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Abstract: A new extemnsion of the Generalized Net (GN) called “Generalized nets with places,
having intuitionistic fuzzy capacities” is introduced. Because this GN is the fifth type of Intu-
itionistic Fuzzy GNs, for brevity it is named also IFGNS. Algotithms for tokens transfers of the
IFGNSs are given. It is proved a theorem, asserting that for each IFGNS there exists a standard
GN that describes the functioning and the results of its work.
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1 Introduction

Below, we will construct a new type of Generalized Nets (GNs, see [1, 2]). For the aim of our
research, we will use the apparatus of the Intuitionistic Fuzzy Sets (IFSs, see [3]). Up to now,
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four types of Intuitionistic Fuzzy GNs (IFGNs) are constructed (see [1, 2, 3]). Here a new — five
type of IFGNs will be introduced. For brevity, we will note it by IFGNS. These new IFGNs will
contain places, having intuitionistic fuzzy capacities.

2 Definition of a generalized net with places,

having intuitionistic fuzzy capacities
As a basis of the present definition, we will use the definition of the standard GN from [2]. On
the respective place, we willl show the difference between the two (standard and new) definitions.
The change in the standard definition is small, but it influence on the forms of some other GN-
parameters and on the Algorithm for tokens’ transfer in the frames of a given transion, too, and

we will discuss it below.
Formally, every GN-transition is described by a seven-tuple (Fig. 1):

Z = <L/,L,/,t1,t277", M7 D>7

where:

(a) L' and L" are finite, non-empty sets of places (the transition’s input and output places,
respectively). For the transition in Fig. 1 these are

L'={l3,l,...,0U.}

and
L= {0,

(b) t; is the current time-moment of the transition’s firing;

"
I

]

Fig. 1: GN and I-transition

(¢) t, 1s the current value of the duration of its active state;

(d) r is the transition’s condition determining which tokens will pass (or transfer) from the
transition’s inputs to its outputs; it has the form of an Index Matrix (IM; see [4]):
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r; ; 1s the predicate which corresponds to the ¢-th input and j-th output places. When its truth
value is “true”, a token from ¢-th input place can be transferred to j-th output place; otherwise,
this is not possible;

(e) M is an IM of the capacities of transition’s arcs:

1 1 "
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I | (m;; > 0 — natural number )
: (1<i<m,1<j<n)
i

(f) O is an object having a form similar to a Boolean expression. It may contain as variables
the symbols which serve as labels for transition’s input places, and is an expression built up from
variables and the Boolean connectives A and V whose semantics is defined as follows:

Ay, by, .-, i) — every place l;,, ;,, . .., l;, must contain at least one token,
V(li,, iy, ..., 1l;,) — there must be at least one token in all placesl;,, l;,, .. ., l;,, where
{liy, iy, ..., i, } C L.

When the value of a type (calculated as a Boolean expression) is “true”, the transition can
become active, otherwise it cannot.

The ordered four-tuple
E= <<A> TA,TL,C, f> 017 62>7 <K7 TK, 6K>7 <T7 toa t*>7 <X7 (Da b>>
is called a Generalized Net (GN) if:

(a) A is a set of transitions;

(b) 74 is a function giving the priorities of the transitions, i.e., 14 : A — N, where N =
{0,1,2,...} U{oc};

(¢) 7, is a function giving the priorities of the places, i.e., 7, : . — N, where L = pr{A U
praA, and pr; X is the i-th projection of the n-dimensional set, where n € N,n > land 1 < k
< n (obviously, L is the set of all GN-places);

(d) in the definition of the Standard GN, c is a function giving the capacities of the places,
e, ¢ : L — N. Here, for each place p € L it determine the intuitionistic fuzzy triple
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(c(p), pe(p), ve(p)). Tts sense is the following. Let ¢(p) be the current number of tokens that
stay in place p, i.e, ¢c(p) > ¢(p) and let [z] be the integer part of the real positive number z. It
is sure that [¢(p).1.(p)] in number tokens with the highest priorities will have possibility to go
out place p, [¢(p).v.(p)] is the number of tokens that will not have possibility to go out place p
in the current transition activation and for the rest ¢(p) — [¢(p).u.(p)] — [¢(p).ve(p)] in number
tokens will be not clear whether they will go out or not place p. This change in the definition of
the Standard GN will reflect on point (g) in the present definition and therefore, on point (c) of
the previous definition (for a GN-transition). In the last case, the definition will not be changed.
The change will be related only with the values of ¢5-components of the respective transitions;

