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Abstract: We describe in this paper the Bat Algorithm (BA) and a proposed enhancement using 
fuzzy and intuitionistic fuzzy systems to dynamically adapt BA parameters. BA is a 
metaheuristic algorithm inspired by the behavor of micro bats, which has been applied to 
different optimization problems obtaining good results. We propose a new method for dynamic 
parameter adaptation in the BA using Type-1, interval Type-2 fuzzy logic and intuitionistic fuzzy 
logic. The goal is improving the performance of the BA. 
Keywords: Dynamic parameter adaptation, Bat algorithm, Type-1 fuzzy logic, Type-2 fuzzy 
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1 Introduction  

One of the main challenges of the field of metaheuristic techniques is appropriately varying 
parameter values during an metaheuristic algorithm run (parameter control). In order to increase 
the performance of the regarded algorithms it is necessary to provide the adjustments of their 
parameters depending on the considered problem.  

Finding parameters setting is not a trivial task, since their interaction with algorithm 
performance is a complex relationship and the optimal one are problem-dependent [15]. An 
optimal or near-optimal set of control parameters for one metaheuristic algorithm does not 
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generalize to all cases. This stresses the need for efficient techniques that help finding good 
parameter settings for a given problem, i.e. the need for good parameter adapting methods. 

Fuzzy logic has been successfully applied for improving many metaheuristic optimization 
algorithms [1, 4, 11, 14]. Intuitionistic fuzzy logic (IFL) and Intuitionistic fuzzy sets (IFS) [5-
10] have gained recognition as a useful tool for control uncertain phenomena. There are few 
application of IFL in control of metaheuristic algorithms parameters [15, 16].  

This paper is concerned with the application of the Type-1, Interval Type-2 fuzzy logic and 
IFL to dynamic parameter adaptation of Bat Algorithm (BA). The main idea is changing the 
parameters of the BA over time in order to improve the algorithm performance. 

The BA is a metaheuristic optimization method proposed by Yang in 2010 [18]. This 
algorithm is based on the behavior of micro bats, which use echolocation pulses with different 
emission and sound. The BA has the characteristic of being one of the best to face problems of 
nonlinear global optimization [3, 13, 17, 19]. In this paper the fuzzy and intuitionistic fuzzy 
systems are presented with the aim of dynamically setting some of the parameters in the BA.  

2 Bat algorithm 

This section describes the basic concepts of the original BA. The BA is a metaheuristic algorithm 
that was proposed by Xin-She Yang in 2010 [18]. It is based on the echolocation capability of 
micro bats guiding them on their foraging behavior. 

2.1 Rules of bats 

The BA is a novel metaheuristic swarm intelligence optimization method developed for global 
numerical optimization, in which the search algorithm is inspired by the social behavior of bats 
and the phenomenon of echolocation to sense distance [3]. 

If we idealize some of the echolocation characteristics of microbats, we can develop various 
bat-inspired algorithms or bat algorithms. For simplicity, we now use the following approximate 
or idealized rules [3, 18]: 

1. All bats use echolocation to sense distance, and they also know the difference between 
food/prey and background barriers in some unknown way. 

2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin, varying the 
wavelength λ and the loudness A0 to search for prey. They can automatically adjust the 
wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission  
r ∈ [0, 1], depending on the proximity of their target. 

3. Although loudness can vary in many ways, we assume that the loudness varies from a large 
(positive) A0 to a minimum constant value Amin. 

 

For simplicity, the frequency f ∈ [0, fmax], and the new solutions xit and velocity vit at 
a specific time step t are represented by a random vector drawn from a uniform distribution 
[13, 19]. 
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2.2 Movements in the BA  

Each bat is associated with a velocity vit and location xit, at iteration t, in a dimensional search or 
solution space. Among all the bats, there exist a current best solution x*. Therefore, the above 
three rules can be translated into the updating equations for xit and velocities vit: 

 i min max minf f ( f f )β= + −  (1) 

 1t t t
i i i * iv v ( x x ) f ,+ = + −  (2) 

 ,1 t
i

t
i

t
i vxx += −  (3) 

where β ∈ [0, 1] is a random vector selected from a uniform distribution [4], x* is the current 
global best solution which is located after comparing all the solutions among all the n bats,  fi  is 
used to adjust the velocity change. 

As mentioned earlier, we can either use wavelengths or frequencies for the implementation, 
and we will use fmin = 0 and fmax = 1, depending on the domain size of the problem of interest. 
Initially, each bat is randomly assigned a frequency which is drawn uniformly from 
[fmin – fmax]. The loudness and pulse emission rates essentially provide a mechanism for automatic 
control and auto zooming into the region with promising solutions [4]. 

