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1 Introduction

A quarter of century ago the Generalized Nets (GNs, see [1, 4]) were de¯ned as extensions
of Petri nets (see, e.g. [5]) and other Petri net extensions and modi¯cations.

The ideas and algorithms for Petri net- and GN-construction are based on expert knowl-
edge for real parallel processes and for the conditions in°uencing their °ow.

Here, and in future authors research, some algorithms, based on case study ideology, will
be described.

2 Main idea: de¯nitions and the ¯rst algorithm

Let us have a set of data
D = fd1; d2; :::; dmg

for events in the frames of a ¯xed real process. Let these data be obtained on the basis of
observations of one or more objects in di®erent places and in di®erent time-moments. Let
the time moments be ordered sequentially and let them be represented by natural numbers.
Then the data for the i-th object has the form:

di = f(ei;1; ci;1); (ei;2; ci;2); :::; (ei;n; ci;n)g;

where
ei;j 2 E [f¤eg for 1 · i · m and 1 · j · n, E is a set of events, ¤e is the empty event (lack
of events, non-held event),
ci;j 2 C [ f¤cg for 1 · i · m and 1 · j · n, C is a set of events characteristics, ¤c is the
empty characteristic (lack of characteristic).

Let us assume that if for 1 · i1 < i2 · m and for 1 · j · n: ei1;j = ei2;j, then ci1;j = ci2;j .
We can also assume that if for some (i; j) (1 · i · m and 1 · j · n): ei;j = ¤e, then

ci;j = ¤c.
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Let
Vj = fei;j j 1 · i · mg;
Yj = fci;j j 1 · i · mg;

for 1 · j · n.
When event ei;j has exactly one predecessor and one successor, we de¯ne functions for

1 · i · m and 1 · j · n:
w¡(ei;j) = ei¡1;j ; for i ¸ 2;

w+(ei;j) = ei+1;j; for i · m¡ 1:

When object ei;j can have more than one predecessor and/or more than one successor,
we de¯ne functions:

W¡(ei;j) = fe j e = w¡(ei;j)g; for i ¸ 2;

W+(ei;j) = fe j e = w+(ei;j)g; for i · m¡ 1:

Obviously, for each (i; j) (1 · i · m and 1 · j · n):

w¡(ei;j) 2 W¡(ei;j);

w+(ei;j) 2 W+(ei;j):

The graphical form of the data is illustrated on Figure 1, when, e.g.

d1 = f(v1;1; c1;1); (v2;2; c2;2); (v2;3; c2;3); (v2;4; c2;4g;

d2 = f(v1;1; c1;1); (v2;2; c2;2); (v1;3; c1;3); (v1;4; c1;4g;
d3 = f(v2;1; c2;1); (v1;2; c1;2); (v1;3; c1;3); (v1;4; c1;4g;
d4 = f(v3;1; c3;1); (v2;2; c2;2); (v3;3; c3;3); (v2;4; c2;4g;
d5 = f(v4;1; c4;1); (v3;2; c3;2); (v4;3; c4;3); (v2;4; c2;4g;

where vi;j 2 Vj for 1 · i · m and 1 · j · n.
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Figure 1.
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Here and in future research we shall construct algorithms generating GNs on the basis
of the graphs that we can construct, having the above information.

In the present research we shall assume that
1. for each (i; j) (1 · i · m and 1 · j · n): ei;j6= ¤e;
2. for every three i; j1; j2 (1 · i · m and 1 · j1; j2 · n and j1 6= j2): ei;j1 6= ei;j2;
3. for each (i; j) (1 · i · m and 1 · j · n): jW+(ei;j)j = 1, where jXj is the cardinality
of set X.

In next authors' research we shall omit some of these restrictions, generalizing the present
algorithm.