(e) f is a function which calculates the truth values of the predicates of the transition’s condi-
tions (for the GN described here let the function f have the value “ false” or “true”, i.e., a value
from the set {0, 1};

(f) 0, is a function giving the next time-moment when a given transition Z can be activated,
ie., 01(Z,t) = t', where prsZ = t,t’ € [T,T + t*] and t < t’. The value of this function is
calculated at the moment when the transition terminates its functioning;

(g) in the definition of the Standard GN, 65 is a function giving the duration of the active state
of a given transition Z, i. e., 02(Z,t) = t/, where pryZ =t € [T, T + t*| and ¢’ > 0. The
value of this function is calculated at the moment when the transition starts functioning. Here,
for transition Z, containing place p € L from point (d), 65(Z) will be a number for which the
following inequalities must be valid:

62(2,1) 2 max [e(p).uc(p)], (1)
02(2,t) < max (c(p) — [e(p)-ve(p)]). (2)

The combination of the two inequalities is correct, because for every place p

c(p) — [e(p).ve(p)] = [e(p).pre(p)]

(h) K is the set of the GN’s tokens. In some cases, it is convenient to consider this set in the

form
K= U K,
leQ’

where Kj is the set of tokens which enter the net from place [, and (! is the set of all input places
of the net;

(i) mx is a function giving the priorities of the tokens, i.e., 75 : K — N;

(j) Ok is a function giving the time-moment when a given token can enter the net, i.e., O () =
t,where « € K andt € [T, T + t*];

(k) 7' is the time-moment when the GN starts functioning. This moment is determined with
respect to a fixed (global) time-scale;

(1) t° is an elementary time-step, related to the fixed (global) time-scale;
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(m) t* is the duration of the GN functioning;
(n) X is the set of all initial characteristics the tokens can receive when they enter the net;

(0) ® is a characteristic function which assigns new characteristics to every token when it
makes a transfer from an input to an output place of a given transition;

(p) b is a function giving the maximum number of characteristics a particular token can re-
ceive,ie.,b: K — N.

When the IFGNS has only a part of the above components, it is called reduced IFGNS.
In [1, 2] different operations, relations and operators are defined over standard GNs and all
they can be transform for the case of [FGNS.

3 Algorithms for transition and IFGNS functioning

The IFGNS definition is more complex as than the definition of a Petri net and of the other Petri
net modifications, as well as of the ordinary GNs. In a Petri net implementation, parallelism is
reduced to a sequential firing of the net transitions and in general the order of their activation is
probabilistic or dependent on the transitions’ priorities, if ones exist. The GN’s algorithms enable
a more detailed modelling of the described process. The algorithms for the token’s transfers take
into account the priorities of the places, transitions and tokens, i.e., they are more precise.

In [2, 4, 5] more detailed algorithm for an ordinary GN-tokens transfer than in [1] is given.
Now, following [2, 4, 5], we will introduce the algorithms for transition and IFGNS5 functioning.

By analogy with 1,2, some components of the IFGNS5’s definition were not given above be-
cause they are related to the algorithm described below. They are esspecially mentioned in the
text.

The algorithm (which we will denote by algorithm A) for tokens transfer in the frameworks
of a given transition after the time moment ¢; = 7'/ M E (the current IFGNS5 time-moment) is the
same, as for standard GNs. It is the follows:

(A01) Sort the input and output places of the transitions by their priorities.

[An important addition to the GN transition description above, which is related to the software
implementation of the transition’s functioning, is the following. The tokens from a given input
place are divided into two groups. The first one contains those tokens that can be transferred to
the transition output, the second contains the rest (the motivation for this will be clear from the
next steps of the algorithm). Let the two parts be denoted by “P;(l)” and “Ps(l)”, respectively,
where [ is the corresponding place. ]

(A02) Sort the tokens from group P; of the input places (following the order from A01) by
their priorities.
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[Let the index matrix R correspond to the index matrix r. Thus, the (i, j)-th element of R is

1, ifthe (i,j)-th predicate r; ; is true
R;j =14 0, ifthe (i,j)-th predicate r; j is false or if the value is
determined by AO3].