For the local search part, once a solution is selected among the current best solutions, a new 
solution for each bat is generated locally using a random walk 

 t
oldnew AXX ε+= , (4) 

where ε ∈ [–1, 1] is a random number, while t t
iA A=  is the average loudness of all the bats at 

this time step. 

2.3 Pseudo code for the BA 

The basic steps of the bat algorithm can be summarized as the pseudo code shown in Fig. 1 [4]. 
 
 

 

Initialize the bat population xi (i = 1, 2,..., n) and vi 
Initialize frequency fi, pulse rates ri and the loudness Ai 
while (t < Max numbers of iterations) 

Generate new solutions by adjusting frequency  
and updating velocities and locations/solutions [Eqs. (1) to (3)] 
if (rand > ri) 

Select a solution among the best solutions 
Generate a local solution around the selected best solution 

end if 
Generate a new solutions by flying randomly 
if (rand < Ai & f(xi) < f(x*)) 

Accept the new solutions  
Increase ri and decrease Ai 

end if  
Rank the bats and find the current best x* 

end while 
 

Figure 1. Pseudocode of Bat Algorithm 
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2.4 Loudness and pulse rates 
 

In order to provide an effective mechanism to control the exploration and exploitation and switch 
to the exploitation stage when necessary, we have to vary the loudness Ai and the rate ri of pulse 
emission during the iterations. Since the loudness usually decreases once a bat has found its prey, 
while the rate of pulse emission increases, the loudness can be chosen as any value of 
convenience, between Amin and Amax, assuming Amin = 0 means that a bat has just found the prey 
and temporarily stop emitting any sound. With these assumptions, we have 

 ,1 t
i

t
i AA α=+ )],exp(1[01 t

i
t

i rr γ−−=+  (5) 

where α and γ are constants. In essence, here α is similar to the cooling factor of a cooling 
schedule in simulated annealing. For any 0 < α < 1 and γ > 0, we have 

 ,0→t
iA ,0

i
t

i rr →  as .∞→t  (6) 

In the simplest case, we can use α = γ. We have used α = γ = 0.9 to 0.98 in our simulations [3]. 

3 Fuzzy logic and Intuitionistic Fuzzy Logic 

3.1 Type-1 fuzzy logic systems 

A fuzzy logic system (FLS) that is defined entirely in terms of Type-1 fuzzy sets, is known as 
Type-1 Fuzzy Logic System (Type-1 FLS). Its elements are defined in the following Fig. 2 [12]. 
 

 
Figure 2. Architecture of a Type-1 Fuzzy Logic System 

A fuzzy set in the universe U is characterized by a membership function uA(x) taking values 
on the interval [0, 1] and can be represented as a set of ordered pairs of an element and the 
membership value of the set:  

 { }UXXuXA A ∈= ))(,( . (7) 
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3.2 Type-2 fuzzy logic systems 

A variety of types of membership functions exist, but one of them is typically known as the bell 
of Gauss (Gaussian). The mathematical function is defined with the following equation [18, 19]. 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
= 2

2)(5.0exp)(
σ

cxxf . (8) 

In Type-2 FLS the membership functions can now return a range of values instead of only 
one number, which vary depending on the uncertainty involved in not only the inputs, but also 
in the same membership function for a specific value of x', the membership function (u'), 
assumes different values, which do not have the same weight, so that it can assign a wide 
distribution of values at all points and this is called the footprint of uncertainty (FOU) [1, 11]. 

If we do this for all x ∈ X, we can create a three-dimensional membership function, a Type-
2 membership function that characterizes a Type-2 fuzzy set [1, 11].  

A Type-2 fuzzy set, A~ , is characterized by its membership function. 

 { }( , ), ( , )) , [0, 1]xAA x u u x u x X u J= ∈ ∈ ⊆ , (9) 
where .1),(0 ~ ≤≤ uxuA  

3.3 Footprint uncertainty 

Uncertainty affects decisions in a number of different ways. The concept of information is fully 
connected to the concept of uncertainty. The most fundamental part of this connection is that the 
uncertainty involved in any solution of a problem is the result of poor information, which may 
be incomplete, imprecise, fragmentary, not fully reliable, vague, contradictory, or deficient in 
some way or another [12]. Fig. 3 shows the architecture of a Type-2 FLS. 

The output processor includes a type-reducer and defuzzifier. It generates a Type-1 FLS 
output (from the type-reducer) or a crisp number (from the defuzzifier) [14].  

A Type-2 FLS is also characterized by IF-THEN rules, but their fuzzy sets are now Type-2 
FLS. The FLS can be used when circumstances are too uncertain to determine exact membership 
degrees. as is the case when the membership functions in a fuzzy controller can take different 
values and we want to find the distribution of membership functions to show better results in the 
stability of fuzzy control [11]. 

