
INTUITIONISTIC FUZZY ESTIMATIONS OF BIOLOGICAL INTERACTIONS

Hristo Aladjov, IBPBME-BAS

Human dominated Earth

- More than 75% ice-free
 Earth surface is altered
 as a result of human
 activities
- Only 11% of terrestrial net primary production comes from wilderness.
- Biodiversity
- Soil quality
- Forestation
- Climate

The Natural Solution

- Agricultural land accounts for 20% of ice-free land use
- Cooperate rather than compete with nature less energy/work better productivity
- Use ecosystem inspired techniques for agriculture (polyculture, forest gardening, companion planting, plant guilds, cover crops, intercropping, no tilt)
- Increased biodiversity, stability, productivity, sustainability
- The key factor to build and maintain such ecosystem inspired biomes is to understand the interactions between organisms

IF Estimation of Biological Interaction

Interaction between two objects $x, y \in \aleph$ at least one of which is a living organism could be described as the intuitionistic fuzzy number:

$$\alpha_{\langle x,y\rangle} = \langle \mu(\langle x,y\rangle), \vartheta(\langle x,y\rangle) \rangle,$$

where: $\langle x,y \rangle$ is the ordered tuple of the two interacting objects, $\mu \colon \aleph^2 \to [0,1]$ is the positive effect of y over $x, \vartheta \colon \aleph^2 \to [0,1]$ is the negative effect of y over x, and $0 \le \mu(\langle x,y \rangle) + \vartheta(\langle x,y \rangle) \le 1$. Level of uncertainty $\pi \colon \aleph^2 \to [0,1]$ can be defined as $\pi(\langle x,y \rangle) = 1 - \mu(\langle x,y \rangle) - \vartheta(\langle x,y \rangle)$.

Neutralism

 Neutralism describes the relationship between two objects which interact but do not affect each other.

Effect	Effect	Intuitionistic Fuzzy	Extreme crisp case
on x	on y	Definition	$\pi(\langle x,y\rangle)=0,$
			$\pi(\langle y, x \rangle) = 0$
0	0	$\int \mu(\langle x, y \rangle) = \vartheta(\langle x, y \rangle)$	$\mu(\langle x,y\rangle)=0.5$
A A	THE PERSON NAMED IN	$\mu(\langle y, x \rangle) = \vartheta(\langle y, x \rangle)$	$\int \vartheta(\langle x, y \rangle) = 0.5$
	THE REAL PROPERTY.		$\mu(\langle y, x \rangle) = 0.5$
			$\theta(\langle y, x \rangle) = 0.5$

Amensalism

 Amensalism between two objects x, y involves y impeding the success of x while the x has no effect on y

Effect	Effect	Intuitionistic Fuzzy	Extreme crisp case
on x	on y	Definition	$\pi(\langle x,y\rangle)=0,$
- wil			$\pi(\langle y, x \rangle) = 0$
	0	$ \begin{cases} \mu(\langle x, y \rangle) < \vartheta(\langle x, y \rangle) \\ \mu(\langle y, x \rangle) = \vartheta(\langle y, x \rangle) \end{cases} $	$\begin{cases} \mu(\langle x, y \rangle) = 0 \\ \vartheta(\langle x, y \rangle) = 1 \\ \mu(\langle y, x \rangle) = 0.5 \\ \vartheta(\langle y, x \rangle) = 0.5 \end{cases}$

Commensalism

 Commensalism between two objects x, y occurs when x benefits from y, while x has no effect on y

Effect on x	Effect on y	Intuitionistic Fuzzy Definition	Extreme crisp case $\pi(\langle x, y \rangle) = 0$, $\pi(\langle y, x \rangle) = 0$
+	0	$\begin{cases} \mu(\langle x, y \rangle) > \vartheta(\langle x, y \rangle) \\ \mu(\langle y, x \rangle) = \vartheta(\langle y, x \rangle) \end{cases}$	$\begin{cases} \mu(\langle x, y \rangle) = 1 \\ \vartheta(\langle x, y \rangle) = 0 \\ \mu(\langle y, x \rangle) = 0.5 \\ \vartheta(\langle y, x \rangle) = 0.5 \end{cases}$

Competition

 Competition is an interaction between two objects that is mutually detrimental.

Effect	Effect	Intuitionistic Fuzzy Definition	Extreme crisp case
on x	on y	Definition	$\pi(\langle x, y \rangle) = 0,$ $\pi(\langle y, x \rangle) = 0$
- 3	THE RESERVE		$\mu(\langle x,y\rangle)=0$
		$\left\{\mu(\langle y, x \rangle) < \vartheta(\langle y, x \rangle)\right\}$	$\int \vartheta(\langle x, y \rangle) = 1$
			$\mu(\langle y, x \rangle) = 0$
			$\theta(\langle y, x \rangle) = 1$

Mutualism

 Mutualism is an interaction between two objects, which is mutually beneficial.

