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Abstract: In this paper, an extension of the Sugeno integral using intuitionistic fuzzy sets is 
presented. The proposed method enables the calculation of the Sugeno integral for combining 
multiple source of information with a degree of membership and non-membership using 
intuitionistic fuzzy sets. The proposed method is used as aggregation operator to combine the 
modules output of a modular neural network for face recognition. In this paper, the focus is on 
aggregation operator that use measures with intuitionistic fuzzy sets, in particular the Sugeno 
integral. The performance of the proposed method is compared with other aggregation 
operators, such as the traditional Sugeno integral using the ORL database. 
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1 Introduction 

There are several applications which require handling imprecise or inaccurate data, so it is 
common to run into obstacles due to the uncertainty they generate. Zadeh proposed the solution 
in 1965 by defining fuzzy sets [26], however, Michio Sugeno completed that definition with 
the introduction of the fuzzy integral and fuzzy measure terms [22] as a more appropriate way 
to measure parameters that depend on human subjectivity, as a certain degree of uncertainty. In 
1983, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1], which allows 
having degrees of membership and degrees of non-membership. 
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When the information can be mathematically formalized, combined and reduced into a 
single representative value, it is said that is an aggregation operator is being used. There are 
several aggregation operators, such as the geometric mean, the weighted average, the harmonic 
mean, the arithmetic mean, the ordered weighted averaging (OWA), the OWA weighting, the 
Sugeno integral [22] and the Choquet integral [7], each one results in the aggregation or the 
combination of the different sources of information that are considered as the input variables. 

The Sugeno integral has been implemented successfully in several applications; in [19] 
interval type-2 fuzzy logic is used for module relevance estimation in Sugeno integration of 
modular neural networks. In [13] a comparison between Choquet and Sugeno integrals as 
aggregation operators for pattern recognition is presented; also in [21] the Sugeno integral is 
used for building the Sugeno based mean value for some specific fuzzy quantities. On the other 
hand, the intuitionistic fuzzy sets have had a great boom in recent years [2–4]; in [12] the 
concepts of interval fuzzy-valued, intuitionistic fuzzy-valued and interval intuitionistic fuzzy-
valued Sugeno integrals was introduced; in [15] the Choquet and Sugeno integrals and 
intuitionistic fuzzy integrals as aggregation operators are presented. In [11] the theories of 
intuitionistic fuzzy sets and artificial neural networks are combined for intrusion detection. 

In [12] it is shown that the intuitionistic fuzzy-valued Sugeno integrals are mathematically 
equivalent to the interval fuzzy-valued Sugeno integrals. So it is of great interest to be able to 
carry out the implementation of the Sugeno integral using intuitionist fuzzy logic to implement 
the degrees of membership and degrees of non-membership as a method of integration of 
responses of a modular neuronal network, applied to facial recognition, particularly in the ORL 
database. 

Face recognition was carried out satisfactorily through the implementation of a modular 
network of three modules, where each one is considered as a source of information. 
The rest of the paper is structured as follows: the basic concepts of the Sugeno measures and 
fuzzy integrals is described in Section 2, in Section 3 the extension of the Sugeno integral 
using intuitionistic fuzzy sets is presented. Section 4 shows the case study using the modular 
neural network. We explain the simulation results and the advantages of the proposed 
technique with benchmark face databases in Section 5, and finally Section 6 offers some 
conclusions of the proposed method. 

2 Sugeno measures and fuzzy integrals 

In this section, we can find the basic concepts of the Monotonic measures and the Sugeno 
integral. 

2.1. Monotonic measures 

A measure is considered in the area of mathematics as one of the most important concepts. We 
can often find in the literature that monotonous measures refer to fuzzy measures. This is 
somewhat confusing, because fuzzy sets are not related to the definition of these measures, due 
to this, in families of fuzzy sets the term “fuzzy measures” must be used for the measures (not 
additive or additive). 
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If we have a universe of discourse X and a nonempty family C of subsets of X, a monotone 

measure μ on 〈X, C〉 is a function of the form μ : C → [0, ∞]. It is assumed that the universal set 

X is finite and that C = P(X). That is, normally assumed that the monotonic measures are sets 

of functions μ : P(X) → [0, 1]. 

