
ICIFSS, 8–10 January 2018, Erode, Tamil Nadu, India
Notes on Intuitionistic Fuzzy Sets
Print ISSN 1310–4926, Online ISSN 2367–8283
Vol. 24, 2018, No. 1, 110–119
DOI: 10.7546/nifs.2018.24.1.110-119

InterCriteria analysis results
based on different number of objects

Dafina Zoteva and Olympia Roeva
Institute of Biophysics and Biomedical Engineering

Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria

e-mails: dafy.zoteva@gmail.com, olympia@biomed.bas.bg

Received: 22 September 2017 Accepted: 27 October 2017

Abstract: InterCriteria Analysis (ICrA) results based on different number of objects are inves-
tigated in this paper. To evaluate the influence of the number of objects, data from parameter
identification procedures of an E. coli fed-batch fermentation process model are used. Model pa-
rameters are estimated applying 100 genetic algorithms with different mutation rate values. Seven
different index matrices are constructed for ICrA. The results show that the number of objects in
ICrA is important for the reliability of the obtained results.
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1 Introduction

A contemporary approach for multicriteria decision making, named InterCriteria Analysis (ICrA),
is proposed in [4]. This approach implements the means of the index matrices (IM) and intuition-
istic fuzzy sets (IFS), aiming a comparison of predefined criteria and the objects estimated by
them.

ICrA has been applied for the first time in the field of model parameter identification of fer-
mentation processes (FP) using genetic algorithms (GAs) in [10]. Series of papers with ICrA
applications in this area have been published since then, for example [1, 14, 15]. ICrA has been
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proven to be an appropriate approach for establishing the correlations between model and opti-
mization algorithm parameters, when given parameters are considered as criteria. The reported
results confirm some existing dependencies that are based on the physical meaning of the FP
model parameters and the stochastic nature of GAs.

There is a lack of studies in the literature about the influence of the number of objects on
the ICrA results. It is important to determine the number of objects that are sufficient to obtain
reliable results from the ICrA application. It can be assumed that the larger the number of objects
are used in the analysis, the more reliable the results will be. But, at least how many objects are
enough to be able to rely on the results?

The current research is an attempt to investigate the impact of the different number of objects
on the InterCriteria analysis results in the particular test case. It is a very important issue concern-
ing the application of ICrA in the field of model parameter identification of FP. Any additional
exploring of the FP model is valuable in the case of modelling living systems, such as FP. More-
over, the relation between mathematical model and optimization algorithm will be established. In
order to improve both mathematical modelling and optimization algorithm performance reliable
and secure results are needed.

Data from series of parameter identification procedures of an E. coli fed-batch fermentation
model are used to construct several IMs with different number of objects. ICrA is applied over
the so defined IMs and the results are discussed.

The paper is organized as follows: Section 2 presents the background of ICrA. Numerical
results and discussion are presented in Section 3 and conclusion remarks are given in Section 4.

2 InterCriteria analysis

Following [4] and [2], an Intuitionistic Fuzzy Pair (IFP), as the degrees of “agreement” and “dis-
agreement” between two criteria applied on different objects, will be obtained. As a remainder,
an IFP is an ordered pair of real non-negative numbers 〈a, b〉, such that a+ b ≤ 1.

For clarity, let an IM [3], whose index sets consist of the names of the criteria (for rows) and
objects (for columns), be given. The elements of this IM are further supposed to be real numbers,
which is not required in the general case. An IM with index sets, consisting of the names of the
criteria, and IFPs, corresponding to the “agreement” and “disagreement” of the respective criteria,
as elements will be obtained.

Let O denotes the set of all objects being evaluated, and C(O) is the set of values assigned by
a given criteria C (i.e., C = Cp for some fixed p) to the objects, i.e.,

O
def
= {O1, O2, O3, . . . , On}, C(O)

def
= {C(O1), C(O2), C(O3), . . . , C(On)}.

Let xi = C(Oi). Then the following set can be defined:

C∗(O)
def
= {〈xi, xj〉|i 6= j& 〈xi, xj〉 ∈ C(O)× C(O)}.

