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Abstract. In this paper we study an outer measure on IF-sets as a mapping to the
set of all compact subintervals of the unit interval. We characterize the properties of the
outer measure by the help of the properties of functions given by the edges of the intervals.
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1 Introduction

We shall consider the set F = {(fa,94); fa,94 : @ — (0,1), fa + ga < 1} as a partially
ordered set with the ordering

AC B <= (fa,94) < (fB,98) <= fa < fB, 94 2> g8
With respect to this ordering, F is a lattice with the operations
(fa,94)V (fB,98) = (faV fB,94 A gB)

(far94) A (fBr98) = (fa A fB,94V gB)

and the least element (0, 1) and the greatest element (1, 0). In paper [4] there have been
introduced the binary operations

A+B = (fa,94) + (fB,98) = (fa+ fB, 9a+98—1)

AZB = (fa,94) = (fB,98) = (fa— fB, 94— 9B+ 1)

There are also defined Lukasiewicz operations on F
A® B = (fa,94) ® (fB,98) = (fa® fB, 94 @ gB)

AO®B = (fa,94) © (fB,98) = (fa® fB, 94 D gB)

where
fa® fe=(fa+fe)AN1l, fa®@fe=(fa+fp—1)VO
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2 Carathéodory outer measure

Remark 2.1 Since outer measure is a function from F to the set T of all compact intervals

we recall that
(a,b) + (c,d) = (a+ ¢, b+ d)

and
(a,b) < (c,d) <= a<c and b<d

Definition 2.2 Let F be a set of IF-sets. By an outer measure we mean a function
A* . F — (0,1) satisfying the following conditions:

(1) A*((0,1)) =0;

@) 3((1,0) = 1;

(3) M (A+B) < X*(A) + X*(B)

(4) if AC B then M*(A) < X*(B)

Definition 2.3 Let \* : F — Z be an outer measure. An element A € F is called

measurable if
MN(H) = N(HANA) + X (H-(H A A))

for each H € F.

Remark 2.4 In the following the operations 'N' and 'V' take precedence over the oper-
ations '+','—'; thus (H—H A A) denotes (H—(H A A)).

Theorem 2.5 The measurable elements of F form a lattice.

Proof.
(1) We show that if A, B are the measurable elements, then A A B is also the measurable
element. Because A\* is subadditive it is sufficient to show an inequality

MN(H) >N (HANA) + XN (H-HNA)
Let A, B be the measurable elements. Then for any H € F
MN(H) = (HANA) +N(H=-HAA)
and H A A € F therefore
MNMHNA) =X HANAANB)+X(HANA = HANAAB)
Then
MNH)=XNHANAANB)+ N HANA>-HANAANB)+ XN (H-HAA) >
>NHANAANB)+ XM HANA=-HANAANB+ H-HAA) =
=\N(HANAANB)+X(H - HANANB)

It proves that A A B is the measurable element.
(17) We show that if A, B are the measurable elements, then AV B is also the measurable
element. Since H-H AN A= HV A~A we have

N(HZHAA) = X(HVA>A)
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Therefore if A is measurable then for any H € F
N(H)=XN(HNA)=X(HVA) —X(A)

or

NH)+XN(A) =X (HANA)+XN(HV A
Let A, B, A A B be the measurable elements, then

N(HAANB) = N((HAA)A(HAB)) =

=N (HANA)+XN(HAB)-X(HAN(AV B))

and also
MNMH-HANAAB)=)X(H-HAA)V(H-HAB)) =
=N (HZHAA) +N(H>-HAB) - X(H-HAA)A(H-H A B))
=XN(H-HANA)+MH-HAB)-XH-HA(AV B))
Therefore

N(HA(AVB)+MH-HA(AV B)) =
= N(HANA)+XN(H-HAA)+X(HAB)+X(H-HAB)-—
—MHANAAB)- XN H-HANAAB) =
= N(H) + X\(H) — X*(H) = \*(H)

It proves that AV B is the measurable element and all measurable elements of F form a

lattice.
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