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Abstract: The structure of an Intuitionistic Fuzzy Graph (IFG) depends mainly on its arcs, as

in crisp graphs. In an IFG, the arcs are classified into α-strong, β-strong and δ-weak, based on

its strength. These arcs are used to study the structure of complete IFG and constant IFG. Their

properties have also been studied.
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1 Introduction

Intuitionistic Fuzzy Graph theory was introduced by Krassimir T Atanassov in [1]. In [7],

M.G. Karunambigai and R. Parvathi introduced intuitionistic fuzzy graph as a special case of

Atanassov’s IFG. In [10], these concepts had been applied to find the shortest path in networks

using dynamic programming problem approach. Further in [10], some important operations on

IFGs are defined and their properties are studied. Constant Intuitionistic Fuzzy Graph was intro-

duced by M.G. Karunambigai, R. Parvathi, and R. Buvaneswari in [8].

In [9]. the authors classified strong arcs into two types namely α-strong, β-strong and in-

troduced two other types of arcs in fuzzy graphs which are not strong and are termed as δ, δ∗

arcs.
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In graph theory, arc analysis is not very important as all arcs are strong in the sense of [4].

But in IFG, it is very important to identify the nature of arcs and no such analysis on arcs is

available in the literature. Also, as far as the applications are concerned, the classification of

arcs highlights the importance of each arc, which will be improving the efficiency of the system

especially in problems involving networks.

In this paper, depending on the strength of connectedness between two nodes, the authors

extended the study of α-strong, β-strong and δ-weak with suitable illustrations. Necessary and

sufficient conditions for their equivalence is studied here. The paper is organised as follows:

Section 2 contains preliminaries and in section 3, we introduce the concept of α-strong, β-

strong, and δ-weak arcs. In this section, we emphasis that the connectivity of arcs cannot be

determined simply by examining the weights of arcs and also we examine the relationship be-

tween a strong path and a strongest path in an IFG. We show that an arc (vi, vj) of G is an IF

bridge if and only if it is α-strong. It is seen that complete IFGs have no δ-arcs and has atmost

one α-strong arc. We also analyse the connectivity of arcs in constant IFGs.

2 Preliminaries

In this section, some basic definitions and theorems which are used in constructing the properties

relating to IFGs are given.

Definition 2.1. [10] Minmax Intuitionistic Fuzzy Graph (IFG) is of the form G = (V,E), where

(i) V = {v1, v2, . . . vn} such that µ1 : V → [0, 1] and ν1 : V → [0, 1] denote the degrees of

membership and non - membership of the element vi ∈ V respectively and 0 ≤ µ1(vi)+ν1(vi) ≤

1, for every vi ∈ V (i = 1, 2, . . . , n).

(ii) E ⊂ V × V where µ2 : V × V → [0, 1] and ν2 : V × V → [0, 1] are such that

µ2(vi, vj) ≤ min[µ1(vi), µ1(vj)]

ν2(vi, vj) ≤ max[ν1(vi), ν1(vj)]

and 0 ≤ µ2(vi, vj) + ν2(vi, vj) ≤ 1 for every (vi, vj) ∈ E.

Here the triple (vi, µ1i, ν1i) denotes the degree of membership and degree of non - membership

of the vertex vi. The triple (eij, µ2ij , ν2ij) denotes the degree of membership and degree of non -

membership of the edge relation eij = (vi, vj) on V × V .

Notation: Here after an IFG, G = (V,E) means a Minmax IFG G = (V,E).

Note 1. When µ2ij = ν2ij = 0 for some i and j, then there is no edge between vi and vj .

Otherwise there exists an edge between vi and vj .

Definition 2.2. [10] An IFG, G = 〈V,E〉 is said to be a semi-µ strong IFG if µ2ij = min(µ1i, µ1j)

for every i and j.