Further, if x = C(Oi) and y = C(Oj), x ≺ y will be written iff i < j. The vectors of all
internal comparisons for each criterion are constructed in order to find the agreement of different
criteria. The elements of the vectors fulfil one of the three relations R, R and R̃ :
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〈x, y〉 ∈ R⇔ 〈y, x〉 ∈ R, (1)

〈x, y〉 ∈ R̃⇔ 〈x, y〉 /∈ (R ∪R), (2)

R ∪R ∪ R̃ = C∗(O). (3)

For example, if “R” is the relation “<”, then R is the relation “>”, and vice versa.
Hence, for the effective calculation of the vector of internal comparisons, denoted further by

V (C), only the subset of C(O)× C(O) needs to be considered, namely:

C≺(O)
def
= {〈x, y〉| x ≺ y & 〈x, y〉 ∈ C(O)× C(O),

due to Eqs. (1)–(3). For brevity, ci,j = 〈C(Oi), C(Oj)〉. Then, the vector with lexicographically
ordered pairs as elements is constructed for a fixed criterion C:

V (C) = {c1,2, c1,3, . . . , c1,n, c2,3, c2,4, . . . , c2,n, c3,4, . . . , c3,n, . . . , cn−1,n}. (4)

Further, the vector V (C) is replaced with V̂ (C), where for the k-th component, 1 ≤ k ≤
n(n−1)

2
, it is true:

V̂k(C) =


1 iff Vk(C) ∈ R,
−1 iff Vk(C) ∈ R,
0 otherwise.

Then, the degree of “agreement” between two criteria, which are to be compared, is determined

as the number of the matching components, divided by the length of the vector for the purpose
of normalization. This can be done in several ways, e.g. by counting the matches or by taking
the complement of the Hamming distance. The degree of “disagreement” is the number of the
components of opposing signs in the two vectors, again normalized by the length. This also may
be done in various ways.

If the respective degrees of “agreement” and “disagreement” are denoted by µC,C′ and νC,C′ ,

it is obvious (from the way of computation) that µC,C′ = µC′,C and νC,C′ = νC′,C . Also it is true
that 〈µC,C′ , νC,C′〉 is an IFP.

The sum µC,C′ + νC,C′ is equal to 1 in the most of the obtained pairs 〈µC,C′ , νC,C′〉. However,
there may be some pairs, for which this sum is less than 1. The difference

πC,C′ = 1− µC,C′ − νC,C′ (5)

is the degree of “uncertainty”.
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3 Numerical results and discussion

3.1 Parameter identification of a mathematical model
of an E. coli fed-batch fermentation process

The mathematical model of the E. coli fed-batch FP has the form [6]:

dX

dt
= µX − Fin

V
X (6)

dS

dt
= −qSX +

Fin

V
(Sin − S) (7)

dV

dt
= Fin (8)

where
µ = µmax

S

kS + S
, qS =

1

YS/X
µ (9)

and X is the biomass concentration, [g/l]; S is the substrate concentration, [g/l]; Fin is the feed-
ing rate, [l/h]; V is the bioreactor volume, [l]; Sin is the substrate concentration in the feeding
solution, [g/l]; µ and qS are the specific rate functions, [1/h]; µmax is the maximum value of the
µ, [1/h]; kS is the saturation constant, [g/l]; YS/X is the yield coefficient, [-].

Real experimental data for biomass and glucose concentration are used in the model param-
eters identification. The detailed description of the process conditions and experimental data are
presented in [11, 13].

3.2 Optimization criterion

The objective function is considered as a mean square deviation between the experimental data
trajectories and the ones predicted by the model, defined as:

J =
m∑
i=1

(Xexp(i)−Xmod(i))
2 +

n∑
i=1

(Sexp(i)− Smod(i))
2 → min (10)

wherem and n are the experimental data dimensions; Xexp and Sexp – available experimental data
for biomass and substrate; Xmod and Smod – model predictions for biomass and substrate with a
given model parameter vector, p = [µmax kS YS/X ].

3.3 Genetic algorithm identification

Genetic algorithm, initially presented in Goldberg [8], searches a global optimal solution using
three main genetic operators in a sequence selection, crossover and mutation. GA starts with a
creation of a randomly generated initial population. Each solution is then evaluated and assigned a
fitness value. According to the fitness function, the most suitable solutions are selected. After that,
crossover proceeds to form a new offspring. Mutation is next applied with specified probability,
aiming to prevent falling of all solutions into a local optimum. The execution of the GA has been
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repeated until the termination criterion (i.e. reached number of populations, or when a solution
with specified tolerance is found, etc.) is satisfied.

