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Abstract: The concept of intuitionistic fuzzy sets of second type (IFSST) generalizes
intuitionistic fuzzy sets (IFS) and thus, has many applications in decision making problems.
The main feature of IFSST is that it is characterized by three parameters, namely: membership
degree, non-membership degree and degree of indeterminacy in such a way that the sum of the
square of each of the parameters is one. The purpose of this paper is to present the
axiomatic definition of distance between IFSST, taking into account the three parameters that
describe the sets and to investigate numerically, the validity of some distances between
intuitionistic fuzzy sets introduced by E. Szmidt and J. Kacprzyk in IFSST environment. Finally,
we explore the application of IFSST in diagnostic medicine by employing normalized Hamming
distance of IFSST to calculate the distance between patients and diseases, because it provides a
reliable distance with respect to other distances. Actually, by using the distance between patients
and diseases (both in IFSST values), with recourse to the corresponding symptoms observe in
the patients and of the diseases, we determine the illness of the paients. These distances are
suggestible to be deployed in solving multicriteria decision making problems.
Keywords: Diagnostic medicine, Distance measure, Fuzzy set, Intuitionistic fuzzy set, Intuition-
istic fuzzy set of second type.
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1 Introduction

Zadeh [24] introduced the idea of fuzzy set which has a membership function, µ, that assigns
to each element of the universe of discourse, a number from the unit interval [0,1] to indicate
the degree of belongingness to the set under consideration. Fuzzy set was generalized from
classical sets theory by allowing intermediate situations between the whole and nothing. In
a fuzzy set, a membership function which replaces the characteristic function in crisp sets, is
defined to describe the degree of membership of an element to a class. Fuzzy set which is the
extension of crisp set provides a means of representing and handling vagueness and imperfectly
described knowledge. Notwithstanding, a fuzzy set cannot model vagueness precisely because
there is no means to attribute reliability information to the membership degrees. The conspicuous
presence of vagueness/imprecision in life necessitated researchers to develop some mathematical
frameworks that can cope vagueness/imprecision more accurately than fuzzy sets [12].

Out of the several mathematical frameworks which generalize fuzzy sets, the concept of
intuitionistic fuzzy sets (IFS) introduced by Atanassov [1] is interesting and resourceful. IFS
incorporates both a membership function, µ, and a non-membership function, ν, with a hesita-
tion margin, 1 − µ − ν = π. Elaborate exploration on IFS has been carried out, see [2, 4–6].
The idea of IFS seems to be resourceful in modelling many real life situations like negotiation
processes, psychological investigations, reasoning, medical diagnosis, career determination,
among others [7–13, 17–22].

There are cases where µ + ν ≥ 1 unlike in IFS (where µ + ν ≤ 1). This limitation in
IFS naturally led to the generalization of IFS as intuitionistic fuzzy sets of second type (IFSST)
proposed by Atanassov [3]. An identical set called Pythagorean fuzzy set has been studied in
literature [23] without a recourse to IFSST. In fact, Pythagorean fuzzy set is the same as IFSST.
We feel that the development of Pythagorean fuzzy set theory independent of IFSST does not
augur well since IFSST was proposed in 1989 (twenty four years before Pythagorean fuzzy set).

IFSST is a reliable tool to deal with vagueness considering the membership grade, µ and the
non-membership grade, ν satisfying the condition µ + ν ≥ 1. As a generalized set, IFSST has
close relationship with IFS. This construct can be used to characterize uncertain information more
sufficiently and accurately than IFS. Some operations on IFSST have been studied [14].

The notion of distances between IFS [15, 16], which is very applicable in real-life situations,
is the compelling motivation of this paper. In this paper, we extend the idea of distances between
IFS [15, 16] to IFSST and explore their application in medical diagnosis to determine the illness
suffered by patients. We deploy the normalized Hamming distance for the application because it is
the most reliable of the distance measures proposed in IFSST, after a reliability test is conducted.
The paper is organized as follows: Section 2 provides some preliminaries on fuzzy sets, IFS as
foundations to the idea of IFSST, while Section 3 covers the notion of IFSST and some distance
measures between them with their numerical verifications. We present the application of IFSST
to diagnostic medicine in Section 4. Finally, Section 5 concludes the paper and provides direction
for future studies.
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2 Preliminaries

We recall some basic notions of fuzzy sets and intuitionistic fuzzy sets.

