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We remind some similarities/parallels between two of the theories dealing with widely
understood (not only as randomness) uncertainty — mass assignment theory and intu-
itionistic fuzzy set theory. Mass assignment theory is well known tool for dealing with
both probabilistic and fuzzy uncertainties whereas intuitionistic fuzzy set theory is an
extension of fuzzy set theory which makes it possible to describe imprecise information.
Next, we recall the measures of similarity which we have proposed for both theories. The
proposed measures take into account not only a pure distance between compared ele-
ments but answer the questions if the considered elements/objects are more similar or
more dissimilar (the measures take into account and compare two types of distances). It
is shown that even if a distance between compared objects is small, it can happen that the
objects are completely dissimilar. The disadvantage of the measures is the range of their
values — not consistent with the tradition as far as the similarity measures are concerned.
In this paper we propose the whole array of the new similarity measures preserving the
advantages of the previously proposed similarity measures and the same time following
the commonly assumed number values.

1 Introduction

For several centuries (starting from the mid-seventeenth century) uncertainty was iden-
tified and expressed in terms of probability theory only. Uncertainty was a synonym of
randomness. This situation was challenged in the 1960s by other theories, distinct from
probability theory, characterizing different aspects of uncertain situations. Uncertainty
started to be perceived as a multidimensional concept manifesting one of its dimensions
as randomness. Other dimensions turned out equally important from the point of view of
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representing and processing information. The most visible of the theories, dealing with
different aspects of uncertainty, are the theory of fuzzy sets (Zadeh [52]), theory of evi-
dence (Dempster-Shafer theory [19, 25]), possibility theory (Zadeh [53]), theory of fuzzy
measures (Sugeno [26]). In this paper we explore two of the theories dealing with widely
understood uncertainty — intuitionistic fuzzy set theory (Atanassov [1]) which is a gener-
alization of fuzzy sets, and mass assignment theory (Baldwin [8, 7]) related to the theory
of evidence.

We show some similarities/parallels between mass assignment theory (Baldwin [8],
Baldwin et al. [11, 12]) and intuitionistic fuzzy set theory [Atanassov [2, 5]]. The similar-
ities we point out do not mean that one of the theories is better or could replace the other.
Opposite — the similarities we show seem to be important as far as further development
of both theories is concerned.

First, we notice that the voting interpretation is common for both theories. This
observation made it possible to realize the counterparts of the parameters in both theories.

The counterparts of the parameters in mass assignment theory and intuitionistic fuzzy
set theory made it possible to propose a common (or, to be more precise — parallel)
geometrical representation useful when introducing and discussing some new similarity
measures with their advantages in comparison to the commonly used similarity measures
being a dual concept to a (single) distace.

Similarity assessment plays a fundamental role in inference and approximate reasoning
in virtually all applications of fuzzy logic. For different purposes different measures of
similarity are to be used. Importance of the problem motivates researchers to compare
and examine the effectiveness and properties of the different measures of similarity for
fuzzy sets (e.g. Zwick at al. [54], Pappis and Karacapilidis [24], Chen at al. [17], Wang at
al. [47], Yager [49, 50, 51], Bouchon-Meunier at al. [16], Cross and Sudkamp [18]).

We are aware that the proposed here measures of similarity does not solve all prob-
lems one meets when assessing similarity. Similarity is a complex problem and even the
terminology used by different researchers is not the same. For example, some researchers
assume dissimilarity to be the inverse of similarity (Zwick at al. [54]) whereas others
call it non-similarity, and specify the dissimilarity between two fuzzy sets by a similarity
measure between the complements of the two fuzzy sets (Dubois and Prade [21]). Even
assumptions concerning properties of similarity measures are different — typically it is
assumed that similarity should be symmetric. But the axiom of symmetry is relaxed in
similarity measures used in psychological studies (Cross and Sudkamp [18]).

The similarity measures we recall (Szmidt and Baldwin [29]) are not the standard
similarity measures in the sense that they are not a dual concept to a (general) distance
(Tversky [46]). In commonly used similarity measures dissimilarity behaves like a distance
function. Such a standard approach — formulated for objects as crisp values was later
extended and used to assess similarity of fuzzy sets (Cross and Sudkamp [18]). Distances
were also proposed to measure similarity between intuitionistic fuzzy sets (Dengfeng and
Chuntian [20]). The measures we proposed were not that kind of similarity — they did not
measure just a distance between the compared elements/objects. The measures answered
the question if the compared elements/objects were more similar or more dissimilar. The
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measures took into account two kinds of distances — one to an object to be compared, and
one to its complement. We infered about the similarity on the basis of a ratio of the two
types of distances. In a special case — when we assess similarity of any element/object and
a crisp element/object, the first proposed measure is equivalent to the Jaccard index. For
more details we refer an interested reader to (Szmidt and Kacprzyk [44]). In the recalled
measures we used a concept of a complement element and showed that a distance between
considered elements/objects X and F could be small (so classical measures of similarity
would indicate that the objects are similar) whereas the distance between element X and
the complement of F could be even smaller what was not taken into account by commonly
used similarity measures. We show examples when the distance between objects is small
but the same time they are more dissimilar than similar. In other words — inferring
without taking into account a distance to a complement of an object can be misleading.
The only disadvantage of the proposed measures is that they do not follow the range of
the usually assumed values for the similarity measures. So we constructed a whole array
of the new similarity measures preserving the advantages of the previously proposed ones,
and which numerical values are consistent with the common scientific tradition.