When applying GA, there are many operators, functions, parameters, and settings in the GAs
that can be implemented specifically for different problems. For the parameter identification prob-
lem considered here, the GA operators and parameters are tuned as follows: crossover operators
are double point; mutation operators – bit inversion; selection operators – roulette wheel selec-
tion; number of generations – maxgen = 100; crossover rate – pc = 0.7; number of individuals –
nind = 100 and generation gap – ggap = 0.97. The GA parameter mutation rate pm is varied in
the range pm = [0.001 : 0.001 : 0.1]. The pm values are chosen based on the results in [7, 9, 12].
While the mutation rate is varied using vector pm, all the other parameters and operators are kept
constant. As a result, 100 differently tuned GAs are produced.

30 independent runs have been performed for each GA. The obtained model parameters esti-
mates (µmax, kS, YS/X), total computation time and objective function value are recorded. As a
result, 3000 records are obtained – 30 estimates of µmax, kS and YS/X for each of the 100 GAs,
where GA1 corresponds to pm = 0.001, GA2 corresponds to pm = 0.002, etc. These results are
further processed in order to generate one main IM with elements the average values of the five
criteria (J(C1), T (C2), µmax(C3), kS(C4), YS/X(C5)) of every 30 runs (estimates). The rows
of the IM represent the five criteria and the columns are the 100 objects (100 differently tuned
GAs – GA1, GA2, ..., GA99, GA100):

IMaverage =

GA1 GA2 ... GA99 GA100

C1

C2 average

C3 values

C4

C5

To investigate the influence of the objects number on ICrA results seven IMs are defined, as
follows:

• IM1 with 11 objects (the results from GA1, GA10, GA20, GA30, GA40, GA50, GA60, GA70,
GA80, GA90 and GA100 are included):

IM1 =

GA1 GA10 GA20 GA30 GA40 GA50 GA60 GA70 GA80 GA90 GA100

C1 4, 5166 4, 5690 4, 5198 4, 5017 4, 5114 4, 4946 4, 4935 4, 4773 4, 4999 4, 5380 4, 5257

C2 62, 249 61, 812 61, 626 61, 692 61, 891 61, 967 61, 985 62, 024 62, 057 61, 693 62, 072

C3 0, 4865 0, 4949 0, 4910 0, 4888 0, 4883 0, 4878 0, 4852 0, 4857 0, 4853 0, 4937 0, 4877

C4 0, 0117 0, 0133 0, 0126 0, 0121 0, 0120 0, 0119 0, 0114 0, 0116 0, 0114 0, 0130 0, 0119

C5 2, 0214 2, 0216 2, 0217 2, 0218 2, 0214 2, 0215 2, 0215 2, 0212 2, 0215 2, 0223 2, 0213

(11)

• IM2 with 25 objects (the results from GA1, GA5, GA9, GA13, GA17, GA21, GA25, GA29,
GA33, GA37, GA41, GA45, GA49, GA53, GA57, GA61, GA65, GA69, GA73, GA77, GA81,
GA85, GA89, GA93 and GA100 are included).
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• IM3 with 34 objects (the results from GA1, GA4, GA7, GA10, GA13, GA16, GA19, GA22,
GA25, GA28, GA31, GA34, GA37, GA40, GA43, GA46, GA49, GA52, GA55, GA58, GA61,
GA64,GA67, GA70, GA73, GA76, GA79, GA82, GA85, GA88, GA91, GA94, GA97 andGA100

are included).

• IM4 with 50 objects (the results from GA1, GA3, GA5, GA7, GA9, GA11, GA13, GA15,
GA17, GA19, GA21, GA23, GA25, GA27, GA29, GA31, GA33, GA35, GA37, GA39, GA41,
GA43, GA45, GA47, GA49, GA51, GA53, GA55, GA57, GA59, GA61, GA63, GA65, GA67,
GA69, GA71, GA73, GA75, GA77, GA79, GA81, GA83, GA85, GA87, GA89, GA91, GA93,
GA95, GA97 and GA100 are included).

• IM5 with 67 objects (the results from GA1, GA3, GA4, GA6, GA7, GA9, GA10, GA12,
GA13, GA15, GA16, GA18, GA19, GA21, GA22, GA24, GA25, GA27, GA28, GA30, GA31,
GA33, GA34, GA36, GA37, GA39, GA40, GA42, GA43, GA45, GA46, GA48, GA49, GA51,
GA52, GA54, GA55, GA57, GA58, GA60, GA61, GA63, GA64, GA66, GA67, GA69, GA70,
GA72, GA73, GA75, GA76, GA78, GA79, GA81, GA82, GA84, GA85, GA87, GA88, GA90,
GA91, GA93, GA94, GA96, GA97, GA99 and GA100 are included).