2.1 Fuzzy sets

Definition 2.1 ([24]). Let X be a nonempty set. A fuzzy set A of X is characterized by a
membership function µA : X → [0, 1], where

µA(x) =


1, if x ∈ X
0, if x /∈ X
(0, 1) if x is partly in X

Alternatively, a fuzzy set A of X is an object having the form

A = {〈x, µA(x)〉 | x ∈ X} or A =

{〈
µA(x)

x

〉
| x ∈ X

}
,

where the function
µA(x) : X → [0, 1]

defines the degree of membership of the element, x ∈ X .

The closer the membership value µA(x) to 1, the more x belongs to A, where the grades 1 and
0 represent full membership and full non-membership. In classical set theory, the membership of
elements to a set is assessed in binary terms according to a bivalent condition; an element either
belongs or does not belong to the set. Classical bivalent sets are called in fuzzy set theory crisp
sets.

Let us consider two examples;

(i) All employees of XYZ who are over 1.8 m in height.

(ii) All employees of XYZ who are tall.

The first example is a classical set with a universe (all XYZ employees) and a membership
rule that divides the universe into members (those over 1.8 m) and non-members. The second
example is a fuzzy set because some employees are definitely in the set and some are definitely
not in the set, but some are borderline.

This distinction between the ins, the outs and the borderline is made more exact by the mem-
bership function, µ. If we return to our second example and let A represent the fuzzy set of all tall
employees and x represent a member of the universe X (i.e. all employees), then µA(x) would
be µA(x) = 1 if x is definitely tall or µA(x) = 0 if x is definitely not tall or 0 < µA(x) < 1 for
borderline cases.
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2.2 Intuitionistic fuzzy sets

Definition 2.2 ([1, 2]). Let a nonempty set X be fixed. An IFS A of X is an object having the
form

A = {〈x, µA(x), νA(x)〉 | x ∈ X}

or

A =

{〈
µA(x), νA(x)

x

〉
| x ∈ X

}
,

where the functions
µA(x) : X → [0, 1] and νA(x) : X → [0, 1]

define the degree of membership and the degree of non-membership, respectively, of the element
x ∈ X to A, which is a subset of X , and for every x ∈ X ,

0 ≤ µA(x) + νA(x) ≤ 1.

For each A in X,
πA(x) = 1− µA(x)− νA(x)

is the intuitionistic fuzzy set index or hesitation margin of x in X . The hesitation margin πA(x)
is the degree of indeterminacy of the belonging of x ∈ X , to the set A and πA(x) ∈ [0, 1]. The
hesitation margin is the function that expresses lack of knowledge of whether x ∈ X or x /∈ X .
Thus,

µA(x) + νA(x) + πA(x) = 1.

Example 2.3. Let X = {x, y, z} be a fixed universe of discourse and

A =

{〈
0.6, 0.1

x

〉
,

〈
0.8, 0.1

y

〉
,

〈
0.5, 0.3

z

〉}
be an intuitionistic fuzzy set of X . The hesitation margins of the elements x, y, z to A are

πA(x) = 0.3, πA(y) = 0.1 and πA(z) = 0.2.

3 Intuitionistic fuzzy sets of second type

In this section, we succintly discuss some fundamentals of IFSST.

3.1 Concept of intuitionistic fuzzy sets of second type

Definition 3.1 ([3,14]). Let X be a universal set. Then, an IFSST A of X is a set of ordered pairs
defined by

A = {〈x, µA(x), νA(x)〉 | x ∈ X}

or

A =

{〈
µA(x), νA(x)

x

〉
| x ∈ X

}
,
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where the functions
µA(x) : X → [0, 1] and νA(x) : X → [0, 1]

define the degree of membership and the degree of non-membership, respectively, of the element
x ∈ X to A, which is a subset of X , and for every x ∈ X ,

0 ≤ (µA(x))
2 + (νA(x))

2 ≤ 1.

Supposing (µA(x))
2 + (νA(x))

2 ≤ 1, then there is a degree of indeterminacy of x ∈ X to
A defined by πA(x) =

√
1− [(µA(x))2 + (νA(x))2] and πA(x) ∈ [0, 1]. In what follows,

(µA(x))
2+(νA(x))

2+(πA(x))
2 = 1. Otherwise, πA(x) = 0 whenever (µA(x))

2+(νA(x))
2 = 1.