Definition 1. Оn space X, a monotonic set measure μ is mapping μ : P(X) → [0, 1] such that 

the following properties hold [10, 25]: 

1) μ (φ) = 0; 

2) μ (X) = 1; 

3) For all A, B ∈ P(X), if A ⊆ B, then μ (A) ≤ μ (B). 

2.2. Sugeno measures 

Special types of monotonic measures are the Sugeno λ-measures and they are defined as 
follows [6, 17]. 

Definition 2. If we have a finite set X = {x1, …, xn}. A discrete fuzzy measure on X is a 
function μ : 2X → [0, 1] with the following properties: 

1) μ(φ) = 0 and μ(X) = 1; 

2) Given A, B ∈ 2X if A ⊂ B then μ (A) ≤ μ (B) (monotonicity property). 

The identifiers of sources of information are considered in the set X. For a subset A ⊆ X, μ(A) 

is considered to be the relevance degree of this subset of information. 

Definition 3. Let X  = {x1, …, xn} be any finite set and let λ ∈ (−1, +∞). A Sugeno λ-measure 

is a function μ from 2X to [0, 1] with the following properties: 

1) μ(X) = 1; 

2) if A, B ⊆ X with A ∩ B  = φ, then 

 μ(A ∪ B) = μ(A) + μ(B) + λ μ(A)μ(B), (1) 

where λ > −1, usually the equation (1) is called the λ-rule. 

The densities are interpreted as the importance of the individual information sources. If X is a 

finite set, the fuzzy densities represented by μ({x}) are given for each x ∈ X, the measure of a 

set A of information sources is interpreted as the importance of that subset of sources [17].  

For each A ⊂ P(X), the value of μ(A) can be calculated by the recurrent application of the 

λ-rule, and can be represented in the following form.   
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For each x ∈ X, given the values of the fuzzy densities μ({x}), the value of λ can be 

determined by using the constraint μ({x}) = 1, which applied in (2) results in (3): 
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This type of measures use the parameter λ and once the densities are known, these can be 
calculated applying (3); Sugeno proved that this polynomial has a real root greater than −1. The 
property (1), specifying the n different densities, thereby reducing the number of free 
parameters from 2n − 2 to n [6], using Theorem 1, it is possible to determine the value of the λ 
parameter [23]. 

Theorem 1. For each x ∈ X, let μ({x}) < 1 and μ({x}) > 0 for at least two elements of X. Then, 

it is possible to determine a unique parameter λ using (3) as follows: 

• If Σx∈X μ({x}) < 1, then λ is a unique root in the interval (0,∞). 

• If Σx∈X μ({x}) = 0, then λ = 0; that is the unique root of the equation. 

• If Σx∈X μ({x}) > 1, then λ is a unique root in the interval (−1,0). 

Considering Theorem 1, three situations should be distinguished: 

• If Σx∈X μ({x}) < 1, then μ qualifies as a lower probability, λ > 0. 

• If Σx∈X μ({x}) = 1, then μ is a classical probability, λ = 0. 

• If Σx∈X μ({x}) > 1, then μ qualifies as an upper probability, λ < 0. 

When μ is a λ-fuzzy measure, the values of μ(Ai) can be computed by means of (2), or 
recursively, reordering of the sets X and μ({x}), with respect to the values of the elements of set 
X [24]. 

2.3. Sugeno integrals 

Sugeno develops the concept of fuzzy integral as nonlinear functions defined with respect to 
fuzzy measures as λ-fuzzy measure using the concept of fuzzy measures; we can interpret the 
fuzzy integral as finding the maximum degree of similarity between the target and the expected 
value as shown in (4). The Sugeno integral generalizes “max-min” operators. 

  ��������	
, 	�, … , 	�� = max
��
, �

�min���	�����, ����������  (4) 

with A0 = 0, where 	���� indicates the indices that must be permuted as shown in (5), and where 

�����  =  ������, … , ����� . 