2 Intuitionistic Fuzzy Set Theory

Let us start with basic concepts related to fuzzy sets.

Definition 1 A fuzzy set A
′

in X = {x} is given by (Zadeh [52]):

A
′

= {< x, µA(x) > |x ∈ X} (1)

where µA : X → [0, 1] is the membership function of the fuzzy set A
′

; µA ∈ [0, 1].

The intuitionistic fuzzy set (IFS) theory is based both on extensions of correspond-
ing definitions of fuzzy sets objects and definitions of new objects and their properties
(Atanassov [1, 2, 3, 4, 5]).

Definition 2 An intuitionistic fuzzy set A in X is given by (Atanassov [1, 5]):

A = {< x, µA(x), νA(x) > |x ∈ X} (2)

where
µA : X → [0, 1]

νA : X → [0, 1]

with the condition
0<µA(x) + νA(x)<1 ∀x ∈ X

The numbers µA(x), νA(x) ∈ [0, 1] denote the degree of membership and non-membership
of x to A, respectively.
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Obviously, each fuzzy set A
′

corresponds to the following intuitionistic fuzzy set:

A = {< x, µA(x), 1− µA(x) > |x ∈ X} (3)

For each intuitionistic fuzzy set in X, we will call

πA(x) = 1− µA(x)− νA(x) (4)

the intuitionistic fuzzy index (or a hesitation margin) of x in A and, it expresses a lack
of knowledge of whether x belongs to A or not (Atanassov [2, 3, 4, 5]).

It is obvious, that
0<πA(x)<1 for each x ∈ X

For each fuzzy set A
′

in X, evidently,

πA(x) = 1− µA(x)− [1− µA(x)] = 0, for each x ∈ X

In our further considerations we will use the notion of the complement elements, which
definition is a simple consequence of a complement set AC

AC = {< x, νA, µA > |x ∈ X} (5)

The application of intuitionistic fuzzy sets instead of fuzzy sets means the introduction
of another degree of freedom into a set description. Such a generalization of fuzzy sets
gives us an additional possibility to represent imperfect knowledge what leads to describing
many real problems in a more adequate way.

Intuitionistic fuzzy sets based models may be adequate mainly in the situations when
we face human testimonies, opinions, etc. involving answers of three types:

• yes,

• no,

• abstaining, i.e. which can not be classified (because of different reasons, eg. ”I do
not know”, ”I am not sure”, ”I do not want to answer”, ”I am not satisfied with
any of the options” etc.).

Voting can be a good example as the human voters may be divided into three groups
of those who: vote for, vote against, abstain or giving invalid votes. Applications of
intuitionistic fuzzy sets to group decision making, negotiations and other real situations
are presented in (Szmidt and Kacprzyk [32, 33, 35, 39, 41, 42, 43, 45]).

The methods of assigning the membership and non-membership values for IFSs are
proposed by Szmidt and Baldwin [31].

It is important that employing of intuitionistic fuzzy sets just forces an individual to
consider both advantages (memberships) and disadvantages (non-memberships) of a con-
sidered solution. Next, the imprecise area is taken into account as well. The importance
of such an approach lies in the fact that most people concentrate usually on one or two
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“most visible” aspects of a problem. They do not try to find out the contrary arguments
or to consider uncertain (in wide sense, i.e. not restricted to randomness) aspects of a
situation (cf. Sutherland [27]). Intuitionistic fuzzy sets with their structure make us con-
sider a situation/problem more properly. We refer again an interested reader to (Szmidt
and Kacprzyk [32, 33, 35, 39, 41, 42, 43, 45]) where we exploit this fact - using intuition-
istic fuzzy sets to group decision making. In short, the problem boils down to selecting
an option or a set of options which are best accepted by most of the individuals. The
options are considered in pairs. Employing intuitionistic fuzzy sets forces each individual
to look at each pair (i,j) of the options considering: advantages of the first option over
the second one (membership function), disadvantages of the first option over the second
one (non-membership function), and taking into account lack of knowledge (intuitionistic
fuzzy index) as far as the two options are concerned. In other words, intuitionistic fuzzy
sets force a user to explore a problem from different points of view — including all impor-
tant aspects which should be taken into account but, unfortunately, are often omitted by
people making decisions. This fact, strongly connected with a phenomenon called by the
Nobel Prize winner Kahneman (cf. Kahneman [22]) ”bounded rationality”, caused among
others by framing effect (explained in terms of salience and anchoring playing a central
role in treatments of judgements and choice) places intuitionistic fuzzy sets among the
up-to-date means of knowledge representation and processing.