We denote the set of all IFSST of X by IFSST(X).

Example 3.2. Let A ∈ IFSST(X). Suppose µA(x) = 0.7 and νA(x) = 0.5 for X = {x}. Clearly,
0.7 + 0.5 � 1, but 0.72 + 0.52 ≤ 1. Thus πA(x) = 0.5099, and hence (µA(x))

2 + (νA(x))
2 +

(πA(x))
2 = 1.

Table 1 explains the difference between IFSST and IFS.

IFS IFSST

µ+ ν ≤ 1 µ+ ν ≤ 1 or µ+ ν ≥ 1

0 ≤ µ+ ν ≤ 1 0 ≤ µ2 + ν2 ≤ 1

π = 1− (µ+ ν) π =
√
1− [µ2 + ν2]

µ+ ν + π = 1 µ2 + ν2 + π2 = 1

Table 1. Difference between IFS and IFSST

Definition 3.3. Let A,B ∈ IFSST(X). Then A = B ⇔ µA(x) = µB(x) and νA(x) = νB(x)

∀x ∈ X , and A ⊆ B ⇔ µA(x) ≤ µB(x) and νA(x) ≥ νB(x) (or νA(x) ≤ νB(x)) ∀x ∈ X . We
say A ⊂ B ⇔ A ⊆ B and A 6= B.

Definition 3.4. Let A,B ∈ IFSST(X). Then A and B are comparable to each other if A ⊆ B

and B ⊆ A.

Definition 3.5 ( [3]). Let A ∈ IFSST(X). Then, the complement of A denoted by Ac is defined
as

Ac = {〈x, νA(x), µA(x)〉|x ∈ X}.

Remark 3.6. It is noticed that (Ac)c = A. This shows the validity of complementary law in
IFSST.

Definition 3.7 ([3]). Let A,B ∈ IFSST(X). Then, the following define union and intersection of
A and B:

(i) A ∪B = {〈x,max(µA(x), µB(x)),min(νA(x), νB(x))〉|x ∈ X}.

(ii) A ∩B = {〈x,min(µA(x), µB(x)),max(νA(x), νB(x))〉|x ∈ X}.
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Definition 3.8. Let A,B ∈ IFSST(X). Then, the sum of A and B is defined as

A⊕B = {〈x,
√

(µA(x))2 + (µB(x))2 − (µA(x))2(µB(x))2, νA(x)νB(x)〉|x ∈ X},

and the product of A and B is defined as

A⊗B = {〈x, µA(x)µB(x),
√
(νA(x))2 + (νB(x))2 − (νA(x))2(νB(x))2〉|x ∈ X}.

Remark 3.9. Let A,B,C ∈ IFSST(X). By Definitions 3.7 and 3.8, the following properties
hold:

(i) Complementary property;
(Ac)c = A

(ii) Idempotent property;
A ∩ A = A

A ∪ A = A

A⊕ A 6= A

A⊗ A 6= A

(iii) Commutative property;
A ∩B = B ∩ A

A ∪B = B ∪ A

A⊕B = B ⊕ A

A⊗B = B ⊗ A

(iv) Associative property;
A ∩ (B ∩ C) = (A ∩B) ∩ C

A ∪ (B ∪ C) = (A ∪B) ∪ C

A⊕ (B ⊕ C) = (A⊕B)⊕ C

A⊗ (B ⊗ C) = (A⊗B)⊗ C

(v) Distributive property;
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A⊕ (B ∪ C) = (A⊕B) ∪ (A⊕ C)

A⊕ (B ∩ C) = (A⊕B) ∩ (A⊕ C)

A⊗ (B ∪ C) = (A⊗B) ∪ (A⊗ C)

A⊗ (B ∩ C) = (A⊗B) ∩ (A⊗ C)
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(vi) De Morgan property;
(A ∩B)c = Ac ∪Bc

(A ∪B)c = Ac ∩Bc

(A⊕B)c = Ac ⊗Bc

(A⊗B)c = Ac ⊕Bc.

Definition 3.10. Let A ∈ IFSST(X). Then, the level/ground set of A is defined by

A∗ = {x ∈ X|µA(x) > 0, νA(x) < 1 }.

