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Abstract: The Recurrence theorem by Poincaré is one of basic results of the standard ergodic
theory. In classical sense the main structure is a o-algebra of sets and the measure-preserving
maps are represented by preimages of classical maps. In this article we change the o-algebra by a
family .7 of Intuitionistic Fuzzy Sets (IF-sets), which were introduced by Krassimir T. Atanassov,
and the probability by an IF-state.
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1 Introduction
In a probability space (£2,.7, P), we say that 7" : 2 — () is P-preserving, iff it holds
(VA e ) (P(T7'(A) = P(A)).

Let (2,7, P) be a probability space, 7' : 2 — () a measure preserving map. Consider
A € .. The classical Poincaré recurrence theorem tells that almost every point = of A returns
to A infinitely many times. Hence to any k& € N there exists n > k such that 7"(z) € A, i.e.
x € T™(A). Hence we have for any k € N

P(A\ G T‘”(A)) = 0.

In the article we are going to use IF-sets instead of sets, [F-states instead of a probability, and
s-preserving maps instead of measure preserving maps.

IF-sets are ordered pairs of fuzzy sets. Elements of pair can be represented as measure of
agreement and disagreement with some statement. Concept of [F-sets was introduced by K.T.

16



Atanassov in the monograph [1]. It is a good model for those statements or events, for which we
cannot exactly set measure of truth.

I was inspired by Beloslav Rie¢an, who has shown and proved some variations of the recur-
rence theorem on some other structures in the article [9].

2 IF-sets

Definition 1. Ler Q) be a nonempty set. A mapping A : Q) — [0, 1]2 is called an IF-subset of the
set  iff:
(Ve € Q) (A(z) = (f(x),9(x)) = f(z) + g(z) < 1).

On the system IIF of all IF-subsets of the set §) we define the partial ordering <;r by
(f,9) <tr (W k)& f<h&g=>k
and the operations &, ®, — by

(fa g) D (h‘v k) = (min (f + h7 19),max (g +k— 19709))
(f,9) ® (h,k) = (max (f + h — 1g,0q), min (¢ + k, 1))

=(f,9) = (9, ).
Definition 2. Let .7 be a system of IF-subsets of a nonempty set §) closed under the operations
@, ®, . A mapping m : F — [0,1] is called an IF-state iff:

o (VA,Be %) (A<;r B=m(A) <m(B)),
o (m(A; ©®A;) =0fori#j)= <(Vn €N) (Z m(A4;) < 1))
i=1
Definition 3. Let .% be a system of IF-subsets of a nonempty set ) closed under the operations

®,®,. Letm : # — R be afunctionon ¥ . Let T : % — % be a mapping. Then T is called
m—preserving iff:

(0, 9) € #) (T'((00,9)) = (02, 9)),

(v
e (VA,Be F)(A<;r B=T(A) <;r T(B)),
e (VA,Be Z)(T(A® B)=T(4) ©T(B)),
° (

vA € 7) (m(T(A)) = m(A))

Theorem 1. Let ﬁ be the system of IF-subsets of a nonempty set §) closed under the operations
®,®,. Letm : F — [0, 1] be an IF-state. Let T : % — F be an m—preserving mapping. Let
Ae 7. Thenforany keN

m(A@ R éTi(ﬁA)> =
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Proof. First, we show that for arbitrary C' € .# there holds
m(C ©-C) =0.
Let C' = (f,qg).Put

D= (f,9)©~(f,9)=(f9)© (g, f) = (max (f + g — 1g,0q), min (g + f, 1a)) .

But C € %, hence
D = (0q, f +g) € .Z, hence m(D) = 0.

PutB=A® A\ (OT/(—A). Hence

n=1i=1

B <;p T"(—A) and also T"(B) <;r T"(A).

From that for all positive integer n, there is
BoTYB) <ip T"(-A)©T"(A) =T((0q,h)) = (0g, h).
Hence
m(B ® T"(B)) = 0 and also m(T"(B) © T?(B)) = 0 for i # j.

From weak additivity of the function m and from the fact that 7" is m—preserving, we get

n

nm(B) = Zm(T’(B)) <1

i=1
From that necessarily m(B) = 0.
If we change T by T*, we get

m(A@ 7\ éT“"’(ﬂA)) = 0.

n=1 i=1

But

40 NQTH4) > A0 \ DT(-A).

n=1 i=1 n==k i=k
Hence

n=k i=k n=1 i=1

OSm(A@ K éT’(—A)) Sm(A@ KéT’k(ﬂAO = 0.

Hence the proof.

3 Conclusions

This article showed variation of recurrence theorem in language of IF-sets. In [9] there was proved

the theorem for any MV algebra. Any family of IF sets can be embedded to an MV algebra, of

course usually =(f, g) = (1 — f,1 — g) what is not an element of IF sets. Therefore our version

of the Poincaré recurrence theorem does not follow from the version stated in [9].
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