 

 
Figure 3. Architecture of a Type-2 fuzzy logic system 
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3.4 Intuitionistic fuzzy logic 

According to Atanassov [5–10], an IFS on the universum X ≠ ∅ is an expression A given by: 

 A = {〈x, μA(x), νA(x)〉 | x ∈ X}, (10) 
where the functions  

 μA, νA : X → [0, 1]  (11) 
satisfy the condition  

 0 ≤ μA(x) + νA(x) ≤ 1 (12) 

and describe, respectively, the degree of the membership μA(x) and the non-membership νA(x) 
of an element x to A. Let  

 πA(x) = 1 – μA(x) – νA(x), (13) 

therefore, function πA determines the degree of uncertainty. 

4 Proposed fuzzy adaptation of parameters 

In the BA the selected parameters integrated into the Type-1 FLS, Interval Type-2 FLS and IFL 
system are "Iteration", "Beta" (β) and "Pulse Rate" (ri). The "Iteration" variable is defined by 
the Eq. (14), and has a range from 0 to 1. This variable can be seen as the percentage of the 
current iteration.  

 Current  IterationIteration
Maximun of  Iterations

= .  (14) 

The β variable is located between [0, 1] which is increasing with the step iterations and the 
variable ri value is between [0, 1], which is decreasing with the step iterations. 

4.1 Type-1 and Type-2 FLS 

The main difference between a Type-1 FLS and an Interval Type-2 FLS, is that the degree of 
membership is also fuzzy, and is represented by the FOU. If we shift from Type-1 FLS to Type-
2 FLS, theoretically we need a degree of footprint uncertainty, so that this degree was manually 
modified until the best possible FOU is obtained. The Type-1 FLS for BA parameter adaptation 
is shown in Fig. 4 and the Type-2 FLS – in Fig. 8. 

Fig. 5 shows the rule set from the original Type-1 FLS for parameter adaptation. These rules 
stay the same in the change from Type-1 to interval Type-2. The set of IF-THEN fuzzy rules are 
granulated into 3 rules in order to cover all iterations and the search space. To start in low 
iterations the parameter β is low and the ri is high. Going to the middle iterations iterations the 
parameter β is middle and ri is middle start to cover much of the search space. In the high 
iterations the same procedure is repeated the parameter β is high and ri is low. In this way the 
exploitation of the search space is achieved. 
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Figure 4. Type-1 FLS for parameter adaptation 

The proposed fuzzy system is of Mamdani type because it is more commonly used in this 
type of fuzzy control and the defuzzification method is the centroid. The membership functions 
are of triangular form in the inputs and the outputs because of their simple definition for this 
problem.  

In the “input1” variable “Iteration” the membership functions are of triangular form (Fig. 5). 
On the input variable (as mentioned above) triangular membership functions granulated into 

three fuzzy sets are used, which is performed in this manner considering the reviewed literature 
and by analyzing the results by others that have been successful [2]. 

In the output variables, β and the ri, the literature values between the range of 0 to 1 are 
recommended for each of the output variables by which the same are designed using this range 
of values. Each output is granulated into three triangular membership functions (Low, Middle, 
High), and the design of the output variables can be found in Fig. 6 for β, and in Fig. 7 for ri. 

 
Figure 5. Type-1 FLS for the varable Iteration 
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Figure 6. Type-1 FLS for the β parameter Figure 7. Type-1 FLS for the parameter ri 

The interval Type-2 FLS was designed similary to the one in [2], for the parameter adaptation 
and is shown in Fig. 8. We develop this system manually, this is, we change the levels of FOU 
of each point of each membership function, but each point has the same level of FOU, also the 
input and output variables have only interval Type-2 triangular membership functions. 

 
Figure 8. Interval Type-2 FLS for parameter adaptation 

Again the membership functions are of trapezoidal form in the inputs and the outputs because 
of their simple definition for this problem. In the “input1” for the “Iteration” variable the 
membership functions are of triangular form as shown in Fig. 9. 

 
Figure 9. Interval Type-2 FLS of the varable Iteration 
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In the output variables, β and the ri granulated into three triangular membership functions  
(Low, Middle, High), and the design of the output variables can be found in Fig. 10 for β, and  
in Fig. 11 for ri. 

Figure 10. Interval Type-2 FLS  
of the β parameter 

Figure 11. Interval Type-2 FLS  
of the ri parameter 

The fuzzy rule set used for parameter adaptation in the Bat Algorithm is shown in Fig. 12. 