Certainly, A∗ is a subset of X .

3.2 Distances between intuitionistic fuzzy sets of second type

First and most, we review the concept of distance measure for IFS as presented by Szmidt and
Kacprzyk [15, 16].

Definition 3.11. Let A,B,C ∈ IFS(X). Then, the distance measure d between the IFS is a
function d : IFS × IFS → [0, 1] satisfying

(i) 0 ≤ d(A,B) ≤ 1 (boundedness)

(ii) d(A,B) = 0 iff A = B (separability)

(iii) d(A,B) = d(B,A) (symmetry)

(iv) d(A,C) + d(B,C) ≥ d(A,B) (triangle inequality).

For any two IFS A and B of X = {x1, ..., xn}, the following distance measures were
proposed:

(i) Hamming distance

dIFS(A,B)H =
1

2

n∑
i=1

[|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|

+ |πA(xi)− πB(xi)|]

(ii) Euclidean distance

dIFS(A,B)E =

(
1

2

n∑
i=1

[(µA(xi)− µB(xi))
2 + (νA(xi)− νB(xi))2

+ (πA(xi)− πB(xi))2
) 1

2
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(iii) normalized Hamming distance

dIFS(A,B)nH =
1

2n

n∑
i=1

[|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|

+ |πA(xi)− πB(xi)|]

(iv) normalized Euclidean distance

dIFS(A,B)nE =

(
1

2n

n∑
i=1

[(µA(xi)− µB(xi))
2 + (νA(xi)− νB(xi))2

+ (πA(xi)− πB(xi))2
) 1

2

for
πA(xi) = 1− µA(xi)− νA(xi)

and
πB(xi) = 1− µB(xi)− νB(xi).

All these distances have been tested to for reliability with the normalized Hamming distance as
the most reliable one.

Now, we give an analogous definition of distance measure for IFSST as follows:

Definition 3.12. Let X be nonempty set and A,B,C ∈ IFSST(X). Then, the distance measure
d between the IFSST is a function

d : IFSST× IFSST→ [0, 1]

satisfying

(i) 0 ≤ d(A,B) ≤ 1 (boundedness)

(ii) d(A,B) = 0 iff A = B (separability)

(iii) d(A,B) = d(B,A) (symmetric)

(iv) d(A,C) + d(B,C) ≥ d(A,B) (triangle inequality).

Let A and B be IFSST of X = {x1, ..., xn}. Then, we propose the following distance
measures as extension of [15, 16]:

(i) Hamming distance

dIFSST (A,B)H =
1

2

n∑
i=1

[|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|

+ |πA(xi)− πB(xi)|]
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(ii) Euclidean distance

dIFSST (A,B)E =

(
1

2

n∑
i=1

[(µA(xi)− µB(xi))
2 + (νA(xi)− νB(xi))2

+ (πA(xi)− πB(xi))2
) 1

2

(iii) normalized Hamming distance

dIFSST(A,B)nH =
1

2n

n∑
i=1

[|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|

+ |πA(xi)− πB(xi)|]

(iv) normalized Euclidean distance

dIFSST(A,B)nE =

(
1

2n

n∑
i=1

[(µA(xi)− µB(xi))
2 + (νA(xi)− νB(xi))2

+ (πA(xi)− πB(xi))2
) 1

2

where
πA(xi) =

√
1− [(µA(xi))2 + (νA(xi))2]

and
πB(xi) =

√
1− [(µB(xi))2 + (νB(xi))2].

Proposition 3.13. Let A,B ∈ IFSST(X). Then d(A,B) = d(Ac, Bc).

Proof. Straightforward from Definition 3.12

Proposition 3.14. Let A,B,C ∈ IFSST(X). Suppose A ⊆ B ⊆ C, then d(A,C) ≥ d(A,B) and
d(A,C) ≥ d(B,C).

Proof. By Definition 3.12, the proof follows.

3.3 Numerical verification

We now verify whether these distance measures for IFSST satisfy the conditions in
Definition 3.12. Recall that, every IFS is an IFSST but the converse is not true. Now, we evoke
the following example from [16].

Example 3.15. Let us consider the following intuitionistic fuzzy sets A and B of X = {1, 2, 3, 4,
5, 6, 7}.