Definition 2.3. [10] An IFG, G = 〈V,E〉 is said to be a semi-ν strong IFG if ν2ij = max(ν1i, ν1j)

for every i and j.
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Definition 2.4. [10] An IFG, G = 〈V,E〉 is said to be strong IFG if µ2ij = min(µ1i, µ1j) and

ν2ij = max(ν1i, ν1j) for all (vi, vj) ∈ E.

Definition 2.5. [10] An IFG, G = 〈V,E〉 is said to be a complete-µ strong IFG if µ2ij =

min(µ1i, µ1j) and ν2ij < max(ν1i, ν1j) for all i and j.

Definition 2.6. [10] An IFG, G = 〈V,E〉 is said to be a complete-ν strong IFG if µ2ij <

min(µ1i, µ1j) and ν2ij = max(ν1i, ν1j) for all i and j.

Definition 2.7. [10] An IFG, G = 〈V,E〉 is said to be a complete IFG if µ2ij = min(µ1i, µ1j)

and ν2ij = max(ν1i, ν1j) for every vi, vj ∈ V

Definition 2.8. [8] Let G = ((µ1, ν1) , (µ2, ν2)) be an IFG. The µ- degree of a vertex v1 is

dµ(vi) =
∑

(vi,vj)∈E

µ2(vi, vj)

The ν- degree of a vertex v1 is

dν(vi) =
∑

(vi,vj)∈E

ν2(vi, vj)

The degree of a vertex is

d(vi) =

[

∑

vi,vj∈E

(µ2(vi, vj)) ,
∑

(vi,vj)∈E

(ν2(vi, vj))

]

and µ2(vi, vj) = ν2(vi, vj) = 0 for

(vi, vj) /∈ E.

Definition 2.9. [8] The minimum µ-degree is δµ(G) = ∧{dµ(vi)/vi ∈ V }

The minimum ν-degree is δν(G) = ∧{dν(vi)/vi ∈ V }

The minimum degree of G is δ(G) = ∧{dµ(vi), dν(vi)/vi ∈ V }

The maximum µ-degree is ∆µ(G) = ∨{dµ(vi)/vi ∈ V }

The maximum ν-degree is ∆ν(G) = ∨{dν(vi)/vi ∈ V }

The maximum degree of G is ∆(G) = ∨{dµ(vi), dν(vi)/vi ∈ V }

Definition 2.10. [8] Let G : [(µ1i, ν1i) , (µ2ij, ν2ij)] be an IFG on G∗ = (V,E). If dµ(vi) = ki and

dν(vj) = kj for all vi, vj ∈ V i.e the graph is called as (ki, kj)-IFG (or) constant IFG of degree

(ki, kj)

Definition 2.11. [8] Let G be an IFG. The total degree of a vertex v ∈ V is defined as

td(v) =

[

∑

v1v2∈E

dµ2
(v) + µ1(v),

∑

v1v2∈E

dν2(v) + ν1(v)

]

If each vertex of G has the same total degree (r1, r2), then G is said to be an IFG of total degree

(r1, r2) or a (r1, r2)-totally constant IFG.
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3 Types of arcs in IFGs and its properties

Definition 3.1. A path P in an IFG sequence of distinct vertices v1, v2, ...., vn for all (i, j =

1, 2, ..., n) such that either one of the following conditions is satisfied.

i) µ2ij > 0 and ν2ij = 0 for some i and j.

ii) µ2ij = 0 and ν2ij > 0 for some i and j.

iii) µ2ij > 0 and ν2ij > 0 for some i and j.

Definition 3.2. The µ − strength of a path P = v1, v2, ...., vn is defined as min {µ2ij} for all

(i, j = 1, 2, ...n) and it is denoted by Sµ.

Definition 3.3. The ν − strength of a path P = v1, v2, ...., vn is defined as max {ν2ij} for all

(i, j = 1, 2, ...n) and it is denoted by Sν .

Note 2. If same edge possess both the values (Sµ, Sν), then it is the strength of the path P and is

denoted by SP .