Effect on x	Effect on y	Intuitionistic Fuzzy Definition	Extreme crisp case $\pi(\langle x, y \rangle) = 0$, $\pi(\langle y, x \rangle) = 0$
+		$ \begin{cases} \mu(\langle x, y \rangle) > \vartheta(\langle x, y \rangle) \\ \mu(\langle y, x \rangle) > \vartheta(\langle y, x \rangle) \end{cases} $	$\begin{cases} \mu(\langle x, y \rangle) = 1 \\ \vartheta(\langle x, y \rangle) = 0 \\ \mu(\langle y, x \rangle) = 1 \\ \vartheta(\langle y, x \rangle) = 0 \end{cases}$

Predation / Parasitism

 Predation or Parasitism between two x,y organisms is when x benefits at the expense of the y

Effect	Effect	Intuitionistic Fuzzy	Extreme crisp case
on x	on y	Definition	$\pi(\langle x,y\rangle)=0,$
			$\pi(\langle y, x \rangle) = 0$
+ 1	7-6	$ \int \mu(\langle x, y \rangle) > \vartheta(\langle x, y \rangle) $	$\mu(\langle x, y \rangle) = 1$
Se I	ATTE.	$\mu(\langle y, x \rangle) < \vartheta(\langle y, x \rangle)$	$\int \vartheta(\langle x, y \rangle) = 0$
100			$\mu(\langle y, x \rangle) = 0$
			$\theta(\langle y, x \rangle) = 1$

Interaction matrix

We can construct the following Indexed matrix

\$	O_1	02		O_m
O_1	$\alpha_{\langle 1,1 \rangle}$	$\alpha_{\langle 2,1\rangle}$		$\alpha_{\langle m,1\rangle}$
O_2	$\alpha_{\langle 1,2\rangle}$	$\alpha_{\langle 2,2\rangle}$		$\alpha_{\langle m,2\rangle}$
	- ((6 ⊳			
O_m	$\alpha_{\langle 1,m \rangle}$	$\alpha_{\langle 2,m\rangle}$	1	$\alpha_{\langle m,m \rangle}$

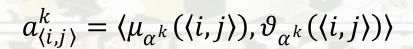
where $O_1, O_2, \cdots O_m$ are the interacting objects and $\alpha_{\langle i,j \rangle}$ are the intuitionistic fuzzy estimations of the interactions between object O_i and O_j , where i,j=1,2,...m

Initialization

$$\pi_{\langle i,j\rangle} = \pi_{\langle j,i\rangle} = 1$$

	O_1	O_2	ް	O_m
O_1	(0,0)	(0,0)		$\langle 0,0 \rangle$
O_2	(0,0)	$\langle 0,0 \rangle$		$\langle 0,0 \rangle$
O_m	$\langle 0,0 \rangle$	$\langle 0,0 \rangle$		$\langle 0,0 \rangle$

Update Rule


Let $E_{(i,j)}^k$ be the k-th observation of the effect of object j on object i

$$E_{\langle i,j\rangle}^{k} = \langle \mu_{E^{k}}(\langle i,j\rangle), \vartheta_{E^{k}}(\langle i,j\rangle) \rangle,$$

where $i, j \in \aleph \& 0 \le \mu_{E^k}(\langle x, y \rangle) + \vartheta_{E^k}(\langle x, y \rangle) \le 1$

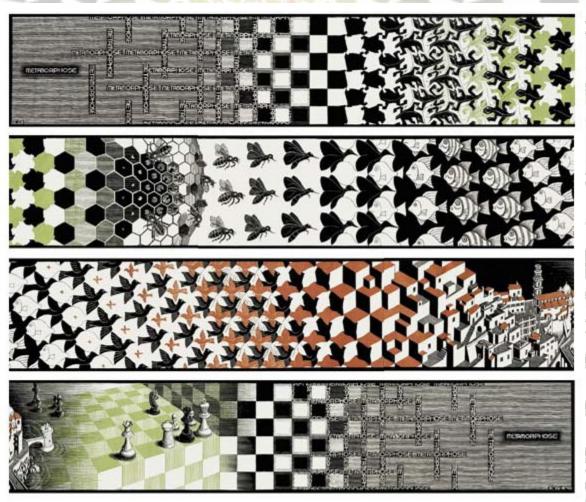
then the k-th intuitionistic fuzzy interaction estimation for the objects I, j can be obtained as a weighted combination of the $a_{\langle i,j\rangle}^{k-1}$ and the observation $E_{\langle i,j\rangle}^k$

Update rule

$$\mu_{\alpha^k}(\langle i,j\rangle) = \frac{(k-1)\mu_{\alpha^{k-1}}(\langle i,j\rangle) + \mu_{E^k}(\langle i,j\rangle)}{k}$$

$$\vartheta_{\alpha^k}(\langle i,j\rangle) = \frac{(k-1)\vartheta_{\alpha^{k-1}}(\langle i,j\rangle) + \vartheta_{E^k}(\langle i,j\rangle)}{k}$$

Challenges


Natural interactions are

- Dynamic and
 - in short term depend on the state and needs of the organism (like life stage, deficiencies, stresses...)
 - and evolve in long term
- Interconnected and occur between multitude of species.
- Multidimensional and can be beneficial in certain aspects while detrimental in others
- The hole is greater than the sum of it's components
- Lost traditional knowledge and scarcity of modern experimental data

- Using species taxonomy we can use the above algorithm to update the information for related species or apply it for different taxonomic rank like family, genus or class.
- Scale and magnitude if we have two relations that are positive which one will have bigger impact
- Extract information form multispecies interaction
 - apply the above algorithm for one versus the rest
 - use existing knowledge to guide the reduction of uncertainty: if current knowledge can explain the interaction use it otherwise search for examples that might provide the explanation
- Make a simulation and verify it against experimental data

Thank you!

and Escher...