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Abstract: The Recurrence theorem by Poincaré is one of basic results of the standard ergodic
theory. In classical sense the main structure is a σ-algebra of sets and the measure-preserving
maps are represented by preimages of classical maps. In this article we change the σ-algebra by a
family F of Intuitionistic Fuzzy Sets (IF-sets), which were introduced by Krassimir T. Atanassov,
and the probability by an IF-state.
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1 Introduction

In a probability space (Ω,S , P ), we say that T : Ω→ Ω is P-preserving, iff it holds

(∀A ∈ S )
(
P
(
T−1(A)

)
= P (A)

)
.

Let (Ω,S , P ) be a probability space, T : Ω → Ω a measure preserving map. Consider
A ∈ S . The classical Poincaré recurrence theorem tells that almost every point x of A returns
to A infinitely many times. Hence to any k ∈ N there exists n ≥ k such that T n(x) ∈ A, i.e.
x ∈ T−n(A). Hence we have for any k ∈ N

P

(
A \

∞⋃
n=k

T−n(A)

)
= 0.

In the article we are going to use IF-sets instead of sets, IF-states instead of a probability, and
s-preserving maps instead of measure preserving maps.

IF-sets are ordered pairs of fuzzy sets. Elements of pair can be represented as measure of
agreement and disagreement with some statement. Concept of IF-sets was introduced by K.T.
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Atanassov in the monograph [1]. It is a good model for those statements or events, for which we
cannot exactly set measure of truth.

I was inspired by Beloslav Riečan, who has shown and proved some variations of the recur-
rence theorem on some other structures in the article [9].

2 IF-sets

Definition 1. Let Ω be a nonempty set. A mapping A : Ω → [0, 1]2 is called an IF-subset of the
set Ω iff:

(∀x ∈ Ω) (A(x) = (f(x), g(x))⇒ f(x) + g(x) ≤ 1) .

On the system IF of all IF-subsets of the set Ω we define the partial ordering ≤IF by

(f, g) ≤IF (h, k)⇔ f ≤ h & g ≥ k

and the operations ⊕,�,¬ by

(f, g)⊕ (h, k) = (min (f + h, 1Ω),max (g + k − 1Ω, 0Ω))

(f, g)� (h, k) = (max (f + h− 1Ω, 0Ω),min (g + k, 1Ω))

¬(f, g) = (g, f) .

Definition 2. Let F be a system of IF-subsets of a nonempty set Ω closed under the operations
⊕,�,¬. A mapping m : F → [0, 1] is called an IF-state iff:

• (∀ (0Ω, g) ∈ F ) (m((0Ω, g)) = 0) ,

• (∀A,B ∈ F ) (A ≤IF B ⇒ m(A) ≤ m(B)) ,

• (m(Ai � Aj) = 0 for i 6= j)⇒
(

(∀n ∈ N)

(
n∑

i=1

m(Ai) ≤ 1

))
Definition 3. Let F be a system of IF-subsets of a nonempty set Ω closed under the operations
⊕,�,¬. Let m : F → R be a function on F . Let T : F → F be a mapping. Then T is called
m−preserving iff:

• (∀ (0Ω, g) ∈ F ) (T ((0Ω, g)) = (0Ω, g)) ,

• (∀A,B ∈ F ) (A ≤IF B ⇒ T (A) ≤IF T (B)) ,

• (∀A,B ∈ F ) (T (A�B) = T (A)� T (B)) ,

• (∀A ∈ F ) (m(T (A)) = m(A))

Theorem 1. Let F be the system of IF-subsets of a nonempty set Ω closed under the operations
⊕,�,¬. Let m : F → [0, 1] be an IF-state. Let T : F → F be an m−preserving mapping. Let
A ∈ F . Then for any k ∈ N

m

(
A�

∞∧
j=k

j⊙
i=k

T i(¬A)

)
= 0.
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Proof. First, we show that for arbitrary C ∈ F there holds

m(C � ¬C) = 0.

Let C = (f, g) . Put

D = (f, g)� ¬(f, g) = (f, g)� (g, f) = (max (f + g − 1Ω, 0Ω),min (g + f, 1Ω)) .

But C ∈ F , hence
D = (0Ω, f + g) ∈ F , hence m(D) = 0.

Put B = A�
∞∧
n=1

n⊙
i=1

T i(¬A). Hence

B ≤IF T
n(¬A) and also T n(B) ≤IF T

n(A).

From that for all positive integer n, there is

B � T n(B) ≤IF T
n(¬A)� T n(A) = T ((0Ω, h)) = (0Ω, h) .

Hence
m(B � T n(B)) = 0 and also m

(
T i(B)� T j(B)

)
= 0 for i 6= j.

From weak additivity of the function m and from the fact that T is m−preserving, we get

nm(B) =
n∑

i=1

m
(
T i(B)

)
≤ 1.

From that necessarily m(B) = 0.

If we change T by T k, we get

m

(
A�

∞∧
n=1

n⊙
i=1

T ik(¬A)

)
= 0.

But

A�
∞∧
n=1

n⊙
i=1

T ik(¬A) ≥ A�
∞∧
n=k

n⊙
i=k

T i(¬A).

Hence

0 ≤ m

(
A�

∞∧
n=k

n⊙
i=k

T i(¬A)

)
≤ m

(
A�

∞∧
n=1

n⊙
i=1

T ik(¬A)

)
= 0.

Hence the proof.

3 Conclusions

This article showed variation of recurrence theorem in language of IF-sets. In [9] there was proved
the theorem for any MV algebra. Any family of IF sets can be embedded to an MV algebra, of
course usually ¬(f, g) = (1− f, 1− g) what is not an element of IF sets. Therefore our version
of the Poincaré recurrence theorem does not follow from the version stated in [9].
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[10] Riečan, B. & D. Mundici (2002) Probability on MV-algebras. In: Handbook of Measure
Theory (E. Pap. ed.), Elsevier Science, Amsterdam, 869– 909.
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