Definition 3.4. If vi, vj ∈ V ⊆ G, the µ - strength of connectedness between two nodes vi and vj
is CONNµ(G)(vi, vj) = max {Sµ} and ν - strength of connectedness between two nodes vi and

vj is CONNν(G)(vi, vj) = min {Sν} of all possible paths between vi and vj .

Note 3. CONNµ(G)−(vi,vj)(vi, vj), CONNν(G)−(vi,vj)(vi, vj) is the strength of connectedness be-

tween vi and vj in the IFG obtained from G by deleting the arc (vi, vj).

Definition 3.5. An arc (vi, vj) is said to be a bridge in G, if either CONNµ(G)−(vi,vj)(vi, vj) <

CONNµ(G)(vi, vj) and

CONNν(G)−(vi,vj)(vi, vj) ≥ CONNν(G)(vi, vj)

or

CONNµ(G)−(vi,vj)(vi, vj) ≤ CONNµ(G)(vi, vj)

and

CONNν(G)−(vi,vj)(vi, vj) > CONNν(G)(vi, vj)

for some vi, vj ∈ V .

In other words, deleting an edge (vi, vj) reduces the strength of connectedness between some pair

of vertices (or) (vi, vj) is a bridge if there exist vertices vi, vj such that (vi, vj) is an edge of every

strongest path from vi to vj .

Definition 3.6. A vertex vi is said to be a cut-vertex in G if deleting a vertex vi reduces the

strength of connectedness between some pair of vertices or vi is a cut vertex if and only if

there exists vivj such that vi is a vertex of every strongest path from vi to vj . In other words,

CONNµ(G)−(vi,vj)(vi, vj) ≤ CONNµ(G)(vi, vj) and

CONNν(G)−(vi,vj)(vi, vj) < CONNν(G)(vi, vj)
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or

CONNµ(G)−(vi,vj)(vi, vj) < CONNµ(G)(vi, vj)

and

CONNν(G)−(vi,vj)(vi, vj) ≤ CONNν(G)(vi, vj)

, for some vi, vj ∈ V .

Definition 3.7. An arc (vi, vj) is said to be a strong arc if µ2ij ≥ CONNµ(G)(vi, vj) and ν2ij ≤

CONNν(G)(vi, vj) for every vi, vj ∈ V .

Definition 3.8. An arc (vi, vj) is said to be the weakest arc if µ2ij < CONNµ(G)(vi, vj) and

ν2ij > CONNν(G)(vi, vj) for every vi, vj ∈ V .

Definition 3.9. In an IFG G = (V,E), a path P between any two nodes is called the strongest path

if its strength equals the strength of connectedness CONNµ(G)(vi, vj) and CONNν(G)(vi, vj) and

both the values lie in the same edge.

Definition 3.10. A vi− vj path P in an IFG G = (V,E) is called a strong path if P contains only

strong arcs.

b

b

b

b

b
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v2(0.6,0.3)
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(0.2,0.8)

v4(0.4,0.6)
(0.6,0.4)v5

(0.3,0.6)

(0
.4

,0
.3

)

(0
.6

,0
.4

)

Figure 3.1:

Example 3.1. In Figure 3.1, (v1, v2), (v1, v5), (v2, v3), (v2, v4) are strong arcs, (v3, v4), (v4, v5) are

weakest arcs. Depending on the strength of connectedness between the nodes v1 and v3, the path

P = v1v2v3 is strong path and it is also the strongest path.

Depending on the strength of arcs (vi, vj) in an IFG, we define the following three different

connectivity of arcs.

Definition 3.11. An arc (vi, vj) in G is called α-strong if µ2ij > CONNµ(G)−(vi,vj)(vi, vj) and

ν2ij < CONNν(G)−(vi,vj)(vi, vj).

Definition 3.12. An arc (vi, vj) in G is called β-strong if µ2ij = CONNµ(G)−(vi,vj)(vi, vj) and

ν2ij = CONNν(G)−(vi,vj)(vi, vj).

