 0.511 0.311 

Rastrigin 0.578 0.733 0.000 0.511 0.600 
Zakharov 0.667 0.511 0.511 0.000 0.644 

Sum Square 0.067 0.311 0.600 0.644 0.000 
 

,C Cπ ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 0.00 0.00 0.02 0.00 0.00 
Ackley 0.00 0.00 0.02 0.00 0.00 

Rastrigin 0.02 0.02 0.00 0.02 0.02 
Zakharov 0.00 0.00 0.02 0.00 0.00 

Sum Square 0.00 0.00 0.02 0.00 0.00 
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Table 10. ICrA for IT2FS − average results 

,C Cμ ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 1.00 0.36 0.47 0.49 0.98 
Ackley 0.36 1.00 0.09 0.42 0.33 

Rastrigin 0.47 0.09 1.00 0.33 0.49 
Zakharov 0.49 0.42 0.33 1.00 0.47 

Sum Square 0.98 0.33 0.49 0.47 1.00 
 
,C Cν ′  Sphere Ackley Rastrigin Zakharov Sum Square 

Sphere 0.000 0.644 0.244 0.511 0.022 
Ackley 0.644 0.000 0.622 0.578 0.667 

Rastrigin 0.244 0.622 0.000 0.378 0.222 
Zakharov 0.511 0.578 0.378 0.000 0.533 

Sum Square 0.022 0.667 0.222 0.533 0.000 
 

,C Cπ ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 0.00 0.00 0.29 0.00 0.00 
Ackley 0.00 0.00 0.29 0.00 0.00 

Rastrigin 0.29 0.29 0.00 0.29 0.29 
Zakharov 0.00 0.00 0.29 0.00 0.00 

Sum Square 0.00 0.00 0.29 0.00 0.00 
 

Table 11. ICrA for IT2FS − best results 

,C Cμ ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 1.000 0.400 0.467 0.489 1.000 
Ackley 0.400 1.000 0.200 0.556 0.400 

Rastrigin 0.467 0.200 1.000 0.267 0.467 
Zakharov 0.489 0.556 0.267 1.000 0.489 

Sum Square 1.000 0.400 0.467 0.489 1.000 
      

,C Cν ′  Sphere Ackley Rastrigin Zakharov Sum Square 

Sphere 0.000 0.600 0.244 0.511 0.000 
Ackley 0.600 0.000 0.511 0.444 0.600 

Rastrigin 0.244 0.511 0.000 0.444 0.244 
Zakharov 0.511 0.444 0.444 0.000 0.511 

Sum Square 0.000 0.600 0.244 0.511 0.000 
 

,C Cπ ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 0.00 0.00 0.29 0.00 0.00 
Ackley 0.00 0.00 0.29 0.00 0.00 

Rastrigin 0.29 0.29 0.00 0.29 0.29 
Zakharov 0.00 0.00 0.29 0.00 0.00 

Sum Square 0.00 0.00 0.29 0.00 0.00 
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Table 12. ICrA for IT2FS − worst results 

,C Cμ ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 1.000 0.444 0.467 0.556 0.978 
Ackley 0.444 1.000 0.267 0.622 0.422 

Rastrigin 0.467 0.267 1.000 0.200 0.489 
Zakharov 0.556 0.622 0.200 1.000 0.533 

Sum Square 0.978 0.422 0.489 0.533 1.000 
 
,C Cν ′  Sphere Ackley Rastrigin Zakharov Sum Square 

Sphere 0.000 0.556 0.244 0.444 0.022 
Ackley 0.556 0.000 0.444 0.378 0.578 

Rastrigin 0.244 0.444 0.000 0.511 0.222 
Zakharov 0.444 0.378 0.511 0.000 0.467 

Sum Square 0.022 0.578 0.222 0.467 0.000 
 

,C Cπ ′  Sphere Ackley Rastrigin Zakharov Sum Square 
Sphere 0.00 0.00 0.29 0.00 0.00 
Ackley 0.00 0.00 0.29 0.00 0.00 

Rastrigin 0.29 0.29 0.00 0.29 0.29 
Zakharov 0.00 0.00 0.29 0.00 0.00 

Sum Square 0.00 0.00 0.29 0.00 0.00 
 
 

Presented results show that in case of BA with T1FS there is a very small degree of 
uncertainty”, ,C Cπ ′ = 0.2 for results of Rastrigin function. For the same benchmark function, in 

case of BA with IT2FS the ,C Cπ ′ -value is larger, ,C Cπ ′ = 0.29. Only in case of Rastrigin 

function both BA (BA with T1FS and BA with IT2FS) fall several times within the same local 
minimum for the various dimensions – 0.994959.  