Example 1 Let us assume that we have a set X of n individuals who vote for/against
building of nuclear power plant (judges voting for/against acquittal, electors voting for/against
a given candidate or his opponent, consumers expressing/not expressing interest in buying
a product). Let us assume that each individual xi belongs to

• a set of individuals (judges, electors) voting for — to the extent µ(xi)

• a set of individuals voting against — to the extent ν(xi)

It is worth noticing that by means of the fuzzy set theory we cannot consider the situation
in more details. By means of intuitionistic fuzzy set theory we can also point out

• a set of individuals who did not answer neither “yes” nor “no”— to the extent π(xi)
whereas: µA(x) + νA(x) + πA(x) = 1; π(xi) — an intuitionistic fuzzy index.

From the point of view of e.g. market analysts (election committees) it could be
tempting to assess the above data in terms of the possible final results of voting giving
intervals containing

• probability of voting for
Prfor ∈ [µ, µ+ π]

where:

µ =
1

n

n∑

i=1

µ (xi)

π =
1

n

n∑

i=1

π (xi)
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• probability of voting against

Pragainst ∈ [ν, ν + π]

where:

ν =
1

n

n∑

i=1

ν (xi)

with the condition Prfor + Pragainst = 1.

In terms of mass assignment (see Section 3) we could say that necessary support for
is equal to µ, necessary support against is equal to ν, whereas possible support for (the
best possible result) is equal to µ+π, possible support against (the worst possible result)
is equal to ν + π.

Remark
In the above example we made a simplifying assumption assigning a sing of equality
to probabilities and memberships/non-memberships. This assumption is valid under the
condition that each value of membership/non-membership occurs with the same probabil-
ity for each xi. In this paper, for the sake of simpler notation, we follow this assumption.
However, in general, probabilities for intuitionistic fuzzy sets are calculated in the follow-
ing way (Szmidt and Kacprzyk [36, 37]):

Definition 3 Let us assign to every element of an intuitionistic fuzzy event A ⊂ E =
{x1, ..., xn} (where E is the elementary event space) its probability of occurrence, i.e.
p (x1) , ..., p (xn).
Minimal probability pmin(A) of an intuitionistic fuzzy event A is equal to

pmin(A) =
n∑

i=1

p(xi)µ(xi)

Maximal probability of an intuitionistic fuzzy event A is equal to

pmax(A) = pmin(A) +
n∑

i=1

p(xi)π(xi)

so probability of an event A is a number from the interval [pmin(A), pmax(A)], or

p(A) ∈ [
n∑

i=1

pA(xi)µA(xi),
n∑

i=1

pA(xi)µA(xi) +
n∑

i=1

pA(xi)πA(xi)] (6)

and probability of a complement event AC is a number from the interval [pmin(A
C), pmax(A

C)],
or

p(AC) ∈ [
n∑

i=1

pA(xi)νA(xi),
n∑

i=1

pA(xi)νA(xi) +
n∑

i=1

pA(xi)πA(xi)] (7)
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3 Mass Assignment Theory

The theory of mass assignment has been developed by Baldwin (Baldwin [8], Baldwin et
al. [11, 12]) to provide a formal framework for manipulating both probabilistic and fuzzy
uncertainty.

A fuzzy set can be converted into a mass assignment (Baldwin [6]). This mass assign-
ment represents a family of probability distributions.

Definition 4 Let A
′

be a normalized fuzzy set in X = {x} such that

A
′

=
∑

xi∈X

xi/µ(xi)

µ(x1) = 1, µ(xi)<µ(xj) for i > j

where µ(x) is the membership function.
The mass assignment associated with A

′

is (Baldwin [9])

{x1} : 1− µ (x2) , {x1, ..., xi} : µ (xi)− µ (xi+1) for i = 2, ...; (8)

with µ (xk) = 0 for xk /∈ X

Example 2 (Baldwin [9])
Let X = {x1, x2, x3, x4}
If A

′

= x1/1 + x2/0.7 + x3/0.4 + x4/0.3
then the associated mass assignment is
mf = x1 : 0.3, {x1, x2} = 0.3, {x1, x2, x3} = 0.1, {x1, x2, x3, x4} = 0.3

Support Pairs (the basic representation of uncertainty in the language FRIL [Baldwin
at al. [11, 15]) are associated with mass assignments and represent an interval containing
an unknown probability. Support Pairs are used to characterize uncertainty in facts and
conditional probabilities in rules. A Support Pair (n, p) comprises a necessary and possi-
ble support and can be interpreted as an interval in which the unknown probability lies.
A voting interpretation is also useful (Baldwin and Pilsworth [10]): the lower (necessary)
support n represents the proportions of a sample population voting in favour of a propo-
sition, whereas (1 − p) represents the proportion voting against; (p − n) represents the
proportion abstaining.