Definition 3.13. An arc (vi, vj) in G is called δ-weak if µ2ij < CONNµ(G)−(vi,vj)(vi, vj) and

ν2ij > CONNν(G)−(vi,vj)(vi, vj).

Example 3.2. In Figure 3.2, the arcs (v1, v4), (v2, v3), (v4, v5) are α-strong, (v1, v3), (v3, v4) are

β-strong, (v1, v2), (v3, v5) are δ-weak.
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Figure 3.2: Connectivity of arcs in an IFG

Definition 3.14. A path in an IFG G = (V,E) is called an α-strong path if all its arcs are α-strong

and also a path is β-strong path if all its arcs are β-strong.

Example 3.3. In Figure 3.2, the path v1v4v5 is an α-strong path and the path v1v3v4 is a β-strong

path.

Now we discuss the connectivity of arcs of the strongest path in G.

Remark 3.1. The strongest path may contain all types of arcs.

In Figure 3.2, the strength of the path v1v2v3v4v5 is (0.1, 0.6), which is the strongest path between

the nodes v1 and v5 and it contains all types of arcs, namely α-strong, β-strong, and δ-weak.

Remark 3.2. A strong path contains only α-strong or β-strong arcs, but no δ-weak arcs.

In Figure 3.2, the strong path between the nodes v1 and v5 is v1v3v4v5. It contains only α-strong

and β-strong arcs.

Remark 3.3. It is to be noted that the strongest path without δ-weak arc is a strong path; for,

it contains only α-strong or β-strong arcs. In Figure 3.2, the path v1v3v4v5 is the strongest path

without δ-arc between the nodes v1 and v5, but it is strong path too.

Proposition 3.1. Let G = (V,E) be an IFG. A strong path P in G from the vertices vi to vj in V,

is the strongest vivj path in the following cases:

(i) if P contains only α-strong arcs,

(ii) if P is the unique strong vivj path,

(iii) if all vivj paths in G are of equal strength.

Proof. (i) Given that G = (V,E) be an IFG. Let P be a strong vivj path in G contains only

α-strong arcs. If possible suppose that P is not the strongest vivj path. Let Q be the strongest

vivj path in G. Then PUQ will contain at least one cycle C in which every arc of C − P will

have strength greater than strength of P . Thus a weakest arc of C is an arc of P and let (u, v) be

such an arc of C. Let C ′ be the uv path in C, not containing the arc (u, v). Then,

µ2(u, v) < strength of C
′

≤ CONNµ(G)−(vi,vj)(vi, vj)

ν2(u, v) > strength of C
′

≥ CONNν(G)−(vi,vj)(vi, vj)
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which implies that (u, v) is not α-strong , a contradiction. Thus P is the strongest vivj path.

(ii) Let G = (V,E) be an IFG. Let P be the unique strong vivj path in G. If possible suppose

that P is not the strongest vivj path. Let Q be the strongest vivjpath in G. Then, strength of

Q > strength of P for every arc (u, v) in Q, µ2(u, v) > µ2(v
′

i, v
′

j) and ν2(u, v) < ν2(v
′

i, v
′

j) where

(v
′

i, v
′

j) is a weakest arc of P .

Claim. Q is a strong vivj path. For, otherwise, if there exists an arc (u, v) in Q which is a

δ-arc, then

µ2(u, v) < CONNµ(G)−(vi,vj)(vi, vj) ≤ CONNµ(G)(vi, vj)

ν2(u, v) > CONNν(G)−(vi,vj)(vi, vj) ≥ CONNν(G)(vi, vj)

and hence

µ2(u, v) < CONNµ(G)(vi, vj)

ν2(u, v) > CONNν(G)(vi, vj)

Then there exists a path from u to v in G whose strength is greater than µ2(u, v) and less than

ν2(u, v). Let it be P
′

. Let w be the last node after u, common to Q and P
′

in the uw subpath of

P
′

and w
′

be the first node before v, common to Q and P
′

in the w
′

v subpath of P
′

. (If P
′

and

Qare disjoint uv paths then w = u and w
′

= v). Then the path P
′

consisting of the xw path of

Q, ww
′

path of P
′

, and w
′

vj path of Q is an vivj path in G such that strength of P
′

> strength of

Q, contradiction to the assumption that Q is the strongest vivj path in G. Thus (u, v) cannot be a

δ-arc, and hence Q is a strong vivj path in G.