A =

{〈
0.5, 0.3, 0.2

1

〉
,

〈
0.2, 0.6, 0.2

2

〉
,

〈
0.3, 0.2, 0.5

4

〉
,

〈
0.2, 0.2, 0.6

5

〉
,

〈
1.0, 0.0, 0.0

6

〉}
B =

{〈
0.2, 0.6, 0.2

1

〉
,

〈
0.3, 0.2, 0.5

4

〉
,

〈
0.5, 0.2, 0.3

5

〉
,

〈
0.9, 0.0, 0.1

7

〉}
.

Clearly, A∗ 6= B∗.
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Adopting the given IFS into IFSST and adding an IFSST C of X to A and B, we have

A =

{〈
0.5, 0.3

1

〉
,

〈
0.2, 0.6

2

〉
,

〈
0.3, 0.2

4

〉
,

〈
0.2, 0.2

5

〉
,

〈
1.0, 0.0

6

〉}
where

πA(1) = 0.8124, πA(2) = 0.7746, πA(4) = 0.9327, πA(5) = 0.9592, πA(6) = 0.0000,

B =

{〈
0.2, 0.6

1

〉
,

〈
0.3, 0.2

4

〉
,

〈
0.5, 0.2

5

〉
,

〈
0.9, 0.0

7

〉}
where

πB(1) = 0.7746, πB(4) = 0.9327, πB(5) = 0.8426, πA(7) = 0.4359,

C =

{〈
0.4, 0.5

1

〉
,

〈
0.6, 0.2

3

〉
,

〈
0.8, 0.1

4

〉
,

〈
0.3, 0.4

5

〉
,

〈
0.7, 0.2

7

〉}
where

πC(1) = 0.7681, πC(3) = 0.7746, πC(4) = 0.5916, πC(5) = 0.8660, πC(7) = 0.6856.

Applying the distances between IFSST, we obtain the following results:

dIFSST (A,B)H =
1

2

7∑
i=1

[
|0.5− 0.2|+ |0.3− 0.6|+ |0.8124− 0.7746|

+ |0.2− 0.0|+ |0.6− 1.0|+ |0.7746− 0.0|
+ |0.3− 0.3|+ |0.2− 0.2|+ |0.9327− 0.9327|
+ |0.2− 0.5|+ |0.2− 0.2|+ |0.9592− 0.8426|
+ |1.0− 0.0|+ |0.0− 1.0|+ |0.0− 0.0|
+ |0.0− 0.9|+ |1.0− 0.0|+ |0.0− 0.4359|

]
= 3.3825

dIFSST (A,C)H =
1

2

7∑
i=1

[
|0.5− 0.4|+ |0.3− 0.5|+ |0.8124− 0.7681|

+ |0.2− 0.0|+ |0.6− 1.0|+ |0.7746− 0.0|
+ |0.0− 0.6|+ |1.0− 0.2|+ |0.0− 0.7746|
+ |0.3− 0.8|+ |0.2− 0.1|+ |0.9327− 0.5916|
+ |0.2− 0.3|+ |0.2− 0.4|+ |0.9592− 0.8660|
+ |1.0− 0.0|+ |0.0− 1.0|+ |0.0− 0.0|
+ |0.0− 0.7|+ |1.0− 0.2|+ |0.0− 0.6856|

]
= 4.7067
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dIFSST (B,C)H =
1

2

7∑
i=1

[
|0.2− 0.4|+ |0.6− 0.5|+ |0.7746− 0.7681|

+ |0.0− 0.6|+ |1.0− 0.2|+ |0.0− 0.7746|
+ |0.3− 0.8|+ |0.2− 0.1|+ |0.9327− 0.5916|
+ |0.5− 0.3|+ |0.2− 0.4|+ |0.8426− 0.8660|
+ |0.9− 0.7|+ |0.0− 0.2|+ |0.4359− 0.6856|

