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1 Introduction 

The concept of fuzzy set was introduced by Zadeh in 1965 and has been well understood and 

used in various aspect of science and technology such as engineering and medicine. The theory 

of fuzzy set is one of the most important inventions of our time. It should be pointed out that in 

the study of fuzzy sets various metrics defined on fuzzy sets play a very important role, 

especially in the case of fuzzy numbers [5]. The most often used metrics are the supremum 

metric d∞, the
 
Lp metrics, the sendograph metric and the endograph metric. Among these 
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metrics the sendograph metric was introduced by Kloeden and was used successfully in fuzzy 

dynamic systems [16]. The sendograph metric is also used in many studies such as [6, 7, 14]. 

On the other hand, as a natural generalization of fuzzy set, intuitionistic fuzzy set (IFS for 

short) was introduced by Atanassov in 1983 [1]. His definition was found to be useful to deal 

with vagueness of knowledge. In the concept of intuitionistic fuzzy set, each element has two 

degrees named degree of membership and degree of non-membership to IFS respectively [1]. 

Intuitionistic fuzzy number (IFN for short) was defined by Burillo and Bustince in 1992 [4]. 

Grzegorzewski redefined the concept of IFN in [13]. IFN is a basic concept for intuitionistic 

fuzzy theory. Distance between IFS’s and IFN’s is one of the most fundamental problems in 

this area. In the literature, there are many definitions of distance measures for IFN [2], [10], 

[12], [13], [18], [19]. In this paper, we proposed a metric depending on the Hausdorff distance 

between sendographs of IFN’s and investigate some of its properties. 

The structure of the paper is as follows: In Section 2, we give some basic definitions about 

IFS and IFN. In Section 3, we define the sendograph metric for IFN and investigate some 

properties of this metric. Fundamental properties about this metric are presented. We will first 

prove that IFNs space is separable with respect to the sendograph metric. In section 3.1, we 

generalize the well-known Kloeden’s theorem on fuzzy number space to the case of IFNs 

space. In section 3.2. We show that with respect to sendograph metric IFN space is not 

complete and we construct a completion of IFNs space with respect to the sendograph metric. 

2 Preliminaries 

Definition 2.1. An intuitionistic fuzzy set in a non-empty set X  given by a set 

( ) ( )( ){ }, , :
A A

A x x x x Xµ η= ∈  where ( ) [ ]: 0,1 ,
A

x X Iµ → = ( ) [ ]: 0,1
A

x X Iη → =  are 

functions defined such that ( ) ( )0 1x xµ η≤ + ≤ for all x X∈ . For x X∈ , ( )xµ  and ( )xη

represent the degree of membership and degree of non-membership of x  to A  respectively.  
 

For each x X∈ ; intuitionistic fuzzy index of x in A can be defined as follows 

( ) ( ) ( )1
A A A

x x xπ µ η= − −  . Aπ is called degree of hesitation or indeterminacy. [1]
 

 

Definition 2.2. The definition of intuitionistic fuzzy number was defined by Burillo et al. in [4] 

as follows. An intuitionistic fuzzy number A is 

i. An intuitionistic fuzzy subset of real line, 

ii. Normality i.e. there is an 0x ∈ℝ  such that ( ) 1
A

xµ =  (so ( ) 0
A

xη = ) 

iii. Fuzzy convex for the membership function Aµ  i.e. for every [ ]0,1λ ∈  and 1 2,x x ∈ℝ  

( ) ( ) ( ){ }1 2 1 2(1 ) min ,
A A A

x x x xµ λ λ µ µ+ − ≥  

iv. Fuzzy concave for the non-membership function Aη  i.e. for every [ ]0,1λ ∈  and 1 2,x x ∈ℝ  

( )( ) ( ) ( ){ }1 2 1 21 max ,
A A A

x x x xη λ λ η η+ − ≤  
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In [13], Grzegorzewski re-defined intuitionistic fuzzy number (shortly IFN) as follows: An 

intuitionistic fuzzy subset ( ) ( )( ){ }, , :
A A

A x x x xµ η= ∈ℝ  of the real line is called an 

intuitionistic fuzzy number if: 

i. A is if-normal (there exist at least two points 0 1,x x ∈ℝ such that ( )0 1
A

xµ = and 

( )1 1
A

xη = ) 

ii. A  is if-convex (i.e. its membership function fuzzy convex and non-membership function 

fuzzy concave) 

iii. Aµ  is upper semi continuous and Aη  lower semi continuous. 