Thus we have another strong path from vi to vj , other than P , which is a contradiction to the

assumption that P is the unique strong vivj path in G. Hence P should be the strongest vivj path

in G.

(iii) If every path from vi to vj have the same strength, then each such path is the strongest

vivj path. In particular, a strong vivj path is the strongest vivj path.

In the following theorem, we present a necessary and sufficient condition for IF bridges.

Let G be an IFG. Then an arc (vi, vj) of G is an IF bridge iff it is α-strong.

Proof. Let G be an IFG. Let (vi, vj) be an IF bridge. By the definition of bridge, we have

CONNµ(G)−(vi,vj)(vi, vj) ≤ CONNµ(G)(vi, vj), then, CONNµ(G)(vi, vj) = µ2ij ,

µ2ij > CONNµ(G)−(vi,vj)(vi, vj)

and CONNν(G)−(vi,vj)(vi, vj) > CONNν(G)(vi, vj), then, CONNν(G)(vi, vj) = ν2ij ,

ν2ij < CONNν(G)−(vi,vj)(vi, vj)

which shows that (vi, vj) is α-strong.

Conversely suppose that (vi, vj) is α-strong. Then by definition, it follows that vivj is the

unique strongest path from vi to vj and the removal of (vi, vj) will reduce the strength of con-

nectedness between vi and vj . Thus (vi, vj) is IF bridge. Note that if an arc (vi, vj) in G is an IF

bridge, then

CONNµ(G)(vi, vj) = µ2ij

CONNν(G)(vi, vj) = ν2ij
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The converse of the above theorem need not be true.

Example 3.4. Let G = (V,E) be an IFG and V = {v1, v2, v3}, E={(v1, v2), (v1, v3), (v2, v3)}.

Here (v1, v3), (v1, v2) are α-strong and these are bridges of G.

b

bb

v1(0.5,0.4)

v2(0.3,0.6)(0.4,0.5)v3

(0
.4

,0
.5

)

(0.2,0.5)

(0.1,0.6)

Figure 3.3: Arcs in IF bridge

Lemma 3.2. A complete IFG has no δ-arcs.

Proof. Let G be a complete IFG. If possible assume that G contains a δ-arc (vi, vj), then

µ2ij < CONNµ(G)−(vi,vj)(vi, vj)

ν2ij > CONNν(G)−(vi,vj)(vi, vj)

That is, there exists a stronger path P other than the arc (vi, vj) from vi to vj in G.

Let µ2(v1, v2) = p1, ν2(v1, v2) = p2. The strength of the path P be (q1, q2). Then, p1 <

q1, p2 > q2.

Let v3 be the first node in P after v1. Then µ2(v1, v3) > p1 and ν2(v1, v3) < p2

Similarly, Let v4 be the last in P before v2, then µ2(v2, v4) > p1 and ν2(v2, v4) < p2

Since, µ2(v1, v2) = p1, ν2(v1, v2) = p2, atleast one of µ1(v1) or µ1(v2) and ν1(v1) or ν1(v2)

should be the p1 and p2. Now G is being a complete IFG, it gives the contradiction, which

completes the proof.

Example 3.5. Consider an IFG, G = (V,E) such that V = {v1, v2, v3, v4}. This complete IFG

has no δ-arcs.
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Figure 3.4: Arcs in complete IFG

Lemma 3.3. There exists at most one α-strong arc in a complete IFG.

