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1 Introduction

The algebraic structure studied in this paper have two aspects: the first one is practical, the second
is theoretical one. Fuzzy sets and their generalization – Atanassov’s intuitionistic fuzzy sets (IF−
sets) – in both give directions new possibilities. The whole IF− theory can be motivated by
practical problems and applications [3, 4, 5, 6].

The main contribution of the presented theory is a new point of view on human thinking and
creation. We consider algebraic models for multivalued logic: IF−events and IV−events. But
the more important idea is in building the probability theory on IF− events. The theoretical
description of uncertainty has two parts in the present time: objective – probability and statistics,
and subjective – fuzzy sets. We show that both parts can be considered together.

Let us consider a theory dual to the IF− events theory, theory of IV− events. A prerequisity
of IV− theory is in the fact that it considers natural ordering and operations of vectors. On the
other hand the IV− theory is isomorphic to the IF− theory [1, 2].

2 The IV−events

We shall start with a measurable space (Ω,S), where Ω is a non-empty set and S a σ-algebra of
subsets of Ω, i.e. S is closed under complements and countable unions, Ω ∈ S. Usually a fuzzy
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event is a measurable mapping f : Ω → [0, 1], i.e. f−1(J) = {ω ∈ Ω; f(ω) ∈ J} ∈ S for every
interval J ⊆ [0, 1].

Definition 1 Interval valued event (IV− event) is a pair A = (µA, νA) of fuzzy events (i.e.
µA, νA : (Ω,S)→ [0, 1] are fuzzy events) such that µA ≤ νA. We denote the set of all IV−events
by symbol F .

Definition 2 We define two binary operations �,� : F × F → F as follows

A�B = ((µA + µB) ∧ 1, (νA + νB) ∧ 1),

A�B = ((µA + µB − 1) ∨ 0, (νA + νB − 1) ∨ 0),

and a partial ordering on the set F

A ≤ B ⇔ µA ≤ µB, νA ≤ νB.

Remark 1 Evidently (0Ω, 0Ω) is the least element of F , (1Ω, 1Ω) is the greatest element of F .

Definition 3 Probability is considered as a mapping

P : F → J , J = {[a, b]; a, b ∈ R, a ≤ b}

satisfying the following conditions

i) P ((0Ω, 0Ω)) = [0, 0], P ((1Ω, 1Ω)) = [1, 1];

ii) A�B = (0Ω, 0Ω)⇒ P (A�B) = P (A) � P (B);

iii) An ↗ A⇒ P (An)↗ P (A),

where An ↗ A means that µAn ↗ µA, νAn ↗ νA.

In the clasical probability space (Ω,S, P ) a random variable is consider as an S-measurable
mapping

ξ : Ω −→ R,

for which holds: if I ⊂ R is an interval then ξ−1(I) ∈ S.

Definition 4 An observable is a mapping

x : B(R) −→ F

satisfying the following conditions

i) x(R) = (1, 1), x(∅) = (0, 0);

ii) A ∩B = ∅ ⇒ x(A) � x(B) = (0, 0), x(A ∪B) = x(A) � x(B);
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iii) An ↗ A⇒ x(An)↗ x(A).

Definition 5 The state is a mapping m : F −→ [0, 1] satisfying the conditions

i) m(0Ω, 0Ω) = 0,m(1Ω, 1Ω) = 1;

ii) A�B = (0Ω, 0Ω) =⇒ m(A�B) = m(A) +m(B);

iii) An ↗ A⇒ m(An)↗ m(A).

Proposition 1 If x : B(R) −→ F is an observable, and m : F → [0, 1] is a state, then the
mappping

mx = m ◦ x : B(R)→ [0, 1] ,

defined by the formula
mx(A) = m(x(A))

is a probability measure.

Proof:

i) mx(R) = m(x(R)) = m(1, 1) = 1;

ii) If A ∩B = ∅, then x(A) � x(B) = (0, 0);

hence

mx(A∪B) = m(x(A∪B)) = m(x(A)�x(B)) = m(x(A))+m(x(B)) = mx(A)+mx(B);

iii) An ↗ A implies x(An)↗ x(A),

hence
mx(An) = m(x(An))↗ m(x(A)) = mx(A).

�

Proposition 2 Let x : B(R) → F be an observable, m : F → [0, 1] be a state. We define a
function F : R→ [0, 1] by the formula

F (s) = m(x(−∞, s)).