We shall construct the set of couples

f(Pj;k; Qj;k) j 1 · k · sj; 1 · j · n¡ 1g;

where 1 · sj · m for 1 · j · n¡ 1. The elements of this set satisfy the condition

(8j : 1 · j · n¡ 1)((8k : 1 · k · sj)(8l : 1 · l · sj)

(k6= l! (Pj;k \ Pj;l = ; & Qj;k \Qj;l = ;))

& (
sj

[
k=1

Pj;k = Vj &
sj

[
k=1

Qj;k = Vj+1)):

Therefore, the equality

sj+1

[
k=1

Pj+1;k =
sj

[
k=1

Qj;k

holds for each j (1 · j · n¡ 1).
The algorithm for construction of Pj;k and Qj;k for 1 · k · sj and j (1 · j · n¡ 1) is

the following.
When J+K = 2, i.e., J = K = 1 we obtain the ¯rst step of the algorithm, as it is shown

above.
Let us assume that the sets Pj;k and Qj;k are constructed for j < J and k < K for

J +K > 2. Then we construct set

X = VJ ¡
K¡1

[
k=1

PJ;k

and let eu;v is the minimal element of X. Then we construct sequentially the sets

Q0J;K = W+(eu;v);

PJ;K = [
ep;q2Q0J;K

W¡(ep;q);

QJ;K = [
ep;q2PJ;K

W+(ep;q):
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If
PJ;K = ;

or
QJ;K = ;

we eliminate this step and the next step starts for J + 1, if J < n: If J = n the algorithm
stops.

Now, using the ideas of the algorithm from [3], we can construct the graphical structure
of the GN-transition

ZPj;k;Qj;khL0Z ; L"Z ; t
Z
1 ; t

Z
2 ; rZ ;MZ ; Zi;

that corresponds to sets Pj;k and Qj;k for 1 · k · sj and j (1 · j · n¡ 1). For it the set
of input places L0Z and the set of output places L"Z satisfy the equalities:

L0Z = Pj;k;

L"Z = Qj;k:

For this transition
tZ1 = ¤

(i.e., this component is not de¯ned) and

tZ2 = to

(i.e., this component is equal to the elementary time-step; without problems we can assume
that it is equal to 1). Transition condition has the form of an index matrix (see[2]):

r =

l001 . . . l00j . . . l00n
l01
... ri;j
l0i (ri;j ¡ predicate )
... (1 · i · m; 1 · j · n)
l0m

;

where ri;j is the predicate which corresponds to the i-th input and j-th output places and its
form will be determined following [3]. The index matrix M of the capacities of transition's
arcs

M =

l001 . . . l00j . . . l00n
l01
... mi;j

l0i (mi;j ¸ 0¡ natural number )
... (1 · i · m; 1 · j · n)
l0m

is determined analogously. Finally,

Z = _
ep;q2PJ;K

ep;q:

On the basis of the above data fd1; d2; d3; d4; d5g we can construct the GN from Figure
2.
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Figure 2.

The characteristic function connected with place ei;j determines value ci;j . The transi-
tions, places and tokens do not have priorities, and places and arcs do not have capacities.
The GN is without temporal components.

3 Conclusion

In future research we shall construct new algorithms in which some of the above restrictions
will be omitted. So, di®erent ways for construction of GNs on the base of case study ideology,
will be described.

References

[1] Atanassov, K. Generalized Nets. World Scienti¯c, Singapore, 1991.

[2] Atanassov K., Generalized index matrices, Comptes rendus de l'Academie Bulgare des
Sciences, vol.40, 1987, No.11, 15-18.

[3] Kolev B., An algorithm for transformating graph to a generalized net. Proceedings of
the First Int. Workshop on Generalized Nets, So¯a, 9 July, 2000, 26-28.

[4] Radeva V., M. Krawczak and E. Choy. Review and bibliography on generalized nets theory
and applications. Advanced Studies in Contemporary Mathematics, Vol. 4, 2002, No. 2,
173-199.

[5] Starke, P. Petri-Netze. Berlin, VEB Deutscher Verlag der Wissenschaften, 1980.

5