iv. ( ){ }( ); 1
A

suppA cl x xη= <  is bounded subset of real line 

 

From the definition given above we get at once that for any intuitionistic fuzzy number A, 

there exist eight numbers 1 2 3 4 1 2 3 4, , , , , , ,a a a a b b b b  such that 1 1 2 2 3 3 4 4a b a b a b a b≤ ≤ ≤ ≤ ≤ ≤ ≤  

and four functions , , , :A A A Af g h k I→ℝ , called the sides of IFN, where Af  and Ak  non-

decreasing and ,A Ag h  non-increasing, such that Af  and Ag   are upper semi continuous  and Ah  

and Ak  are lower semi continuous. Then we can describe a membership function and Aµ  non-

membership function Aη  as follows: 

( )
( )

( )

1

1 2

2 3

3 4

4

0

1

0

A

A

A

if x a

f x if a x a

x if a x a

g x if a x a

if a x

µ

<
 ≤ <


= ≤ ≤
 < ≤
 <   

,  ( )
( )

( )

1

1 2

2 3

3 4

4

1

0

1

A

A

A

if x b

h x if b x b

x if b x b

k x if b x b

if b x

η

<
 ≤ <


= ≤ ≤
 < ≤
 <

 

Let us denote the set of all IFNs by IFNE .[10] 

In [3] , Atanassov generalized these two definitions of IFN in three ways as follows: 

1. The maximum condition is replaced with  

( ) ( ) ( ) ( )0 0max 0.5 maxA A A A
y E y E

y x x yµ µ η η
∈ ∈

= > > =  

2. The maximum condition is replaced with  

( ) ( ) ( ) ( )0 0max maxA A A A
y E y E

y x x yµ µ η η
∈ ∈

= > =  

3. Finally, in the third generalization of the above three definitions, Atanassov omit the 

condition for maximal values of Aµ  and minimal values for Aη , keeping only the 

conditions for increasing and decreasing of the two functions. [3] 

The concept of triangular fuzzy number can be generalized to define triangular intuit-

ionistic fuzzy numbers as follows: 
 

Definition 2.3. A triangular intuitionistic fuzzy number ( ) ( )( ){ }, , ; ,
u u

u x x x xµ η= ∈ℝ , (TIFN 

for short) is an IFN on ℝ  with its membership and non-membership functions are defined as: 
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( )

0

1

1

1

0

u

if x m

m x
if m x m

x if x m

x m
if m x m

if x m

α

α
α

µ

β
β

β

 < −


− − − ≤ <



= =
 −
 − ≤ ≤ +

 ≥ +

ɺ

ɺ
ɺ

ɺ
ɺ

ɺ
  

,  ( )

1

0

1

u

if x m

m x
if m x m

x if x m

x m
if m x m

if x m

α

α
α

µ

β
β

β

 < −


− − ≤ <



= =
 −
 ≤ ≤ +

 ≥ +

ɺɺ

ɺɺ
ɺɺ

ɺɺ
ɺɺ

ɺɺ

 

whereαɺ , βɺ , αɺɺ , βɺɺ  are positive real numbers such that α α>ɺɺ ɺ , β β>ɺɺ ɺ . Here, αɺ , βɺ are  called 

right and left spreads of the membership function, respectively. ,α βɺɺɺɺ are called right and left 

spreads of the non-membership function, respectively, [10]. 
 

Definition 2.4. The ( ),α β -cut of an IFS ( ) ( )( ){ }1 1
, , :

A A
A x x x xµ η= ∈ℝ  is crisp set of x ∈ℝ

defined as ( ) ( ){ }, ; ,
A A

A x x xα β µ α η β= ≥ ≤ , where ,α β  are fixed non-negative numbers which 

satisfy the condition 0 1α β≤ + ≤ . In other words ( ),α β -cut of IFS A is crisp set of elements x  

which belong to  A  at least to degree α  and not belong to A at most to the degree β. 