( )( ) ( )( ) ( )( )0 1 2 1f x f x f x nσ σ σ≤ ≤ ≤ … ≤ ≤   (5) 

The Sugeno integral can be applied to solve several problems, which consider a finite set 
of n elements X = {x1, ..., xn}. 
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3 Extension of the Sugeno integral with intuitionistic fuzzy sets 

In this section, we can find the basic concepts of the Intuitionistic fuzzy set as well as the 
proposed method by using the Sugeno integral 

3.1. Intuitionistic fuzzy set 

Let a set E be fixed and let A ⊂ E be a fixed sets. Intuitionistic fuzzy sets A* is defined as (6) 

  
( ) ( ){ }* , ,  |

A A
A x x x x Eµ ν= 〈 〉 ∈    (6) 

where function µA : I → [0,1] and νA : E → [0,1] define the degree of membership and the 

degree of non-membership of the element x ∈ E to the set A, respectively, and for every x ∈ E 

 
0 ≤ µA(x) + νA(x) ≤ 1   (7) 

Obviously, every ordinary fuzzy set has the form 

 
   (8) 

if 

 
   (9) 

then πA(x) is the degree of non-determinacy (uncertainty/hesitancy) of the membership of 

element x ∈ E to the set A. in the case of ordinary fuzzy sets, πA(x) = 0 for every x ∈ E, [5]. 

3.2. Sugeno integral with intuitionistic fuzzy set 

Using the concept of Intuitionistic fuzzy sets is possible to extend the Sugeno integral (4) by 
the use of degrees of membership and degrees of non-membership, obtaining (10) 

( )( ) ( )( )( )1 2 1, , 1, ,IFSU( , )( , , , ) max min ( ), ( ) ,max min ( ), ( )
i i i iA A n i n A i n A

x x x f X A f X Aσ σ σ σµ ν µ ν= … = …… =  

 (10) 

Any problem, in which there exists a finite set of n elements X = {x1,...,xn}, can be solved by 
applying the Sugeno integral, and the intuitionistic fuzzy Sugeno integral. 

3.3. Intuitionistic fuzzy Sugeno integral using !" = #. % 

If we have that x = {0.9, 0.6, 0.3} represents the information sources and associated to each 

entry a fuzzy density or membership value as μi = {0.3, 0.4, 0.1}, we calculate λ = 1. 

The calculated fuzzy measures are �&'�����(  = {0.3, 0.82, 1}. Using the intuitionistic 

fuzzy densities or not membership values as νA(μi) = {0.3, 0.2, 0.5}, it was calculated a λ  = 0 

and the intuitionistic fuzzy measures calculated are νA(Aσ(i)) = {0.3, 0.5, 1}. After that, using 
(10) we calculate the intuitionistic Sugeno integral 

( ) ( ){ }, ,1 |
A A

x x x x Eµ µ〈 − 〉 ∈

( ) ( ) ( )1  A A Ax x xπ µ ν= − −
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( )IFSU( , ) max(min((0.9,0.3), (0.6,0.82), (0.3,0.1))),max(min((0.9,0.3), (0.6,0.5), (0.3,0.1)))A Aµ ν =

once the minimums have been calculated, the maxima are calculated 

( )IFSU( , ) max(0.3,0.6,0.3), max(0.3,0.5,0.3)
A A

µ ν =  

we obtain the maxima of µA,νA  

( )IFSU( , ) 0.6,0.5
A A

µ ν =  

and finally we calculate the mean of the obtained interval, however, is possible determine other 
way for extract a representative value of the interval obtained. 

IFSU( , ) 0.55A Aµ ν = . 

The information from different sources can be integrated with the proposed operator. 

4 Sugeno integral with intuitionistic fuzzy sets 

in a modular neural network  

A neural network is a computational attempt to simulate the behavior observed in human brain. 
The proposed method was used for the integration of the modules of a modular neural network 
(MNN), using a benchmark database.  