For intuitionistic fuzzy sets (cf. Section 2) we have

• the proportion of a sample population voting in favour of a proposition is equal to
µ (membership function),

• the proportion voting against is equal to ν (non-membership function),

• π represents the proportion abstaining.
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Table 1: Equality of the the parameters for Baldwin’s voting model and IFS voting model

Baldwin’s voting model IFS voting model
voting in favour n µ
voting against 1− p ν
abstaining p− n π

In Table 1 equality of parameters from Baldwin’s voting model and from intuitionistic
fuzzy set (IFS) voting model is presented.

So we can represent a Support Pair (n, p) using notation of intuitionistic fuzzy sets in
the following way

(n, p) = (n, n+ p− n) = (µ, µ+ π) (9)

i.e.: a Support Pair in Baldwin’s voting model can be expressed by using notation of
intuitionistic fuzzy sets.

It should be noted as well that the necessary support for the statement not being
true is one minus the possibility of the support for the statement being true, i.e. 1 − p.
Similarly, the possible support for the statement being not true is one minus the necessary
support for the statement being true i.e. 1− n. Taking into account the counterparts of
the parameters, we can express this fact using notation of intuitionistic fuzzy sets as

(1− p, 1− n) = (ν, ν + π)

Let us look at three Support Pairs (n, p) of special interests (Baldwin and Pilsworth [10])

• (1, 1) which represents total support for the associated statement,

• (0, 0) which represents total support against and

• (0, 1) which characterizes complete uncertainty in the support.

Of course the above Support Pairs have exactly the same meaning in intuitionistic
fuzzy set model (under the assumption that we consider probabilities for intuitionistic
fuzzy memberships/non-memberships as it was explained in Section 2):

• (1, 1) means that µ = 1 and π = 0, i.e. total support,

• (0, 0) means µ = 0 and π = 0 what involves ν = 1, i.e. total support against,

• (0, 1) means µ = 0 and π = 1 i.e.: complete uncertainty in the support.

In other words both Support Pairs and intuitionistic fuzzy set models give the same
intervals containing the probability of the fact being true, and the difference between the
upper and lower values of intervals is a measure of the uncertainty associated with the
fact.
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The mass assignment structure is best used to represent knowledge that is statistically
based such that the values can be measured, even if the measurements themselves are
approximate or uncertain (Baldwin [13]).

The above considerations pointed out some parallels between mass assignment theory
and intuitionistic fuzzy set theory. The parallels make it possible to propose a com-
mon geometrical representation useful when explaining advantages of the new similarity
measures.

4 Geometrical representation

Having in mind that the parameters characteristic for intuitionistic fuzzy sets add up to
one, i.e.

µA(x) + νA(x) + πA(x) = 1

and the same for their counterparts for mass assignment theory, i.e.

n+ (1− p) + (p− n) = 1

and each of the parameters is from interval [0, 1], we can imagine a unit cube (Figure
1 inside which there is ABD triangle where the above equations are fulfilled. In other
words, ABD triangle represents a surface where coordinates of any element belonging to
an intuitionistic fuzzy set or representing any Support Pair can be represented. Each point
belonging to ABD triangle is described via three coordinates: (µ, ν, π) = (n, 1−p, p−n)
— respectively for intuitionistic fuzzy set theory and mass assignment theory. Points A
and B represent crisp elements. Point A(1, 0, 0) — represents elements fully belonging to
an intuitionistic fuzzy set as µ = 1 or equivalently, 100% population voting for (as n = 1).
Point B(0, 1, 0) represents elements fully not belonging to an intuitionistic fuzzy set as
ν = 1 or equivalently, 100% population voting against (as 1 − p = 1). Point D(0, 0, 1)
represents elements about which we are not able to say if they belong or not belong to an
intuitionistic fuzzy set (intuitionistic fuzzy index π = 1) or equivalently, the proportion
abstaining p − n = 1. Segment AB (where π = 0) represents elements belonging to
classical fuzzy sets (µ + ν = 1), or the situation when (p − n = 0) what means in terms
of Mass Assignment that there is not uncertainty in the voting model.

Employing the above geometrical representation, we can calculate distances between
any two intuitionistic fuzzy sets A and B containing n elements (see Szmidt [28], Szmidt
and Kacprzyk [38]), e.g.

• the normalized Hamming distance:

lIFS(A,B) =
1

2n

n∑

i=1

(|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|+

+ |πA(xi)− πB(xi)|). (10)
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Figure 1: Geometrical representation

• the normalized Euclidean distance:

eIFS(A,B) =
1

2n

n∑

i=1

((µA(xi)− µB(xi))
2 + (νA(xi)− νB(xi))

2 +

+ (πA(xi)− πB(xi))
2)

1

2 (11)

Both distances are from interval [0,1].