Then the function F is non-decreasing, left continuous in any point s ∈ R,

lim
s→∞

F (s) = 1, lim
s→−∞

F (s) = 0.
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Proof:
If s < t, then

x((−∞, t)) = x((−∞, s)) � x(〈s, t〉) ≥ x((−∞, s))

hence
F (t) = m((−∞, t)) ≥ m(x((−∞, s)) = F (s),

F is non-decreasing.
If sn ↗ s then

x((−∞, sn))↗ x((−∞, s)),

hence
F (sn) = m(x((−∞, sn)))↗ m(x((−∞, s))) = F (s),

F is left continuous in any s ∈ R.
Similarly,

sn ↗∞→ x((−∞, sn))↗ x((−∞,∞)) = (1, 1).

Therefore
F (sn) = m(x((−∞, sn)))↗ sn((1, 1)) = 1

for every sn ↗∞, hence lim
s→∞

F (s) = 1.
Similarly we obtain

sn ↘ −∞ =⇒ −sn ↗∞,

hence
m(x((−sn, sn)))↗ m(x(R)) = 1.

1 = lim
n→∞

F (−sn) = lim
n→∞

(x((−sn, sn))) + lim
n→∞

F (sn) = 1 + lim
n→∞

F (sn),

hence
lim
n→∞

F (sn) = 0

for any sn ↘ −∞. �

3 The laws of large numbers

If we want to define the sum ξ + η of two observables, one of possibilities is the following way.
Put

T = (ξ, η) : Ω→ R2,

g : R2, g(s, t) = s+ t,

ξ + η = g ◦ T : Ω→ Ω.

Namely, it is convenient for the constructing of preimages

(ξ + η)−1(A) = T−1(g−1(A)).
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In our IV− case, we have two observables

x, y : B(R)→ F ,

hence x+ y could be defined as a morphism

(x+ y)(A) = h(g−1(A)),

where h : B(R2) → F is a morphism connecting with x, y. In the classical case it was realized
by the formula

T−1(C ×D) = ξ−1(C) ∩ η−1(D).

In our IV− case, instead of intersection, we shall use the product of IV− sets defined by the
formula

A�B = (µA, νA) � (µB, νB) = (µA · µB, νA · νB).

Definition 6 Let x1, x2, · · · , xn : B(R) −→ F be observables. By the joint observable of
x1, x2, · · · , xn we consider a mapping h : B(Rn)→ F satisfying the following conditions

i) h(Rn) = (1, 0);

ii) A ∩B = ∅ → h(A ∪B) = h(A) � h(B);

iii) An ↗ A→ h(An)↗ h(A);

iv) h(C1 × C2 × . . .× Cn) = x1(C1) · x2(C2) · . . . · xn(Cn), for any C1, C2, . . . , Cn ∈ B(R).

Theorem 1 For any observables x1, x2, . . . , xn : B(R) → F there exist their joint observable
h : B(Rn) −→ F .

Proof:
We shall prove it for n = 2. Consider two observables x, y : B(R) → F . Since x(A) ∈ F ,

we shall write
x(A) = (x[(A), x∗(A))

and similarly
y(B) = (y[(B), y∗(B)).

From the definition of product x(C) · y(D) the following equalities hold:

x(C).y(D) = (x[(C), x∗(C)).(y[(D), y∗(D)) = (x[(C).y[(D), x∗(C).y∗(D)).

We shall construct similarly
(h[(K), h∗(K).

Let us fix ω ∈ Ω and let us put
µA = x[(A)(ω),

νB = x[(B)(ω),

h[(K) = µ× ν(K).

µ× ν is the product of probability measures µ, ν.
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Then,

h[(C ×D)(ω) = µ× ν(C ×D) = µ(C) · ν(D) = x[(C) · y[(D)(ω),

hence
h[(C ×D) = x[(C) · y[(D).

Analogously,
h∗(C ×D) = x∗(C) · y∗(D).

If we define
h(A) = (h[(A), h∗(A)), A ∈ B(R2),

then there holds

h(C ×D) = (x[(C), y[(D), x∗(C) · y∗(D)) = x(C) · y(D).

�

Then, the previous theorem can be applied for obtaining the sum

x1 + x2 + . . .+ xn = h ◦ g−1

with
g(u1, . . . un) = u1 + . . .+ un

or for the arithmetic means

1

n
(x1 + x2 + . . .+ xn) = h ◦ g−1,

with
g(u1, . . . , un) =

1

n
(u1 + . . .+ un).