4.1. The ORL database 

The ORL contains images of the faces of 40 people with ten samples per person giving 400 

images. Each image of the ORL database has a size of 112 × 92, in .png format [8]. 
In Figure 1a), we can appreciate some original images of faces and in Figure 1b) images 

are shown to which a preprocessing with the morphological gradient edge detector type-1 
(MGT1) is applied [18]. 

 

 

Figure 1. Images of the ORL database 
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4.2. The modular neural network 

For this work, we define a MNN of three modules using as integration of responses the Sugeno 
integral with intuitionistic fuzzy sets. For the MNN, we used the 80% of the images for training 
and 20% per testing.  

Each image of the ORL database was pre-processed to improve the performance of the 
MNN. After that, each of the images was divided into three horizontal sections each of which 
serves as input to the modules of the MNN. In Figure 2, we can appreciate a scheme of the 
proposed architecture of the MNN. 

 

Figure 2. The modular neural network architecture 

4.2. Training parameters 

We used three modules for the training of the MNN and each one has two hidden layers with 
[200 200] per layer, the error goal was of 0.0001 and the number of epochs was of 500. The 
parameters used for the training are the gradient descendent with momentum and adaptive 
learning rate back-propagation (Traingdx) as training method. 

With the implementation of this integral, each information source has an associated fuzzy 
density. The values 0.1, 0.5 and 0.9 was arbitrary chosen and some permutations were made 
with these values to obtain different simulations. 

Using the intuitionistic fuzzy Sugeno integral is possible to determine the final decision by 
the combination of the simulation vectors of the outputs of the modules trained into a simple 
vector. 

5 Simulation results 

This section provides a comparison of the recognition rate achieved by the MNN for face 
recognition system were the intuitionistic Sugeno integral was applied. 

In the experimental results, the MGT1 was analyzed and additional to this, the experiments 
were validated without using any edge detector. The tests were performed using the ORL 
database. In the first test, the combination of the modules output of the MNN for face 
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recognition was performance without using and using the MGT1 edge detector, and applying 
the Sugeno integral as integration of the modules of the MNN. 

The mean rate, standard deviation and the max values achieved by the system, are shown 
in Table 1, where we can appreciate that the better result were obtained when the MGT1 was 
applied with a mean rate of 89.45, a standard deviation of 0.0658 and a max rate of 97.5. Also, 
we can appreciated that without used the MGT1 edge detector, the results obtained show a 
mean rate of 2.52, a standard deviation of 0.00037 and a 3.75 as max rate. 

Test 

number 

Without edge MGT1 

Mean Std Max Mean Std Max 

1 0.025 0 0.025 0.9075 0.06824 0.975 
2 0.025 0 0.025 0.8925 0.06591 0.95 
3 0.025 0 0.025 0.89 0.07038 0.95 
4 0.025 0 0.025 0.8875 0.06847 0.95 
5 0.025 0 0.025 0.8975 0.06697 0.9625 
6 0.025 0 0.025 0.885 0.07363 0.95 
7 0.025 0 0.025 0.895 0.07159 0.9625 
8 0.025 0 0.025 0.9025 0.05687 0.9625 
9 0.025 0 0.025 0.8925 0.05769 0.9375 
10 0.0275 0.00559 0.0375 0.8925 0.05769 0.9375 
11 0.025 0 0.025 0.8925 0.06766 0.95 
12 0.025 0 0.025 0.9025 0.06337 0.9625 
13 0.025 0 0.025 0.89 0.07256 0.95 
14 0.025 0 0.025 0.9 0.06847 0.9625 
15 0.025 0 0.025 0.89 0.0589 0.9375 

 
0.0252 0.00037 0.0375 0.8945 0.065893 0.975 

Table 1. Results using the Sugeno integral 

In another test, the system was considered using the intuitionistic fuzzy Sugeno integral 
with a πA = 0.1 without using preprocessing of the MGT1 edge detector over the images of the 
ORL database. 

In Table 2, we can appreciate that the mean rate is of 2.517, a standard deviation of 
0.00037 and a max rate of 3.75. 