Example 3.6. In Figure 3.4, the arc (v1, v3) is at most one α-strong in a complete IFG.

Theorem 3.4. Let G be a complete IFG. Then there exists β-strong paths between any two nodes

of G.
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Example 3.7. In Figure 3.4, there exists the path 1: v1v2v3v4, Path 2: v1v2v4 are β-strong paths

between the nodes v1 and v4.

Theorem 3.5. Let G be a complete IFG without α-strong arcs. Let P be any vivj path in G. Then

the following two conditions are equivalent.

(i) P is a strong vivj path

(ii) P is the strongest vivj path

Proof. (i)⇒ (ii)

Let G be a complete IFG without a α-strong arcs and let P be any vivj path in G. Assume

that P is a strong vivj path. Then by definition, all arcs in G are β-strong arcs.

CONNµ(G)−(vi,vj)(vi, vj) = µ2ij = µ-strength of P

CONNν(G)−(vi,vj)(vi, vj) = ν2ij = ν-strength of P

Now since G is complete,

CONNµ(G)(vi, vj) = µ2ij

CONNν(G)(vi, vj) = ν2ij

From the above

CONNµ(G)(vi, vj) = CONNν(G)(vi, vj) = Strength of P

which implies that P is the strongest path.

(ii) ⇒ (i)

Let P be the strongest vivj path in G. Let the path P contains only β-strong arcs and hence is

a strong vivj path which completes the proof.

Theorem 3.6. Let G = (V,E) be an IFG. The strength of connectedness of G is (CONNµ(G)(vi, vj),

CONNν(G)(vi, vj)). If G is a constant IFG where underlying graph is an even cycle, then G con-

tains alternatively α-strong and β-strong arcs.

Theorem 3.7. Let G = (V,E) be an IFG. G is constant IFG iff either (µ2ij, ν2ij) constant or

alternate edges have same membership values and non-membership values.

Theorem 3.8. For a constant IFG,

Sµ = CONNµ(G)(vi, vj), Sν = CONNν(G)(vi, vj)

Proof. Let G = (V,E) be a constant IFG.

Case 1: (µ2ij, ν2ij) is a constant function. Then,

Sµ = min (µ2ij) = max (Sµ) = CONNµ(G)(vi, vj)

Sν = max (ν2ij) = min(Sν) = CONNν(G)(vi, vj)
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Case 2: Alternate edges have same membership and non-membership values.

Let µ2ij = a and ν2ij = b for (vi, vj) be an edge in G and let µ2(i+1)(j+1) = c and ν2(i+1)(j+1) =

d for (vi+1, vj+1) in G and 0 ≤ a, b, c, d ≤ 1.

Subcase 2.1: Let a < c and b < d. Then,

Sµ = a for all (vi, vj) ∈ P . Sν = d for all (vi, vj) ∈ P .

Therefore,

CONNµ(G)(vi, vj) = max (Sµ) = a for all (vi, vj) ∈ P .

CONNν(G)(vi, vj) = min (Sν) = d for all (vi, vj) ∈ P .

Subcase 2.2: Let a > c and b > d.

Sµ = c for all (vi, vj) ∈ P . Sν = b for all (vi, vj) ∈ P .

Therefore,

CONNµ(G)(vi, vj) = max (Sµ) = c for all (vi, vj) ∈ P .

CONNν(G)(vi, vj) = min (Sν) = b for all (vi, vj) ∈ P .

Hence, for an IFG G = (V,E),

Sµ = CONNµ(G)(vi, vj) and Sν = CONNν(G)(vi, vj) for all (vi, vj) ∈ P .

4 Conclusion

The arcs in an IFG are very rich both in theoretical developments and applications. In this pa-

per, we have seen that the arcs are classified into α-strong, β-strong and δ-weak, based on their

strength. Some interesting properties are also studied. The authors further proposed to work on

the properties of the types of arcs.
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