• IM6 with 83 objects (the results from GA1, GA3, GA4, GA5, GA6, GA7, GA9, GA10,
GA11, GA12, GA13, GA15, GA16, GA17, GA18, GA19, GA21, GA22, GA23, GA24, GA25,
GA27, GA28, GA29, GA30, GA31, GA33, GA34, GA35, GA36, GA37, GA39, GA40, GA41,
GA42, GA43, GA45, GA46, GA47, GA48, GA49, GA51, GA52, GA53, GA54, GA55, GA57,
GA58, GA59, GA60, GA61, GA63, GA64, GA65, GA66, GA67, GA69, GA70, GA71, GA72,
GA73, GA75, GA76, GA77, GA78, GA79, GA81, GA82, GA83, GA84, GA85, GA87, GA88,
GA89, GA90, GA91, GA93, GA94, GA95, GA96, GA97, GA99 and GA100 are included).

• IM7 with 100 objects (the results from all 100 GAs are included).

The IM1−IM7 are available at http://intercriteria.net/studies/gap/mutr/
(XLS file).

3.4 InterCriteria analysis of results

ICrA is applied on the 7 IMs. The obtained results are presented in the form of IM (12). They
are analysed based on the scale proposed in [5], which defines the consonance and dissonance
between the criteria pairs (see Table 1).

Based on the values of degree of “agreement”, µC,C′ , and degree of “disagreement”, νC,C′ , the
following conclusions could be made:

• The existing relations and dependencies for some of the criteria pairs are so established that
the variation of the number of objects does not affect the results substantially. For example:

– Criteria pair C1−C2: the observed µC,C′ values show that the criteria pair is in strong
dissonance and only in the case of IM1 the pair is in dissonance;

– Criteria pair C1 − C5: in this case the pair is in dissonance for all IMs;
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Table 1: Consonance and dissonance scale [5]
Interval of µC,C′ Meaning

[0-0.5] strong negative consonance (SNC)
(0.5-0.15] negative consonance (NC)

(0.15-0.25] weak negative consonance (WNC)
(0.25-0.33] weak dissonance (WD)
(0.33-0.43] dissonance (D)
(0.43-0.57] strong dissonance (SD)
(0.57-0.67] dissonance (D)
(0.67-0.75] weak dissonance (WD)
(0.75-0.85] weak positive consonance (WPC)
(0.85-0.95] positive consonance (PC)
(0.95-1.00] strong positive consonance (SPC)

– Criteria pair C3 − C5: the here observed µC,C′ values show that the criteria pair is in
dissonance and in the cases of IM1 and IM2 the pair is in weak dissonance;

– Criteria pair C4 − C5: the observed µC,C′ values show that the criteria pair is in
dissonance and again only in the case of IM1 the pair is in weak dissonance.

As it can be seen, an alteration in the obtained µ values is observed exactly in the cases of
IM1 and IM2, i.e. in the case of a small number of objects. To the contrary, the obtained
results are stable, when a larger number of objects is considered.

• For other criteria pairs, the existing relations are not so established and the variation of the
number of objects has impact on the results. For example:

– Criteria pairs C1 − C3 and C1 − C4: the obtained µC,C′ values show that the criteria
pairs are in weak dissonance, while in the case of IM1 the pairs are in weak positive
consonance;

– Criteria pairs C2 − C3, C2 − C4 and C2 − C5: the obtained µC,C′ values show that
the criteria pairs are mainly in dissonance (from weak dissonance to dissonance, see
Table 1), while in the case of IM1 weak negative consonance between the pairs is
observed.

In this case, the use of a small number of objects could lead to some incorrect assumptions.
For example, to conclude that a criteria pair is in consonance (dependence) to be made,
while in fact the criteria are independent.

• Finally, there is a criteria pair C3 −C4 for which a high degree of “agreement” is observed
no matter the number of used objects in the ICrA. For all IMs µ values, as 0.96 and 0.97,
i.e. strong positive consonance, are obtained.
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4 Conclusion

The influence of different number of objects on the InterCriteria analysis results is explored in
this paper. The research is done on the basis of particular test case – parameter identification
procedures of an E. coli fed-batch fermentation model.

Data from 100 series of parameter identification procedures are used to construct several IMs
with different number of objects. ICrA is applied on the so defined IMs.

The results show the importance of the number of objects for the reliability of the obtained
ICrA results.
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