In Table 3, is possible to appreciate the results obtained using the intuitionistic fuzzy 
Sugeno integral as aggregation operator with the preprocessing of the images with the MGT1. 
Using a πA = 0.1, we calculate a mean rate of 90.67, standard deviation of 0.96583 and max 
rate of 97.5, while that with a πA = 0.2, the mean rate was of 89.5, standard deviation of 
0.93416 and a max rate of 95. 
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Test  

number 
Mean Std Max 

1 0.025 0 0.025 
2 0.025 0 0.025 
3 0.0275 0.0056 0.0375 
4 0.025 0 0.025 
5 0.025 0 0.025 
6 0.025 0 0.025 
7 0.025 0 0.025 
8 0.025 0 0.025 
9 0.025 0 0.025 
10 0.025 0 0.025 
11 0.025 0 0.025 
12 0.025 0 0.025 
13 0.025 0 0.025 
14 0.025 0 0.025 
15 0.025 0 0.025 
 0.02517 0.000373 0.0375 

Table 2. Results using Intuitionistic fuzzy Sugeno integral 
with πA = 0.1 without edge detector 

Test 

number 

πA = 0.1 πA = 0.2 

Mean Std Max Mean Std Max 

1 0.9025 0.06337 0.9625 0.895 0.03377 0.95 
2 0.9025 0.06337 0.9625 0.895 0.03377 0.95 
3 0.9025 0.06337 0.9625 0.9 0.02932 0.95 
4 0.9025 0.06337 0.9625 0.895 0.02739 0.9375 
5 0.9025 0.06337 0.9625 0.8925 0.02878 0.9375 
6 0.9075 0.06034 0.9625 0.905 0.01896 0.925 
7 0.905 0.05836 0.9625 0.89 0.03579 0.9375 
8 0.9025 0.06337 0.9625 0.895 0.03010 0.9375 
9 0.9025 0.06337 0.9625 0.895 0.03377 0.95 
10 0.9025 0.06337 0.9625 0.895 0.03377 0.95 
11 0.915 0.05405 0.9625 0.8925 0.02437 0.925 
12 0.915 0.05956 0.975 0.89 0.01046 0.9 
13 0.9125 0.05796 0.975 0.8825 0.01118 0.8875 
14 0.915 0.05956 0.975 0.9 0.02795 0.9375 
15 0.915 0.05956 0.975 0.9025 0.02404 0.9375 

 
0.907 0.06109 0.975 0.895 0.02690 0.95 

Table 3. Results using Intuitionistic fuzzy Sugeno integral using MGT1 edge detector 

The results obtained over the ORL database are presented in Tables 4 and 5; we can see 
that the recognition rate using the Intuitionistic fuzzy Sugeno integral is better than the Sugeno 
integral. In addition, in Table 5 we can notice that the mean rate value is better when the 
MGT1 edge detector is applied with a value of 90.67 using the proposed method. 
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In these results we can also appreciate that the mean rate, standard deviation and max rate 
were better when we applied a πA = 0.1. 

 Mean Std Max 

Without edge 0.0252 0.000373 0.0375 
MGT1 0.8945 0.065893 0.975 

Table 4. Results using the Sugeno integral 

 Mean Std Max πA 

Without edge 0.02517 0.000373 0.0375 0.1 
MGT1 0.907 0.06109 0.975 0.1 
MGT1 0.895 0.02690 0.95 0.2 

Table 5. Results using Intuitionistic Sugeno integral 

6 Conclusion 

In this paper, we have presented the intuitionistic fuzzy Sugeno integral as an integration 
operator for a modular neural network. In Tables 4 and 5, we can appreciate that the 
recognition results with the proposed method are better or comparable to results produced by 
the Sugeno integral; however, it is necessary to perform more experimentation with different 
fuzzy densities. As future work, it is proposed to vary the number of information sources, as 
well as perform the dynamic allocation of fuzzy densities to each of the sources and perform 
tests with other databases. In addition, considering other applications as future work, as in [9, 
14, 16, 20]. 
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