 

The following lemma is direct generalization of lemma in [16]: 

 

Lemma 2.1. For a subset H I I⊆ × ×ℝ  such that , Iα β ∈ and 0 1α β≤ + ≤ , let 

( ){ }, ; , , , ,H x x Hα β α β α α β β′ ′ ′ ′= ∈ ≤ ≤
 
where , Iα β′ ′∈ and 0 1α β′ ′≤ + ≤ . Then ,Hα β  is 

equal to ( ),α β -cut of a unique IFN u, if { }, ; , , 0 1H Iα β α β α β∈ ≤ + ≤  family satisfies 

following conditions: 

i. For every , Iα β ∈  and 0 1α β≤ + ≤ , 
,

Hα β  is non-empty closed and convex subset of the 

real line, 

ii. For every 
,i i Iα β ∈

 , ( )1,2i = satisfying conditions that  1 2α α≤
, 1 2β β≥

 , 
0 1i iα β≤ + ≤

;

1 1 2 2, ,
H Hα β α β⊇ , 

iii. For every { } { },
n n

Iα β ⊆  sequences which satisfy that n
α α↑

 and n
β β↓

 , 

, ,

1
n n

n

H Hα β α β

∞

=

=∩ , 

iv. For every { } { },
n n

Iα β ⊆  sequences which satisfy that 
0

n
α ↓

 and 
1

n
β ↑

 ,

0,1 ,

1
n n

n

H Hα β

∞

=

=∪ , 

 

Conversely, the ( ),α β -cut of an IFN satisfies condition (i)-(iv). 
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3 Main results 

Definition 3.1. Let ( ) ( )( ){ }, , :
A A

A x x x xµ η= ∈ℝ  be an IFN. Then the endograph of A, 

denoted by end(A), defined  as follows: 

( ) ( ) ( ) ( ){ }, , ; , ,0 1end A x r s x r x s r sµ η= ≥ ≤ ≤ + ≤  

while the  supported endograph (shortly sendograph of A), denoted by send(A) is defined as 

follows: 

( ) ( ) ( ){ ( ) }, , ; ; 0 , 1, 0 1send A x r s x suppA r x x s r sµ η= ∈ ≤ ≤ ≤ ≤ ≤ + ≤  

From definition of endograph and sendograph it is clearly seen that: 

( ) ( ) ( )( )send A end A supp A I I= ∩ × ×  

Since Aµ  is upper semi continuous, Aη  is lower semi continuous and ( )supp A is a 

bounded and closed subset of ℝ , it is clearly seen that ( )send A  is a compact subset of 3
ℝ . 

 

Definition 3.2. Let md be product metric on I I× ×ℝ  defined as follows:  

( ) ( )( ) { }1 1 1 2 2 2 1 2 1 2 1 2, , , , , max , ,md x r s x r s x x r r s s= − − − . 

Then for all , IFNA B E∈ , Let ( ) ( ) ( )( ), ,
send

D A B H send A send B= , where H  is the Hausdorff 

metric defined as:  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }* *, max , , ,H send A send B H send A send B H send B send A=  

where     

( ) ( )( ) ( )( ) ( ){ }* , max , ;H send A send B d x send B x send A= ∈  

and  

( )( ) ( ) ( ){ }, min , ;pd x send B d x y y send B= ∈ . 

Similar to case of fuzzy numbers, it can be easily seen that ( ),
send

D A B is a metric for all 

IFNs ( ),
send

D A B   is called the sendograph metric of IFNs. 

 

Theorem 3.1. ( ),
IFN send

E D  is separable. 

Proof: Let 1 20 ... 1nα α α= ≤ ≤ ≤ =  and 1 10 ... 1n nβ β β−= ≤ ≤ ≤ =  be two partitions of
 
[0, 1], 

which satisfy the following conditions: 

i.  For each 1, 2,...,i n= ; iα
 
and iβ

 
are rational numbers, 

ii. 1i i
α α ε−− <  and 1i i

β β ε−− <  for each 1, 2,...,i n=
 
and 0ε >  

iii. 0 1i iα β≤ + ≤  for 1, 2,...,i n=  
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Let be IFNA E∈ . Then we define IFS φ  whose membership functions and non-member-

ship functions are defined respectively as: 

( )1
,

0 ,

i i A i
x

otherwise
φ

α α µ α
µ − < <

= 


, ( ) ( ) 1
,

1 ,

i i A i
x

x
otherwise

φ

β β µ β
η − < <

= 


 

From the definition of φ , it can be clearly seen that ( ) ( )0 1x xφ φµ η≤ + ≤  for all x ∈ℝ . 