]
= 2.2477

dIFSST (A,B)E =
(1
2

7∑
i=1

[(0.5− 0.2)2 + (0.3− 0.6)2 + (0.8124− 0.7746)2

+ (0.2− 0.0)2 + (0.6− 1.0)2 + (0.7746− 0.0)2

+ (0.3− 0.3)2 + (0.2− 0.2)2 + (0.9327− 0.9327)2

+ (0.2− 0.5)2 + (0.2− 0.2)2 + (0.9592− 0.8426)2

+ (1.0− 0.0)2 + (0.0− 1.0)2 + (0.0− 0.0)2

+ (0.0− 0.9)2 + (1.0− 0.0)2 + (0.0− 0.4359)2]
) 1

2

= 1.5945

dIFSST (A,C)E =
(1
2

7∑
i=1

[(0.5− 0.4)2 + (0.3− 0.5)2 + (0.8124− 0.7681)2

+ (0.2− 0.0)2 + (0.6− 1.0)2 + (0.7746− 0.0)2

+ (0.0− 0.6)2 + (1.0− 0.2)2 + (0.0− 0.7746)2

+ (0.3− 0.8)2 + (0.2− 0.1)2 + (0.9327− 0.5916)2

+ (0.2− 0.3)2 + (0.2− 0.4)2 + (0.9592− 0.8660)2

+ (1.0− 0.0)2 + (0.0− 1.0)2 + (0.0− 0.0)2

+ (0.0− 0.7)2 + (1.0− 0.2)2 + (0.0− 0.6856)2]
) 1

2

= 1.8010

dIFSST (B,C)E =
(1
2

7∑
i=1

[(0.2− 0.4)2 + (0.6− 0.5)2 + (0.7746− 0.7681)2

+ (0.0− 0.6)2 + (1.0− 0.2)2 + (0.0− 0.7746)2

+ (0.3− 0.8)2 + (0.2− 0.1)2 + (0.9327− 0.5916)2

+ (0.5− 0.3)2 + (0.2− 0.4)2 + (0.8426− 0.8660)2

+ (0.9− 0.7)2 + (0.0− 0.2)2 + (0.4359− 0.6856)2]
) 1

2

= 1.0605
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dIFSST (A,B)nH =
1

14

7∑
i=1

[
|0.5− 0.2|+ |0.3− 0.6|+ |0.8124− 0.7746|

+ |0.2− 0.0|+ |0.6− 1.0|+ |0.7746− 0.0|
+ |0.3− 0.3|+ |0.2− 0.2|+ |0.9327− 0.9327|
+ |0.2− 0.5|+ |0.2− 0.2|+ |0.9592− 0.8426|
+ |1.0− 0.0|+ |0.0− 1.0|+ |0.0− 0.0|
+ |0.0− 0.9|+ |1.0− 0.0|+ |0.0− 0.4359|

]
= 0.4832

dIFSST (A,C)nH =
1

14

7∑
i=1

[
|0.5− 0.4|+ |0.3− 0.5|+ |0.8124− 0.7681|

+ |0.2− 0.0|+ |0.6− 1.0|+ |0.7746− 0.0|
+ |0.0− 0.6|+ |1.0− 0.2|+ |0.0− 0.7746|
+ |0.3− 0.8|+ |0.2− 0.1|+ |0.9327− 0.5916|
+ |0.2− 0.3|+ |0.2− 0.4|+ |0.9592− 0.8660|
+ |1.0− 0.0|+ |0.0− 1.0|+ |0.0− 0.0|
+ |0.0− 0.7|+ |1.0− 0.2|+ |0.0− 0.6856|

]
= 0.6724

dIFSST (B,C)nH =
1

14

7∑
i=1

[
|0.2− 0.4|+ |0.6− 0.5|+ |0.7746− 0.7681|

+ |0.0− 0.6|+ |1.0− 0.2|+ |0.0− 0.7746|
+ |0.3− 0.8|+ |0.2− 0.1|+ |0.9327− 0.5916|
+ |0.5− 0.3|+ |0.2− 0.4|+ |0.8426− 0.8660|
+ |0.9− 0.7|+ |0.0− 0.2|+ |0.4359− 0.6856|

]
= 0.3211

dIFSST (A,B)nE =
( 1
14

7∑
i=1

[(0.5− 0.2)2 + (0.3− 0.6)2 + (0.8124− 0.7746)2

+ (0.2− 0.0)2 + (0.6− 1.0)2 + (0.7746− 0.0)2

+ (0.3− 0.3)2 + (0.2− 0.2)2 + (0.9327− 0.9327)2

+ (0.2− 0.5)2 + (0.2− 0.2)2 + (0.9592− 0.8426)2

+ (1.0− 0.0)2 + (0.0− 1.0)2 + (0.0− 0.0)2

+ (0.0− 0.9)2 + (1.0− 0.0)2 + (0.0− 0.4359)2]
) 1

2

= 0.6027
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dIFSST (A,C)nE =
( 1
14