To compare performance of BA with T1FS and BA with IT2FS for all five benchmark 
functions, the obtained results for ,C Cμ ′ -values are summarized, respectively for average, best 

and worst values. The results are presented in the Tables 13–15. 
The results are analyzed and discussed according to the proposed in [6] scale for a 

definition of consonance and dissonance between each pair of criteria. The following notations 
are used: D – dissonance, SD – strong dissonance, PC – positive consonance, WPD – weak 
positive consonance, WD – weak dissonance, SPC – strong positive consonance, WNC – weak 
negative consonance and NC – negative consonance.  
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Table 13. ICrA − ,C Cμ ′ -values for average results 

Benchmark  
function relation T1FS  IT2FS 

Ackley-Sphere 0.356 D − SD 0.489 
Rastrigin-Sphere 0.467 SD − D 0.400 
Zakharov-Sphere 0.489 SD − D 0.378 
Sum Square-Sphere 0.978 SPC − PC 0.933 
Rastrigin-Ackley 0.089 NC − D 0.356 
Zakharov-Ackley 0.422 D − D 0.667 
Sum Square-Ackley 0.333 D − SD 0.467 
Zakharov-Rastrigin 0.333 D − SD 0.467 
Sum Square-Rastrigin 0.489 SD − D 0.378 
Sum Square-Zakharov 0.467 D − D 0.400 

 
 

Table 14. ICrA − ,C Cμ ′ -values for best results 

Benchmark  
function relation T1FS  IT2FS 

Ackley-Sphere 0.444 SD − D 0.400 
Rastrigin-Sphere 0.533 SD − SD 0.467 
Zakharov-Sphere 0.400 D − SD 0.489 
Sum Square-Sphere 1.000 SPC − SPC 1.000 
Rastrigin-Ackley 0.311 WD − WNC 0.200 
Zakharov-Ackley 0.644 D − SD 0.556 
Sum Square-Ackley 0.444 SD − D 0.400 
Zakharov-Rastrigin 0.489 SD − WD 0.267 
Sum Square-Rastrigin 0.533 SD − SD 0.467 
Sum Square-Zakharov 0.400 D − SD 0.489 

 
 

Table 15. ICrA − ,C Cμ ′ -values for worst results 

Benchmark  
function relation T1FS  IT2FS 

Ackley-Sphere 0.667 D − SD 0.444 
Rastrigin-Sphere 0.400 D − SD 0.467 
Zakharov-Sphere 0.333 D − SD 0.556 
Sum Square-Sphere 0.933 PC − SPC 0.978 
Rastrigin-Ackley 0.244 WNC − WD 0.267 
Zakharov-Ackley 0.489 SD − D 0.622 
Sum Square-Ackley 0.689 WD − D 0.422 
Zakharov-Rastrigin 0.467 SD − WNC 0.200 
Sum Square-Rastrigin 0.378 D − SD 0.489 
Sum Square-Zakharov 0.356 D − SD 0.533 
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Based on the obtained ,C Cμ ′ -values we can compare the performance of the applied BA 
with T1FS and IT2FS. According Table 13, the average results the BA with T1FS performs 
slightly different compared to BA with IT2FS considering benchmark functions Rastrigin and 
Ackley. If we refer Table 1 it can be seen that the BA with T1FS performs better compared to 
BA with IT2FS in case of both functions Rastrigin and Ackley. For the rest benchmark 
functions both BA perform identically with the increase of function dimension, i.e., function 
complexity. 

The results in Table 14 show that considering the best results both BA perform again 
identically with the increase of function dimension, i.e., function complexity.  

Analysis of the worst results (Table 15) shows analogical behavior with the average and 
best results. However, in this case BA with T1FS performs slightly different compared to BA 
with IT2FS considering benchmark functions Rastrigin and Zakharov. 

5 Conclusion  
In this investigation ICrA approach is applied, employing the apparatuses of Index Matrices 
and Intuitionistic Fuzzy Sets. ICrA works based on an existing index matrix with multiobject 
multicriteria evaluations aiming to produce a new index matrix that contains intuitionistic 
fuzzy pairs with the correlations revealed to exist in between the set of evaluation criteria. 
Here, ICrA is implemented for comparison of the performance of BA modified with T1FS and 
IT2FS for BA parameter adaptation. The five benchmark function, namely Sphere, Ackley, 
Rastrigin, Zakharov and SumSquare, are considered. The ICrA show that both BA – BA with 
T1FS and BA with IT2FS have the similar performance with the increase of the benchmark 
function complexity. However, considering the average results BA with T1FS performs better 
in comparison with BA with IT2FS, but considering the obtained best values BA with IT2FS 
show better performance in comparison with T1FS BA parameter adaptation. 
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