Since IFNA E∈ , φ  satisfies the conditions of IFN. Obviously, ( ) ( )supp A supp φ=  and 

( ),
send

D A φ ε≤ . Let denote the set of all φ  by 
IFN

Eɶ . 
IFN

Eɶ  is countable and dense subset of 

IFNE . Therefore ( ),
IFN send

E D  is separable. 

 

Definition 3.3. A sequence { }n
A  of intuitionistic fuzzy numbers is called support bounded, if 

there exists an interval ( ),a b R⊂  such that ( ) ( ),
n

supp A a b⊂  for every n ∈ℕ . 

3.1 Generalization of Kloeden’s theorem on EIFN  

In this section, we generalized Kloeden’s well-known theorem on IFNE . Kloeden’s theorem 

(in [16]) is a useful tool to determining convergence of sequences of IFN with respect to 

sendograph metric. 

 

Theorem 3.2. Suppose that A  and sequence  { }n
A  belong to IFNE  . Then ( ), 0

send n
D A A →  if 

only if 

1. ( ) ( )( ), 0
n

h supp A supp A → , where h  is Hausdorff metric defined on ℝ   

2.  For every 0ε > , there exist an integer ( )n ε satisfied both of the following conditions.  

a. For all x ∈ℝ  there can be found a sequence ( ),
n n

x x x ε= ⊂ ℝ  with 

( ) ( )
nA A n

x xµ µ ε< +  , ( ) ( )
nA A n

x xη η ε> −  and n
x x ε− <  for all ( )n n ε≥ ; 

b. For all ( )x supp A∈  there can be found a sequence ( ) ( ) ( ) ( ),
n n n

x x x supp Aε= ⊂  

with ( ) ( )
nA A n

x xµ µ ε< +  , ( ) ( )
nA A n

x xη η ε> −  and n
x x ε− <  for all ( )n n ε≥  . 

 

Proof: It can be proven as Kloeden’s proof in the case of fuzzy numbers [11]. In our proof, 

there are minor modifications to Kloeden’s proof.  

⇒ : Suppose that ( ), 0
send n

D A A → . We must show that (1.), (2a.) and (2b.) are true. 

1. Suppose that ( ),
send

D A B ε<  for , IFNA B E∈  and every 0ε > . 

Then ( ) ( )( )* ,H send A send B ε< . Since ( )supp A  is compact, There exists ( )a
x supp A∈  

which satisfies that ( ) ( )( ) ( )( )* , ,
a

h supp A supp B d x supp A= . Then ( ) ( ),0,1
a

x send A∈ . So, 

( ) ( )( ) ( ) ( )( )*,0,1 , ,
a

d x send B H send A send B ε≤ < . 

Since ( )send B  is compact, There exists ( ) ( ), ,
b b b

x r s send B∈ which satisfies that  

( ) ( )( ) ( ) ( )( ),0,1 , , , ,0,1 ,
m a b b b a

d x x r s d x send B ε= < . 
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Therefore, we have: a b
x x ε− < , 0

b
r ε− < , 1

b
s ε− < . Since ( )b

x supp B∈ ,  

( ) ( )( ) ( )( ) ( )* , , ,
a a b

h supp A supp B d x supp A d x x ε= ≤ < . 

The inequality ( ) ( )( )* ,h supp B supp A ε<  can be shown by reversing roles of A and B. 

Therefore, by the combination of the last two inequalities, we obtain that

( ) ( )( ),h supp A supp B ε< . 