(A03) Assign a value 0 to all elements of R for which either

(a) the input place which corresponds to the respective predicate is empty (the part P; is
empty); or

(b) the output place which corresponds to the respective predicate is full; or
(c) the current capacity of the arc between the corresponding input and output places is 0.

(A04) The sorted places are passed sequentially by their priority, starting with the place having
the highest priority, which has at least one token and through which no transfer has occured on the
current time-step. For its highest priority token (from the first list) the predicates corresponding
to the relevant row of matrix R are checked. The elements of r, for which the elements of R are
not zeros, are calculated.

(A05) Depending on the execution of the operator for permission or prohibition of tokens
splitting over the net, the token from step AO4 will pass either to all permitted to it output places,
or to this very place among them, which has the highest priority. If one token cannot not pass
through a given transition on this time interval, it is moved to the second list of tokens of the
corresponding place. The tokens, which have entered into the place after the transition activation,
are moved into the second list, too.

(A06) The capacities of all output for the transition places, which are input for another, active
at the moment transitions, increment with 1 for each token that has left them at this time step.

(A07) The capacities of all output places, in which a token, determined at step A0O4, has
entered, decrement with 1. If the maximum number of tokens for a given output place is reached,
the elements of the corresponding column of matrix 12 are made “0”.

(A08) The capacity of all arcs through which a token has passed is decrement with 1. If the
capacity of an arc has reached 0, the elements of the corresponding output place of matrix R are
given value 0.

(A09) The values of the characteristic function ¢ for the output places, in which tokens have
entered (formed by the token passed according to step A0OS) are calculated.

(A10) If there are more places, which could be output ones for tokens at this step, the algo-
rithm returns back to step A0O4; in the opposite case it proceeds to step Al1.

(A11) The current model time ¢ is increased with ¢°.

(A12) Is the current time moment equal to or greater than ¢; +15? If the answer of the question
is “no”, proceed to step AO4, else - termination of the transition functioning.

Below we will describe the most general algorithm for the GN’s functioning (denoted by
algorithm B). For this purpose, we will introduce the concept of Abstract Transition (AT). This
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is a transition which is the union of all active GN-transitions at a given time-moment. For its
construction the operation “union” of transitions is used (see 4.1).

(BO1) Put all tokens « for which 0 () < T into the corresponding input places of the net.
(B02) Construct the GN’s AT (initially it is empty).

(B03) Check whether the value of the current time is less than 1" + ¢*.

(B04) If the answer to the question in B03 is “no”, terminate the GN process.

(B0S) Check all transitions for which the first time-component is exactly equal to the current
time-moment.

(B06) Check the transition’s types of all transitions determined by BOS5 (the method of check-
ing is as follows:

- change the names of all places’ which participate in the Boolean expression of the transition
type as variables with values: 0, if the corresponding place has no tokens at the current moment;
1, otherwise;

- calculate the truth value of the so obtained Boolean expression.

(B07) Add all transitions from B06 for which the transition types are satisfied by the AT.
(B08) Apply algorithm A over the AT.

(B09) Remove from AT all transitions which are inactive at the current time-moment.
(B10) Increase the current time with ¢°.

(B11) Go to BO3.

Obviously, the IFGNS5 is an extension of the standard GN, because, if we put p.(p) = 1 for
each place p (and therefore, v.(p) = 7.(p) = 0), and if we omit the constraints (1) and (2), we
obtain the standard GN. On the other hand, we can formulate and prove the following
THEOREM For each IFGNS there exists a standard GN that describes the functioning and the
results of its work.

So, both types of GNs are equivaled, i.e., the IFGNS5s are conservative extensions of the GNs.
Finally, we will mention that all existing by the moment GN-extensions are also conservative
ones.

4 Conclusion

The so defined type of GNs can be modified in different directions. The idea for these nets, can be
combined, e.g., by the ideas for IFGN from first, second, third or fourth type, by coloured GNss,
etc. This will be an object of a future research of the authors.
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