4 The weak law of large numbers

We shall consider an event A whose probability is p. We make n independent tests. Let k is
a number of the tests in which an event A occured. The laws of large numbers state, that the
relative frequency kn

n
of event A convergence to the probability p. It is known, that kn is the

random variable with binomial distribution with the parameters n, p. It can be expressed as the
map

kn =
n∑
i=1

χAi
,

where A1, A2, . . . , An are independent events. We hence talk about convergence

1

n

n∑
i=1

χAi
→ p.

Generally, we can consider instead of a sequence of characteristic functions
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χA1 , χA2 , . . .

the sequence of independent random variables

ξ1, ξ2, . . .

then the aritmetic mean
1

n

n∑
i=1

ξi

converges to a normal distribution.

Definition 7 Let y1, y2, . . . be a sequence of observables yn : B(R)→ F , for n = 1, 2, . . . and a
mapping m : F → [0; 1] be a state.

1. A sequence converges in distribution to a function F : R → [0, 1], if for all t ∈ R there
holds

lim
n→∞

m(yn((−∞; t))) = F (t)

2. A sequence converges by a measure to (0Ω, 0Ω), if for all ε > 0 there holds

lim
n→∞

(yn((−ε, ε))) = 1;

3. A sequence converges to (0Ω, 0Ω) almost everywhere, if

lim
p→∞

lim
k→∞

lim
i→∞

m(
k+i∨
n=k

(
−1

p
,
1

p

)
= 1.

Definition 8 Let x1, x2, . . . be observables hn : B(Rn)→ F be a joint observable of observables
x1, x2, . . . , xn. We define the functions yn = gn(x1, . . . , xn), where the functions gn : Rn → R,

are given by formula yn = hn ◦ g−1
n .

Theorem 2 Let x1, x2, . . . be a sequence of observables, hn : B(Rn)→ F be a joint observable
of observables x1, x2, . . . , xn and yn = gn(x1, . . . , xn), for n = 1, 2, . . . , gn : Rn → R. Then
there exist the probability space (Ω, S, P ) and a sequence of random variables (ξn)∞n=1, xn :

Ω→ R, such that
if

ηn = gn(ξ1, . . . , ξn),

then

1. A sequence y1, y2, . . . converges in a distribution to function F if and only if a sequence
η1, η2, . . . converges in a distribution to function F .

2. A sequence y1, y2, . . . converges to (0Ω, 0Ω) by a measure m if and only if η1, η2, . . . con-
verges to 0 by a measure P .

37



3. If η1, η2, . . . coverges P−almost everywhere to 0, then y1, y2, . . . coverges m−almost ev-
erywhere to (0Ω, 0Ω).

Proof: By Kolmogorov theorem there exists just one probability measure P : σ(C) → [0, 1] ,

where C is the set of all cylinders, such that

P ◦ π−1
n = m ◦ hn,

for n = 1, 2, . . ., where πn : RN → R is a projection.
Let ξn : RN → R

ξ(((ui)
∞
i=1)) = un

for n = 1, 2, . . . . Then

P (η−1
n (A)) = P ((gn(ξ1, . . . , ξn))−1(A)) = P (π−1

n (g−1
n (A))) = m(yn(A)).

Hence
m(yn((−∞, t))) = P (η−1((−∞, t))).

Analogously there hold

m(yn((−ε, ε))) = P (η−1((−ε, ε))).

From the above equalities follows the validity of the first and second equivalence.
Now we shall show the validity of the third implication.

1 = P

(
∞⋂
p=1

∞⋃
k=1

∞⋂
n=k

η−1
n

((
−1

p
,
1

p

)))

P

(
hk+i

(
k+i⋂
n=k

{
(t1, . . . , tk+i) : gn(t1, . . . , tn) ∈

(
−1

t
,
1

t

)}))
≤

≤ m

(
k+i∧
n=k

hk+i

({
(t1, . . . , tk+i) : (t1, . . . , tn) ∈ g−1

n

((
−1

t
,
1

t

))}))
=

= m

(
k+i∧
n=k

hn ◦ g−1
n

((
−1

t
,
1

t

)))
= m

(
k+i∧
n=k

yn

((
−1

t
,
1

t

)))
.

Hence

1 = lim
p→∞

lim
k→∞

lim
i→∞

P

(
k+i⋂
n=k

η−1
n

((
−1

p
,
1

p

)))
≤

≤ lim
t→∞

lim
k→∞

lim
i→∞

m

(
k+i∧
n=k

yn

((
−1

t
,
1

t

)))
≤ 1.