2a. Since ( ), 0
send n

D A A → , for every 0ε > , there exists ( )0n ε  such that 

( ) ( )( ) ( )* , ,
n send n

H send A send A D A A ε≤ <  

for all ( )0n n ε≥ . Let be x ∈ℝ . Then, define nx x=  for ( )0n n ε< . If ( )0n n ε≥  and 

( )n
x supp A∉ . ( ) ( )0

nA A
x xµ µ ε= < +  and ( ) ( )1

nA A
x xη η ε= > − , since ( ) 0

A
xµ ≥  and ( ) 1

A
xη ≤ . 

Therefore the sequence can be chosen nx x=  for n ∈ℕ . On the other hand, if ( )0n n ε≥  and 

( )n
x supp A∈ . Then, ( ) ( )( ) ( ), ,

n nA A n
x x x send Aµ η ∈  and 

( ) ( )( ) ( )( ) ( ) ( )( )*, , , ,
n nA A nd x x x send A H send A send Aµ η ε≤ < . 

Since ( )send A  is compact, there exists ( ) ( ), ,n n nx r s send A∈  such that 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ), , , , , , , ,
n n n nm A A n n n A Ad x x x x r s d x x x send Aµ η µ η ε= <  . 

Therefore, we have: nx x ε− < , ( )
nA nx rµ ε− < , ( )

nA nx sη ε− < . Since ( ) ( ), , ,n n nx r s send A∈

( )A n nx rµ ≥  and ( )A n nx sη ≤ . Thus, nx x ε− < , ( ) ( )
nA n A nx r xµ ε µ ε< + ≤ +  and ( ) ( )

nA n A nx s xη ε η ε> − ≤ −  

for all n ∈ℕ . Therefore (2a) holds. 

2b. Since ( ), 0send nD A A → , for every ε > 0, there exists n0(ε)
 
such that 

( ) ( )( ) ( )* , ,send nH send A send B D A A ε≤ <  

for all ( )0n n ε≥ . Let be ( )x supp A∈  . Then ( ) ( )( ) ( ), ,A Ax x x send Aµ η ∈ . So,  

( ) ( )( ) ( )( ) ( ) ( )( )*, , , ,
n nA A nd x x x send A H send A send Aµ η ε≤ <  

for all ( )n n ε≥ . Since ( )nsend A  is compact, there exists a ( ) ( ), ,n n n nx r s send A∈  such that 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ), , , , , , , ,
m A A n n n A A n

d x x x x r s d x x x send Aµ η µ η ε= <  i.e. nx x ε− < , ( )A nx rµ ε− < , 

( )A nx sη ε− < . Therefore, ( ) ( )
nA n A nx r xµ ε µ ε< + ≤ +  and ( ) ( )

nA n A nx s xη ε η ε> − ≤ −  for all ( ).n n ε≥  

 

⇐  : Suppose that conditions (1), (2a), (2b) are satisfied for some A and some sequence{ }nA  

in EIFN. We must show that ( ), 0send nD A A →  

A. From condition (1), for any 0δ >  there exist ( )n n δ′ ′= ∈ℕ  such that for 0n n≥ ,  

( ) ( )( ) ( ) ( )( )* , ,n nh supp A supp A h supp A supp A δ≤ <  
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 i.e. ( ) ( )( )nsupp A U supp Aδ⊂  where δ -neighbourhood of ( )supp A  is denoted by 

( )( )U supp Aδ . So; ( ) ( )( )nsupp A I I U supp A I Iδ× × ⊂ × × for all n n′≥ . Also, from (2a), there 

exist ( )n n δ=  such that for each x ∈ℝ and 0δ >  a sequence ( ) ( ),n nx x x δ=  can be found 

with nx x δ− < , ( ) ( )
nA A nx xµ µ δ< + and ( ) ( )

nA A nx xη η δ> − . i.e. for all ( )nx U xδ∈ ,

( ) ( )0, 0,
nA A nx xµ µ δ  ⊂ +     

and ( ) ( ),1 ,1
nA A nx xη η δ  ⊂ −     for all ( )n n δ≥ . So  

{ } ( ) ( ) ( ) ( ) ( )0, ,1 0, ,1A n A n n A n A nx x x U x x xδµ η µ δ η δ× × ⊂ × + × −              

{ } ( ) ( )( ) { } ( ) ( )0, ,1 0, ,1
nn A n A n A A n

y

U x x x U y x xδ δµ η µ η
∈

 
 ⊂ × × ⊂ × ×            

 ℝ

∪

( )( )U end Aδ=
 

for all ( )n n δ≥ and x ∈ℝ .
 

