Ninth Int. Workshop on GNs, Sofia, 4 July 2008, 102-105

GENERALIZED NET MODEL OF FACE RECODNITION

R. Parvathi¹, G. Gluhchev² and K. Atanassov³

¹ Department of Mathematics, Vellalar College for Women, Erode - 638 012, India. E-mail: paarvathis@rediffmail.com

² Institute of Information Technologies – Bulg. Acad. of Sciences Acad. G. Bonchev Str., Bl. 29A, Sofia-1113, BULGARIA E-mail: gluhchev@iinf.bas.bg

³ Centre for Biomedical Engineering – Bulg. Acad. of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, BULGARIA E-mail: krat@bas.bq

1 Introduction

Face recognition is the science of programming a computer to recognize a human face. A face is a three-dimensional object and face recognition is a visual pattern recognition problem. There are four important modules in a face recognition system –

- detection (normalization) segment the face from the background,
- alignment (localization) more accurate localization of the face and scale of each detected face,
- feature extraction to provide effective information that is useful for distinguishing between faces of different persons,
- matching the extracted feature vector of the input face is matched against with the enrolled face in the database.

In [6], an algorithm has been developed for enhancing the quality of an image using operators on Intuitionistic Fuzzy Sets (IFSs, see [2]). In this paper, a Generalized Net (GN, see [1, 3]) model has been constructed for this system on the basis of [7].

2 Generalized net model

Here we shall construct a GN model of the above described process following [7]. The model contains 9 transitions and 3 types of tokens. Two of them – tokens β , γ stay permanently in places l_{13} and l_{15} with initial and current characteristics

"DB with relations between segments"

and

"DB with faces",

respectively.

Each one of tokens α (for simplicity, we will not use indeces of α showing the current number of the respective α -token) enters the GN through place l_1 with initial characteristic

"digital image of the face".

$$Z_1 = <\{l_1\}, \{l_2, l_3, l_4\}, \frac{l_2}{l_1 \ true \ true \ true} > .$$

Token α splits to three tokens – token α_1 entering place l_2 with characteristic

"noise reduction is required",

token α_2 entering place l_3 with characteristic

"contrast enhancement is required",

and token α_3 entering place l_4 with characteristic

"edge detection is required".

Tokens α_1 and α_2 unite in token α in place l_5 with characteristic

"enhanced image".

$$Z_3 = <\{l_4, l_5\}, \{l_6\}, \frac{l_6}{l_4 \ true} > .$$

Tokens α and α_3 unite in token α in place l_6 with characteristic

"first processing step done".

$$Z_4 = \langle \{l_6\}, \{l_7\}, \frac{l_7}{l_6 \mid true} \rangle$$
.

In place l_7 token α obtains a characteristic

"object separated from the background".

$$Z_5 = \langle \{l_7\}, \{l_8, l_9\}, \frac{l_8}{l_7} \frac{l_9}{true \ true} \rangle.$$

Token α splits to two tokens – token α_4 entering place l_8 with characteristic

"results of shape segmentation",

and token α_5 entering place l_9 with characteristic

"results of colour or grey level segmentation".

$$Z_6 = <\{l_8, l_9, l_{11}\}, \{l_{10}, l_{11}\}, \begin{cases} l_8 & false & true \\ l_9 & false & true \\ l_{11} & true & false \end{cases} > .$$

Tokens α_4 and α_5 unite in token α in place l_{11} with characteristic

"results of the measurement of segment geometric and colour parameters".

$$Z_7 = <\{l_{10}, l_{13}\}, \{l_{12}, l_{13}\}, \begin{array}{|c|c|c|c|c|}\hline l_{12} & l_{13} \\\hline l_{10} & true & false \\\hline l_{13} & false & true \end{array}>.$$

Token α enters place l_{12} with characteristic

"detection of the face based on the relationship between segments",

while token β stays in place l_{13} with the above mentioned characteristic.

$$Z_8 = \langle \{l_{12}, l_{15}\}, \{l_{14}, l_{15}\}, \begin{array}{|c|c|c|c|c|}\hline l_{14} & l_{15} \\\hline l_{12} & true & false \\\hline l_{15} & false & true \end{array} \rangle.$$

Token α enters place l_{14} with characteristic

"degree of similarity to the DB elements",

while token γ stays in place l_{15} with the above mentioned characteristic.

$$Z_9 = <\{l_{14}, l_{17}\}, \{l_{16}, l_{17}\}, \begin{cases} l_{16} & l_{17} \\ l_{14} & false & true \\ l_{17} & true & false \end{cases} > .$$

Token α enters place l_{16} with characteristic

"the smalest distance",

while all α -tokens entering place l_{17} unite in one α -token that does not obtain any characteristic.

3 Conclusion

The present GN is a new model continuating the researches published in [4, 5]. In continuation of this paper, the authors propose further to develop an algorithm based on this GN model for face recognition.

References

- [1] Atanassov, K., Generalized Nets, World Scientific, Singapore, New Jersey, London, 1991.
- [2] Atanassov, K., Intuitionistic Fuzzy Sets, Springer, Heidelberg, 1999.
- [3] Atanassov, K., On Generalized Nets Theory, "Prof. M. Drinov" Academic Publishing House, Sofia, 2007.
- [4] Atanassov, K., G. Gluhchev, S. Hadjitodorov, A. Shannon and V. Vassilev. *Generalized Nets and Pattern Recognition*. KvB Visual Concepts Pty Ltd, Monograph No. 6, Sydney, 2003.
- [5] Atanassov, K., G. Gluhchev, S. Hadjitodorov, J. Kacprzyk, A. Shannon, E. Szmidt, V. Vs-silev. Generalized Nets Decision Making and Pattern Recognition. Warsaw School of Information Technology, Warszawa, 2006.
- [6] Parvathi, R. Theory of operators over intuitionistic fuzzy sets of second type and their applications to image processing. PhD Thesis, Dept. of Mathematics, Alagappa Univ., Karaikudi, India, 2005.
- [7] Parvathi, R., J. Kuppannan, K. Atanassov, G. Gluhchev. Role of fuzzy and intuitionistic fuzzy contrast intensification operators in enhancing images. Notes on Intuitionistic Fuzzy Sets, Vol. 14, 2008, No. 2, 59-66.