It is easy to give analogical formulas for m fuzzy sets or more complicated situations
(e.g., m experts comparing n options in pairs — see [Szmidt and Kacprzyk [43, 45]).

It is easy to notice why all three parameters should be used when calculating distances.
As the geometrical represntation shows (Figure 1), each side of the considered triangle
is of the same length, i.e. AB=BD=AD. But when using two parameters only when
calculating distances i.e., using the following formula

lIFS(A,B) =
1

2n

n∑

i=1

(|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|) (12)

we obtain

lIFS(A,B) =
1

2
(|1− 0|+ |0− 1|) = 1 (13)

lIFS(A,D) =
1

2
(|1− 0|+ |0− 0|) =

1

2
(14)

lIFS(B,D) =
1

2
(|0− 0|+ |1− 0|) =

1

2
(15)

so

lIFS(A,B) �= lIFS(A,D) and lIFS(A,B) �= lIFS(B,D) (16)

i.e., applying formula (12) means using two different scales: one scale for measuring
distances for fuzzy sets (segment AB), and another one for ”pure” intuitionistic fuzzy sets
(for which intuitionistic fuzzy index is greater than zero - the whole area of the trangle
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ABD over the segment AB). Only when using formula (10) with all three parameters we
obtain

lIFS(A,B) =
1

2
(|1− 0|+ |0− 1|+ |0− 0|) = 1 (17)

lIFS(A,D) =
1

2
(|1− 0|+ |0− 0|+ |0− 1|) = 1 (18)

lIFS(B,D) =
1

2
(|0− 0|+ |1− 0|+ |0− 1|) = 1 (19)

which means that the condition lIFS(A,D)=lIFS(A,B)=lIFS(B,D) is fulfilled, i.e. the
distances for fuzzy sets and intuitionistic fuzzy sets are measured using the same scale.

In other words, when taking into account two parameters only, for elements from
classical fuzzy sets (which are a special case of intuitionistic fuzzy sets — segment AB
in Figure 1) we obtain distances from a different interval than for elements belonging
to intuitionistic fuzzy sets. It practically makes it impossible to consider by the same
formula the two types of sets as two different scales are used for measurements. For a
deeper discussion of the problem we refer an interested reader to (Szmidt [28]), (Szmidt
and Kacprzyk [38]).

Analogical explanations are valid in a case of calculating distances for Support Pairs.
In effect distances are

• the normalized Hamming distance for two facts x1, x2 supported by respective
support pairs: supported by respective support pairs:

lMASS(x1, x2) = |n(x1)− n(x2)|+ |(1− p(x1))− (1− p(x2))|+

+ |(p− n(x1))− (p− n(x2))| (20)

• the normalized Hamming distance for two sets of facts A and B expressed via support
pairs:

lMASS(A,B) =
1

2n

n∑

i=1

(|nA(xi)− nB(xi)|+ |(1− pA(xi))− (1− pB(xi))|+

+ |(pA − nA(xi))− (pB − nB(xi))| (21)

• the normalized Euclidean distance for two sets of facts A and B expressed via support
pairs:

qMASS(A,B) = (
1

2n

n∑

i=1

((nA(xi)− nB(xi))
2 + ((1− pA(xi))− (1− pB(xi)))

2 +

+ ((pA − nA(xi))− (pB − nB(xi)))
2)

1

2 (22)
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Example 3 We compare two pieces of equipment A and B taking into account three
attributes: x(1) — fault in software, x(2) — fault in hardware, x(3) — difficulties with
repairs. The attributes are supported with the following support pairs (n, p)

xA(1) = (0.6 0.7) xA(2) = (0.9 1) xA(3) = (0.3 0.9)
xB(1) = (0.8 0.9) xB(2) = (0.5 0.7) xB(3) = (0.7 1)

The simplest way to compare A and B is to calculate the distance between them.
From (17) we have

lMASS(A,B) =
1

6
(|0.6− 0.8|+ |0.3− 0.1|+ |0.1− 0.1|+ |0.9− 0.5|+ |0− 0.3|+ |0.1− 0.2|

+ |0.3− 0.7|+ |0.1− 0|+ |0.6− 0.3|) =
1

3

But comparing objects via pure distances between them seems not enough. Now we will
give a new similarity measure and show its advantages.

5 Similarity measures

Making use of the geometrical representation (Section 4) we presented (Szmidt and Bald-
win [29]) a similarity measures which could be used both in the frame of intuitionistic
fuzzy set theory and mass assignment theory (when data is given in terms of Support
Pairs).