For 0ε > , since ( )end A is closed subset and ( )supp A I I× ×  is compact subset of 

 I I× ×ℝ  such that ( )( )supp A I I× × ∩ ( )I I× × ≠ ∅ℝ  there exists a 

( ) ( )( ), , 0nend A supp A I Iδ δ ε= × × >  with ( )( ) ( )( )nU end A U supp A I Iδ δ∩ × × ≠ ∅  and 

( )( ) ( )( ) ( ) ( )( )( )n n
U end A U supp A I I U end A supp A I Iδ δ ε∩ × × ⊂ ∩ × × . Then for all 

( ) ( ) ( ){ }2 max ,n n n nε δ δ′≥ = ; 

( ) ( ) ( )( ) ( )( ) ( )( )n n n n nsend A end A supp A I I U end A U supp A I Iδ δ= ∩ × × ⊂ ∩ × ×

( ) ( )( )( ) ( )( )n n
U end A supp A I I U send Aε ε⊂ ∩ × × =  

Therefore ( ) ( )( )* ,nH send A send A ε<  for all ( )2n n ε≥ . 

B. From (2b).  We can find a ( )n ε  such that for all ( )x supp A∈  and 0ε > there exists 

a sequence { } ( )nx supp A⊂  which satisfies following condition: ( ) ( )
nA A nx xµ µ ε< + , 

( ) ( )
nA A nx xη η ε> −  and nx x ε− <  for all ( ).n n ε≥  Since ( ) ( ){ } ( ), , ,

n nn A n A n
x x x send Aµ η ∈  

thus 

{ } ( ) ( ) ( ) ( ) ( )0, ,1 0, ,1
n nA A n A n A nx x x U x x xεµ η µ ε η ε   × × ⊂ × + × −          

{ } ( ) ( )( ) ( )( )0, ,1
n nn A n A n

U x x x U send Aε εµ η   ⊂ × × ⊂     

for all ( )n n ε≥ .  

Hence 

( ) { }
( )

( ) ( )0, ,1
n nA A

x supp A

send A x x xµ η
∈

   = × ×   ∪ ( )( ) ,nU send Aε⊂
 

i.e. ( ) ( )( )* , nH send A send A ε<  for all ( )n n ε≥ . By combining results of (A) and (B) we 

obtain ( ), 0send nD A A → . � 
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Corollary 3.3. Every convergent sequence in IFNE  is support bounded. 

Proof: Let {An} be a sequence of IFNs, which converges to A, i.e. ( )lim , 0send n
n

D A A
→∞

=  for every 

( )0n n ε≥ . From Kloeden’s Theorem, it is obtained that ( ) ( )( )( )lim , 0n
n

h supp A supp A
→∞

= . 

Hence supp(An) 
converges to

 
supp(A). Therefore

 
supp(An) is bounded for all n ∈ℕ . From 

Definition 3.3, {An} is support bounded.  � 

3.2 Completion of EIFN with respect to Dsend 

Space EIFN is not complete with respect to sendograph metric. To show that fact, we give an 

example. 
 

Example 3.2 Let nA  a sequence of IFNs and A  as below:  For each n ∈ℕ , membership func-

tion 
nA

µ  and non-membership function 
nA

η are defined as follows, respectively as follows 

( )

0 , 0

1
, 0 1

2

1 , 1

1
, 1 2

2

0 , 2

nA

x

x
n

x x

x
n

x

µ

<

 ≤ <



= =

 < ≤

 <

 , ( )

1 , 0

1
, 0 1

4

0 , 1

1
, 1 2

4

1 , 2

nA

x

x
n

x x

x
n

x

µ

<

 ≤ <



= =

 < ≤

 <

 

Similar manner; Aµ  and Aη  are defined as membership and non-membership function of A, 

respectively: 

( )
1, 1

0, 1
A

x
x

x
µ

=
= 

≠
  and ( )

1, 1

0, 1
A

x
x

x
η

≠
= 

=
. 