7∑
i=1

[(0.5− 0.4)2 + (0.3− 0.5)2 + (0.8124− 0.7681)2

+ (0.2− 0.0)2 + (0.6− 1.0)2 + (0.7746− 0.0)2

+ (0.0− 0.6)2 + (1.0− 0.2)2 + (0.0− 0.7746)2

+ (0.3− 0.8)2 + (0.2− 0.1)2 + (0.9327− 0.5916)2

+ (0.2− 0.3)2 + (0.2− 0.4)2 + (0.9592− 0.8660)2

+ (1.0− 0.0)2 + (0.0− 1.0)2 + (0.0− 0.0)2

+ (0.0− 0.7)2 + (1.0− 0.2)2 + (0.0− 0.6856)2]
) 1

2

= 0.6807

dIFSST (B,C)nE =
( 1
14

7∑
i=1

[(0.2− 0.4)2 + (0.6− 0.5)2 + (0.7746− 0.7681)2

+ (0.0− 0.6)2 + (1.0− 0.2)2 + (0.0− 0.7746)2

+ (0.3− 0.8)2 + (0.2− 0.1)2 + (0.9327− 0.5916)2

+ (0.5− 0.3)2 + (0.2− 0.4)2 + (0.8426− 0.8660)2

+ (0.9− 0.7)2 + (0.0− 0.2)2 + (0.4359− 0.6856)2]
) 1

2

= 0.4008

Table 2 gives the summary of the results.

Distances Hamming
distance

Euclidean
distance

n−Hamming
distance

n−Euclidean
distance

d(A,B) 3.3825 1.5945 0.4832 0.6027

d(A,C) 4.7067 1.8010 0.6724 0.6807

d(B,C) 2.2477 1.0605 0.3211 0.4008

Table 2. Numerical outputs

3.4 Discussion

From Table 2, we observe that the distances between IFS (i.e., Hamming distance and Euclidean
distance) [15, 16] do not satisfy the conditions of distance measure for IFSST as seen in Defini-
tion 3.12. However, n−Hamming distance and n−Euclidean distance satisfy the conditions of
distance measure for IFSST. Thus, n−Hamming distance and n−Euclidean distance are appro-
priate distance measures for IFSST.

In summary; (i) d(A,B), d(A,C), d(B,C) ∈ [0, 1], for n−Hamming and n−Euclidean dis-
tances, (ii) d(A,B) = 0, d(A,C) = 0 and d(B,C) = 0 if and only if A = B, A = C and B = C
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for n−Hamming and n−Euclidean distances, (iii) for n−Hamming and n−Euclidean distances,
it follows that

d(A,B) = d(B,A), d(A,C) = d(C,A) and d(B,C) = d(C,B)

because of the use of square and absolute value, (iv) d(A,C) + d(B,C) ≥ d(A,B) holds for
n−Hamming and n−Euclidean distances.

Notwithstanding, n−Hamming distance is the most reasonable/efficient of the distance
measures discussed. Hence, we adopt n−Hamming distance for application to diagnostic medicine.

4 Application of IFSST to diagnostic medicine

In this section, we present an application of IFSST in diagnostic medicine. In a given pathology,
suppose S is a set of symptoms, D is a set of diseases, and P is a set of patients. Using medical
knowledge of diseases and symptoms, we know that some symptoms are perculiar to a particular
disease than the other, that is, each disease has perculiar symptoms which reveal a degree of
association, µ, and a degree of non-association, ν, between the symptoms and diseases.

Now we discuss the concept of IFSST in diagnostic medicine. The methodology involves
mainly three stages viz;

(i) determination of symptoms

(ii) formulation of medical knowledge based on IFSST values

(iii) determination of diagnosis using n−Hamming distance between P and D.

Then, the distance, d between patient and disease with respect to symptoms is given as

dIFSST(P,D)nH =
1

2n

n∑
i=1

[|µP (si)− µD(si)|+ |νP (si)− νD(si)|+ |πP (si)− πD(si)|], (1)

where si ∈ S, and n is the number of symptoms.
A patient is diagnosed to suffer from a particular disease if the distance, d between the disease

and the patient is the least. To see the application of the method, let us make a hypothetical case.