We have stressed that

• the geometrical representation is based on the definition of an intuitionistic fuzzy
set introduced by Atanassov [2], [5], and it does not introduce any additional as-
sumptions; the same concerns mass assignment theory,

• any combination of the values of the membership, non-membership, and hesitation
function [(µ, ν, π)] which characterize an intuitionistic fuzzy element can be repre-
sented inside the triangle ABD (Figure 2); the same concerns combination of any
possible values characterizing support pairs.

We proposed [29] a similarity measure (Definition 5) for intuitionistic fuzzy sets and
their counterpart (Definition 6) for mass assignment theory. In the presented measures
we made use of a concept of a complement element, and considered

• a distance between considered elements/objects X and F , and

• a distance between considered element/object X and the complement FC of the
considered element/object F

We have showed that to conclude about similarity ofX and F , both types of distances have
to be taken into account. In Section 5.1 we remind the similarity measures comparing the
above two kinds of distances by their ratio. In Section 5.2 we discuss the whole family of
the similarity measures comparing the above two kinds of distances by different functions.
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Figure 2: Triangle ABD explaining a ratio-based measure of similarity

5.1 The similarity measures presented in [29]

In the simplest situations we assess similarity of any two elements belonging to an in-
tuitionistic fuzzy set (or sets) which are geometrically represented by points X and F
(Figure 2) belonging to triangle ABD. The proposed measures indicate if X is more
similar to F or to FC , where FC is a complement of F . In other words, the proposed
measures answer the question if X is more similar or more dissimilar to F (Figure 2).

Definition 5

Sim(X,F ) =
lIFS(X,F )

lIFS(X,FC)
(23)

where: lIFS(X,F ) is a distance from X(µX , νX , πX) to F (µF , νF , πF ),
lIFS(X,FC) is a distance from X(µX , νX , πX) to FC(νF , µF , πF ),
FC is a complement of F , distances lIFS(X,F ) and lIFS(X,FC) are calculated from (10).

For (23) we have
0<Sim(X,F )<∞ (24)

and
Sim(X,F ) = Sim(F,X)

The similarity has typically been assumed to be symmetric. Tversky [46], however,
has provided some empirical evidence that the similarity should not always be treated as
a symmetric relation. We stress this to show that a similarity measure (23) may have
some features which can be useful in some situations but are not welcome in others (see
Cross and Sudkamp [18]), Wang and Kerre [47]).

It is obvious that the formula (23) can also be stated as

Sim(X,F ) =
lIFS(X,F )

lIFS(X,FC)
=

lIFS(X
C , FC)

lIFS(X,FC)
=

=
lIFS(X,F )

lIFS(XC , F )
=

lIFS(X
C , FC)

lIFS(XC , F )
(25)

It is worth noticing that
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• Sim(X,F ) = 0 means the identity of X and F .

• Sim(X,F ) = 1 means that X is to the same extent similar to F and FC (i.e., values
bigger than 1 mean in fact a closer similarity of X and FC to X and F ).

• When X = FC (or XC = F ), i.e. lIFS(X,FC)=lIFS(X
C , F )= 0 means the complete

dissimilarity of X and F (or in other words, the identity of X and FC), and then
Sim(X,F )→∞.

• When X = F = FC means the highest possible entropy (see [40]) for both elements
F and X i.e. the highest ”fuzziness” — not too constructive a case when looking for
compatibility (both similarity and dissimilarity).

In other words, when applying measure (23) to analyse the similarity of two objects, one
should be interested in the values 0<Sim(X,F ) < 1.

The proposed measure (23) was constructed for selecting objects which are more sim-
ilar than dissimilar [and well-defined in the sense of possessing (or not) attributes we are
interested in].

Now we will show that a measure of similarity defined as mentioned above, (23),
betweenX(µX , νX , πX) and F (µF , νF , πF ) is more powerful then a simple distance between
them.

Example 4 Let X and F be the geometrical representation of two elements belonging
to an intuitionistic fuzzy set (with the coordinates (µ, ν, π)),

X = (0.5, 0.4, 0.1)

F = (0.4, 0.5, 0.1)

so
FC = (0.5, 0.4, 0.1)

and from (10) we have

lIFS(X,F ) =
1

2
(|0.5− 0.4|+ |0.4− 0.5|+ |0.1− 0.1|) = 0.1 (26)

what means that the distance is small, and just taking this into account, we would say
that X and F are similar. However

lIFS(X,FC) =
1

2
(|0.5− 0.5|+ |0.4− 0.4|+ |0.1− 0.1|) = 0 (27)

which means that X is just the same as FC . We cannot speak at all about the similarity
of X and F despite the fact that the distance between them is small.

Having in mind the parallels between intuitionistic fuzzy sets and mass assignment
theory, the counterpart formula for similarity of two facts/elements supported by support
pairs is
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Definition 6

Sim(X,F ) =
lMASS(X,F )

lMASS(X,FC)
(28)

where: lMASS(X,F ) is a distance from X(n, p) to F (n, p),
lMASS(X,FC) is a distance from X(n, p) to FC(1− p, n),
FC is a complement of F , distances lMASS(X,F ) and lMASS(X,FC) are calculated from
(20).