It can be easily seen that An 
is a Cauchy sequence with respect to sendograph metric. But it 

does not convergence to A with sendograph metric since it convergences to A with endograph 

metric and ( ) ( )( )lim , 0n
n

h supp A supp A
→∞

≠  for all n ∈ℕ . 

Therefore, it is clearly understood that EIFN 
with respect to sendograph metric is not 

complete.  
 

Theorem 3.4. Let [ ] { } { } ( ) [ ]{ }*

0,1, 0 1 ; , A ,IFN IFNE a b send A A E a b= × × ∪ ∈ ⊆ . Then ( )* ,IFN sendE D
 

is completion of ( ),
IFN send

E D . 

Proof: To prove our claim we must show that { } *

IFN IFN
cl E E=  and *

IFN
E  is complete. 

I.  It can be clearly seen that each member of *

IFN
E  satisfies the (i), (ii), (iii), conditions of 

Lemma 2.1. But the condition (iv) does not hold in generally. General case is 
*

0,1 0,1A A⊆ for

IFNA E∈  and * *

IFN
A E∈ . Since the conditions (i), (ii), (iii) are satisfied in *

IFN
E , We can say that 

* *

IFN
A E∈  differs with an unique IFNA E∈   only at ( )0,1 -cut. Then, if  ( )*

A send A≠  for each 

IFNA E∈ , we can define [ ] [ ]( )0,1 0, ,1A A A ε ε′ ′′= ∪ × ×  for all , 0ε ε′ ′′ >  wit h 0 1ε ε′ ′′≤ + ≤ . 
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Thus A′  corresponds to an unique IFN IFNB E∈  such that ( )A send B′ = . Therefore

( ) { }, min ,
send

D A A ε ε′ ′ ′′≤ . Thus { } * .
IFN IFN

cl E E=  

II. Let { }*

nA  be an Cauchy sequence in *

IFN
E . Then for every 0ε > , there exist 0n ∈ℕ  such 

that { }*

nA for 0,n m n≥  ( )* *,send n mD A A ε≤ .i.e. ( ) ( )( )* *,
n m

H send A send A ε≤ . Since the member-

ship and non-membership function of IFN which corresponds to *

n
A   for each n ∈ℕ  are upper 

semi continuous and lower semi continuous, ( )*

nsend A  is closed. Thus ( ){ }*

n
send A  is 

a  Cauchy sequence in 
3

C  with respect to Hausdorff metric. Since ( )3,C H  is complete, 

( )* *

1

m

n m n

A cl send A
∞ ∞

= ≥

 
=  

 
∩ ∪  is member of 

3
C  and for each n ∈ℕ , there exist 0n ∈ℕ  such that 

( )( )* *,
n

H send A A ε< . Now, we must prove  that * *

IFN
A E∈ . To prove our claim we must 

show that *A  satisfies the conditions (i), (ii) and (iii) of Lemma 2.1. 

i.  Since for each n ∈ℕ , ( )*

,nA
α β

 is a non-empty, closed and convex set, it is clearly seen 

that ( ) ( )* *

, ,
1

m
a a

n m n

A cl A
β β

∞ ∞

= ≥

 
=  

 
∩ ∪  is a non-empty, closed and convex set. 

ii. From definition of *A , it is easily seen that for every ,i i Iα β ∈ , ( )1,2i = satisfying the 

condition that  1 2α α< , 1 2β β>  , 0 1i iα β≤ + ≤  
1 1 2 2

* *

, , .A Aα β α β⊇  

iii. Since for every pair of  sequences { } { },
m m

Iα β ⊆
 

such that 
m

α α↑  and ,
m

β β↓  

( ) ( )* *

, ,
1

m m
n n

a
n

A A
β α β

∞

=

=∩ and ( )*, 0send n nD A A → , it is obtained that 

( ) ( )* *

, ,
1

m
a a

n m n

A cl A
β β

∞ ∞

= ≥

 
=  

 
∩ ∪ ( ) ( )* *

, ,
1 1 1

k k k k
m

n m n n n

cl A A
α β α β

∞ ∞ ∞ ∞

= ≥ = =

  
= =  

  
∩ ∪ ∩ ∩  

 

This completes the proof.  � 
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