�
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Theorem 3 (The weak law of large numbers) Let be m a state, x1, x2, . . . be a sequence of inde-
pendent integrable observables with the same probability distribution and mx1 = mx2 = . . . . Let
a = E(x1) = E(x2) = . . ., then there exists a sequence of observables (yn), where

yn =
x1 + x2 + . . .+ xn

n
− a, (n = 1, 2, . . .),

converges in measure m to (0Ω, 0Ω).

Proof: Let hn : B(R)→ F be the joint observable of observables x1, x2, . . . , xn, gn : Rn → R be
a function given by formula gn(w1, w2, . . . , wn) = w1+w2+...+wn

n
− a, and yn : B(R)→ F ; yn =

gn(x1, x2, . . . xn) = hn ◦ g−1
n , for n = 1, 2, . . . .

Let us consider the probability space (Ω,S, P ) and a sequence (ξn)∞n=1 the random variables
ξn : Rn → R.

For every n ∈ N we define a random variable ξn : RN → R, ξn((ui)
∞
i=1) = un and the

mapping ηn : Rn → R by the formula

ηn = gn(ξ1, ξ2, . . . , ξn) = gn ◦ πn =
1

n

n∑
i=1

vi − a.

We get the equalities
P ◦ ξ−1

n = Pξn = mxn = m ◦ ξn,

P ◦ T−1
n = mx1 ×mx2 × . . .×mxn = m ◦ hn.

Then, an average ξn is

E(ξn) =

∫
Ω

xndP =

−∞∫
∞

tdPξn(t) =

−∞∫
∞

tdmxn(t) = E(ξn) = a.

If the observables x1, x2, . . . , xn are independent, then the random variables ξ1, ξ2, . . . , ξn are
independent, too.

For n = 2

T2 = (ξ1, ξ2) ∈ A×B

hence
P (ξ−1

1 (A) ∩ ξ−1
2 (B) = P ◦ T−1

2 (C) = m ◦ h2(C) = m ◦ h2(A×B) =

= mx1(A)×mx2(B) = P (ξ1)(A) · P (ξ2)(B).

Therefore, for every ε > 0

lim
n→∞

P =

({
ω ∈ Ω;

ξ1 + . . .+ ξn
n

− a < ε

})
= 1

hold the equalities

lim
n→∞

P ((η−1
n )((−ε, ε))) = lim

n→∞
({ω ∈ Ω; |ηn(ω)− 0 < ε|}) =

lim
n→∞

({
ω ∈ Ω;

∣∣∣∣ξ1 + . . .+ ξn
n

− a < ε

∣∣∣∣}) = 1.

�
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5 The strong law of large numbers

Theorem 4 Let x1, x2, . . . be a sequence of independent observables that have an integrable
square, then a sequence of observables

yn =
x1 − E(x1) + x2 − E(x2) + . . .+ xn − E(xn)

n
, n = 1, 2, . . .

converges to (0Ω, 0Ω) almost everywhere.

Proof: Let hn(n = 1, 2, . . .) : B(R)→ F be the joint observables of the observables x1, x2, . . . ,

and the functions gn : Rn → R be given by the formula

gn(ω1, ω2, . . . , ωn) =
1

n
(ω1 − E(x1) + ω2 − E(x2) + . . .+ ωn − E(xn))

and let yn : B(R)→ F be mappings such that

yn = hn ◦ g−1
n , (n = 1, 2, . . .)

Let us consider a probability space (Ω,S, P ) and a sequence of random variables ξn : Rn →
R, (n = 1, 2, . . .). We put

ηn = gn(ξ1, . . . , ξn) =
1

n
(ξ1 − E(x1) + ξ2 − E(x2) + . . .+ ξn − E(xn)) .

Then, for the mean value there holds

E(ξn) =

∫
Ω

ξndP =

∞∫
−∞

tdPξn(t) =

∞∫
−∞

tdmxn(t) = E(xn).

If the observables x1, x2, . . . are independent, then the random variables ξ1, ξ2, . . . are inde-
pendent, too.

A dispersion

σ2(ξn) =

∞∫
−∞

(t− E(ξn))2dmξn(t) =

∞∫
−∞

(t− E(xn))2dmxn(t) = σ2(xn).

Hence, the sequence ηn = 1
n

n∑
i=1

(ξi − E(ξ1)) converges P− almost everywhere to 0 and

following y1, y2, . . . it converges m−almost everywhere to (0Ω, 0Ω). �

6 Conclusion

We have proved some versions of the laws of large number for sequences of the independent
observables in the space of the interval valued events. The central limit theorem on IV− events
was proved in [6]. Research about IV− events can continue for a conditional probability.
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