Now we will show that the proposed measure of similarity (28) between X(n, p) and
F (n, p) is more powerful then a simple distance between them.

Example 5 Suppose that we want to find out if the preference of individual k1 given as
support pair (n, p) X = (0.2, 0.8) is more similar to the preference of individual k2 equal
to F 1 = (0.3, 0.6), or to the preference of individual k3 given as F 2 = (0.1, 0.4). The
distances (21) between preferences are equal to

lMASS(X,F 1) =
1

2
(|0.2− 0.3|+ |0.2− 0.4|+ |0.6− 0.3|) = 0.3

lMASS(X,F 2) =
1

2
(|0.2− 0.1|+ |0.2− 0.6|+ |0.6− 0.3|) = 0.4

As lMASS(X,F 1) is less than lMASS(X,F 2) we could come to the conclusion that individ-
uals k1 and k2 agree more than k1 and k3 But let us calculate similarity (28) between the
pairs of preferences. As

F 1,C = (0.4, 0.3)

F 2,C = (0.6, 0.1)

so
lMASS(X,F 1,C) = 0.3

lMASS(X,F 2,C) = 0.4

and from (28) we have

Sim(X,F 1) = lMASS(X,F 1)/lMASS(X,F 1,C) = 1

Sim(X,F 2) = lMASS(X,F 2)/lMASS(X,F 2,C) = 1

so in fact in both cases similarity is the same, very weak in fact (agreement between k1

and k2 is very weak as X is similar to the same extent to F 1 and F 1,C ; the same concerns
k1 and k3.

Let us summarize the properties of the proposed measures (23) and (28). Their main
advantage (as compared to other measures taking into account only the distance between
the compared elements/objects) consists in the deeper insight into the nature of similarity
— here similarity and dissimilarity are compared and a user is informed if the objects are
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more similar or more dissimilar. If the objects are similar, the values of (23) and (28)
are in interval [0, 1]. For dissimilar objects both measures increase quickly what may be
quite a transparent tip that we are outside the region of similarity (even if the distance
between compared objects is small - see Examples 4 and 6 above). On the other hand, we
constructed both measures in such a way that for identical elements/objects the measures
are equal 0, and for dissimilar objects the measures are equal to 1 whereas the tradition
is that a similarity measure is equal 1 for identical objects and 0 for dissimilar objects. In
other words, the idea behind the proposed measures (23) and (28) is fully justified but to
be in agreement with the values usually reflecting similarity as 1 and dissimilarity as 0,
we present in Section 5.2 other similarity measures which preserve the advantages of (23)
and (28) but the same time their values are normalized and consistent with the common
scientific tradition.

5.2 The normalized similarity measures

Our main idea when constructing the new similarity measures is to use the same two
kinds of distances as in (23) (i.e., lIFS(X,F ), lIFS(X,FC)) and (28) (i.e., lMASS(X,F ),
lMASS(X,FC)). But now we look for such a function of the (”weighted”) two types of
distances which values are from interval [0, 1]. The following functions fulfill our demands

f(lIFS(X,F ), lIFS(X,FC)) =
lIFS(X,F )

lIFS(X,F ) + lIFS(X,FC)
(29)

f(lMASS(X,F ), lMASS(X,FC)) =
lMASS(X,F )

lMASS(X,F ) + lMASS(X,FC)
(30)

for intuitionistic fuzzy sets and mass assignments, respectively.
The above functions are constructed under condition that we exlude from our consid-

erations the case when X = F = FC . Albeit such a situation is theoretically possible,
practically it is not interesting. The assumption X = F = FC means that we try to com-
pare an element X about we know nothing to another element about we know nothing
F = FC (in terms of the geometrical representation — Figure 2 — it means that X, F and
FC are at the same point on DG segment). So we exclude from our considerations the
cases: lIFS(X,F ) = lIFS(X,FC) = 0 or lMASS(X,F ) = lMASS(X,FC) = 0. Other cases
are presented in Table 2.

This way we have constructed the functions which take into account the same two dis-
tances like the previous measures (23) and (28) but now the new measures are normalized
(their values are in [0, 1]). It is obvious (see Table 2) that (29) and (30) are dual concepts
to a similarity measure (if (29) and (30) are equal to zero then similarity is equal to 1; if
(29) and (30) are equal to 1 then similarity is equal to zero, and so on). In other words,
we may use (29) and (30) to construct a similarity measure. As

0<f(lIFS(X,F ), lIFS(X,FC))<1 (31)

we would like to find such a monotone decreasing function g that:

g(1)<g(f(lIFS(X,F ), lIFS(X,FC)))<g(0) (32)
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Table 2: the possible values of (29) and (30), a,b∈ (0, 1)
lIFS(X,F ) lIFS(X,FC) f

0 1 0
1 0 1
1 1 0.5
a less than b a/(a+b)<0.5
a bigger than b b/(a+b)>0.5
a equal to b 0.5

which means
0<g(f(lIFS(X,F ), lIFS(X,FC)))− g(1)<g(0)− g(1) (33)

0<
g(f(lIFS(X,F ), lIFS(X,FC)))− g(1)

g(0)− g(1)
<1 (34)

This way we obtained a function having the properties of a similarity measure in a sense
that it is monotone decreasing function of (29) and (30).