4.1 Experimental example

Suppose there are four patients, P given as a set P = {Ene, Ehi, Ela, Ebo} to be examined for
the set of diseases, D given as

D = {viral fever, malaria fever, typhoid fever, stomach ulcer, chest problem},

which have the set of symptoms, S

S = {temperature, headache, stomach pain, cough, chest pain}.
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From medical knowledge, Table 3 contains each disease and its symptoms in IFSST values.

viral fever malaria
fever

typhoid
fever

stomach
ulcer

chest
problem

temperature 〈0.4, 0.0〉 〈0.7, 0.0〉 〈0.3, 0.3〉 〈0.1, 0.7〉 〈0.1, 0.8〉
headache 〈0.3, 0.5〉 〈0.2, 0.6〉 〈0.6, 0.1〉 〈0.2, 0.4〉 〈0.0, 0.8〉
stomach 〈0.1, 0.7〉 〈0.0, 0.9〉 〈0.2, 0.7〉 〈0.8, 0.0〉 〈0.2, 0.8〉
cough 〈0.4, 0.3〉 〈0.7, 0.0〉 〈0.2, 0.6〉 〈0.2, 0.7〉 〈0.2, 0.8〉
chest pain 〈0.1, 0.7〉 〈0.1, 0.8〉 〈0.1, 0.9〉 〈0.2, 0.7〉 〈0.8, 0.1〉

Table 3. Symptoms vs Diseases

After the samples were collected from the patients and analysed, the results contained in
Table 4 are obtained.

temperature headache stomach
pain

cough chest pain

Ene 〈0.8, 0.1〉 〈0.6, 0.1〉 〈0.2, 0.8〉 〈0.6, 0.1〉 〈0.1, 0.6〉
Ehi 〈0.0, 0.8〉 〈0.4, 0.4〉 〈0.6, 0.1〉 〈0.1, 0.7〉 〈0.1, 0.8〉
Ela 〈0.8, 0.1〉 〈0.8, 0.1〉 〈0.0, 0.6〉 〈0.2, 0.7〉 〈0.0, 0.5〉
Ebo 〈0.6, 0.1〉 〈0.5, 0.4〉 〈0.3, 0.4〉 〈0.7, 0.2〉 〈0.3, 0.4〉

Table 4. Patients vs Symptoms

After calculating the degree of indeterminatcy using π =
√

1− [µ2 + ν2], we compute the
distance between patients and diseases using Equation 1. The computational results are contained
in Table 5.

dIFSST(P,D) viral fever malaria
fever

typhoid
fever

stomach
ulcer

chest
problem

Ene 0.1817 0.1681 0.2016 0.3619 0.4017
Ehi 0.2850 0.3664 0.2342 0.1062 0.3002
Ela 0.2484 0.2980 0.2136 0.3428 0.3740
Ebo 0.1904 0.2228 0.2678 0.3114 0.3975

Table 5. Decision Table

4.1.1 Diagnostic decision

From Table 5, the following diagnosis are determined based on the least value of the distances
between P and D: Ene is diagnosed of malaria fever, Ehi is diagnosed of stomach ulcer, Ela is
diagnosed of typhoid fever, Ebo is diagnosed of viral fever.
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5 Conclusion

In this paper, we proposed an axiomatic definition of distance between intuitionistic fuzzy sets
of second type. It was shown that distances between intuitionistic fuzzy sets of second type
should be calculated by taking into account the three parameters that describe an intuitionistic
fuzzy set of second type. Taking into account all the three parameters that describe intuitionistic
fuzzy sets of second type when calculating distances ensure that the distances for intuitionistic
fuzzy sets and intuitionistic fuzzy sets of second type can be easily compared. We verified the
authenticity of the proposed distances between IFSST in comparison to Definition 3.12, and found
that Hamming and Euclidean distances are not distance measures for IFSST. But, n−Hamming
and n−Euclidean distances are appropriate distance measures for IFSST. To test the applicability
of the proposed distance measures in real-life problems, a medical diagnostic problem was
considered via n−Hamming distance, for a reliable output. The distances between IFSST studied
in this work could be applied in decision making of real-life problems embedded with uncertainty.
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