Definition 7

Sim(lIFS(X,F ), lIFS(X,FC)) =
g(f(lIFS(X,F ), lIFS(X,FC)))− g(1)

g(0)− g(1)
(35)

where (f(lIFS(X,F ), lIFS(X,FC)) is given by (29)

and

Definition 8

Sim(lMASS(X,F ), lMASS(X,FC)) =
g(f(lMASS(X,F ), lMASS(X,FC)))− g(1)

g(0)− g(1)
(36)

where (f(lMASS(X,F ), lMASS(X,FC)) is given by (30)

The simplest function g which may be applied in both definitions is

g(x) = 1− x (37)

which gives from (35)

Sim(lIFS(X,F ), lIFS(X,FC)) = 1− f(lIFS(X,F ), lIFS(X,FC)) (38)

and from (8)

Sim(lMASS(X,F ), lMASS(X,FC)) = 1− f(lMASS(X,F ), lMASS(X,FC)) (39)
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Figure 3: The shapes of 1−x
n

1+xn

Another function could be

g(x) =
1

1 + x
(40)

giving respectively

Sim(lIFS(X,F ), lIFS(X,FC)) =
1− f(lIFS(X,F ), lIFS(X,FC))

1 + f(lIFS(X,F ), lIFS(X,FC))
(41)

Sim(lMASS(X,F ), lMASS(X,FC)) =
1− f(lMASS(X,F ), lMASS(X,FC))

1 + f(lMASS(X,F ), lMASS(X,FC))
(42)

Function

g(x) =
1

1 + x2
(43)

gives

Sim(lIFS(X,F ), lIFS(X,FC)) =
1− f(lIFS(X,F ), lIFS(X,FC))2

1 + f(lIFS(X,F ), lIFS(X,FC))2
(44)

We could theoretically use as well g(x) = 1
1+xn

where n = 3, 4, . . . , k but the counterpart

similarity measures (1−x
n

1+xn
) give the values which are less convenient to be compared for

small values of x. This fact is illustarted in Figure 3 — the bigger n the flater the similarity
measures (1−x

n

1+xn
) for smaller values of x. It means that formal fulfilling of some mathe-

matical assumptions is necessary but may be not enough condition to use a measure.
Also the exponential function may be used (cf. Pal and Pal [23])

g(x) = e−x (45)
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giving for our functions (29) and (30), respectively

Sim(lIFS(X,F ), lIFS(X,FC)) =
e−f(lIFS(X,F ),lIFS(X,F

C)) − e−1

1− e−1
(46)

and

Sim(lMASS(X,F ), lMASS(X,FC)) =
e−f(lMASS(X,F ),lMASS(X,F

C)) − e−1

1− e−1
(47)

It is obvious that one could continue generating more complicated functions g (being the
decreasing functions of f) but it would not give any additional insight as far as similarity
is concerned.

All the similarity measures introduced in this Section assess similarity of any two
elements (X and F ) belonging to an intuitionistic fuzzy set (or sets). A counterpart
similarity measures for intuitionistic fuzzy sets A and B containing n elements each, are
just the sum of the respective measures constructed for separate elements

Sim(A,B) =
1

n

n∑

i=1

Sim(lMASS(Xi, Fi), lMASS(Xi, F
C
i )) (48)

Sim(A,B) =
1

n

n∑

i=1

Sim(lIFS(Xi, Fi), lIFS(Xi, F
C
i )) (49)

Albeit in the formulas presented in this Section we used the normalized Hamming distance,
it is possible to replace it by other kinds of distances.

6 Conclusions

Some similarities between mass assignment theory and intuitionistic fuzzy set theory
have been reminded. Next, the similarity measures useful from the point of view of
both theories were recalled. The measures take into account two kinds of distances -
to the compared element/object and to its complement. It was shown on the examples
that neglecting of the distance to the complement of an element/object leads to wrong
conclusions about similarity. The measures of similarity have some connections to the
Jaccard coefficient (cf. Szmidt and Kacprzyk [44]). The only weakness of the similarity
measures is that they values do not follow the commonly assumed values for the similarity
measures.

To avoid the above mentioned drawback, we introduced the whole array of the func-
tions which preserve the advantages of the previously proposed similarity measures and
the same time their values are as usually expected for the similarity measures.
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