1.  If (Iteration is Low)  then (β is Low)    (ri is High) 

2.  If (Iteration is Middle)  then (β is Middle)    (ri is Middle) 

3.  If (Iteration is High)  then (β is High)    (ri is Low) 

Figure 12. Rule set from original Type-1 FLS for parameter adaptation 

Membership functions in the Type-1 FLS and interval Type-2 FLS are for the one input and 
the two outputs of the fuzzy system. The system has one input – the parameter "Iteration", which 
has three membership functions with Low, Middle and High linguistic values and the two outputs 
– parameters “Beta” (β) and “Pulse Rate” (ri) which has three membership functions with Low, 
Middle and High linguistic values. 

4.2 Intuitionistic fuzzy logic system 

Considering the variable Iteration (Eq. (14)) it can be assigned intuitionistic maximum and 
minimum values (Iterationmax and Iterationmin). So, if the current Iteration falls outside the 
intuitionistic limits can be unambiguously assigned to rules 1) and 3) presented in Fig. 12. 
Conversely, values between intuitionistic limits (Iterationmax and Iterationmin) cannot be 
determined unambiguously. In this case the rule 2), Fig. 12. In the case of IFL system the 
following membership functions are defined: 

μA : (Iteration ≤ Iterationmin) 
πA : if (Iterationmin < Iteration < Iterationmax) 
νA : if (Iteration ≥ Iterationmax)  
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The intuitionistic fuzzy rule set used for parameter adaptation in the BA is shown in Fig. 13. 

1.  If (Iteration ≤ Iterationmin)  then (β is Low)    (ri is High) 
2.  If (Iterationmin < Iteration < Iterationmax)  then (β is Middle)    (ri is Middle) 
3.  If (Iteration ≥ Iterationmax)  then (β is High)    (ri is Low) 

Figure 13. Rule set from intuitionistic fuzzy rule system for parameter adaptation 

Considering IFL system the design of the output variables, β and ri, is analogical to the 
presented one in Fig. 10 and in Fig. 11. According to [9] the geometrical forms of the 
intuitionistic fuzzy numbers can be generalized as follows: 

For the first case functions Aμ  and Aν  satisfied the conditions [9]: 

sup ( ) ( )A A
y E

y x aμ μ
∈

= = ,  inf ( ) ( )A Ay E
y x bν ν

∈
= = , 

for each x ∈ [x1, x2], and for the second case [9]: 

0sup ( ) ( ) ,A A
y E

y x aμ μ
∈

= =   0inf ( ) ( )A Ay E
y x bν ν

∈
= = . 

For the first case we have: 
• Aμ  is increasing function from −∞  to 1x ; 

• Aμ  is decreasing function from 2x  to +∞ ; 

• Aν  is decreasing function from −∞  to 1x ; 

• Aν  is increasing function from 2x  to +∞ . 

For the second case we have: 
• Aμ  is increasing function from −∞  to 0x ; 

• Aμ  is decreasing function from 0x  to +∞ ; 

• Aν  is decreasing function from −∞  to 0x ; 

• Aν  is increasing function from 0x  to +∞ . 

Obviously, in both cases the functions Aμ  and Aν  can be represented in the form 

left right ,A A Aμ μ μ= ∪  left right ,A A Aν ν ν= ∪  

where left
Aμ  and left

Aν  are the left, while right
Aμ  and right

Aν  are the right sides of these functions. 
Therefore, the above conditions can be re-written in the (joint) form [9]: 

sup ( ) ( ) ,A A
y E

y x aμ μ
∈

= =   inf ( ) ( ) ,A Ay E
y x bν ν

∈
= =  

for each 1 2[ , ]x x x∈  and in the particular case, when 1 0 2x x x= = , left
Aμ  is increasing function; 

right
Aμ  is decreasing function; left

Aν  is decreasing function and right
Aν  is increasing function. 

Following [9], we will consider, ordered by generality, the definitions: 
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1. In the graphical representation in both cases above 1,a =  0.b =  
2.  0 0sup ( ) ( ) 0.5 ( ) inf ( ).A A A Ay Ey E

y x x yμ μ ν ν
∈∈

= > > =  

3.  0 0sup ( ) ( ) 0.5 ( ) inf ( ).A A A Ay Ey E
y x x yμ μ ν ν

∈∈
= ≥ ≥ =  

4.  0 0sup ( ) ( ) ( ) inf ( ).A A A Ay Ey E
y x x yμ μ ν ν

∈∈
= > =  

5.  0 0sup ( ) ( ) ( ) inf ( ).A A A Ay Ey E
y x x yμ μ ν ν

∈∈
= ≥ =  

6.  0sup ( ) ( ) 0.A A
y E

y xμ μ
∈

= >  

7.  0inf ( ) 1.Ay E
xν

∈
= <  

In considered here BA parameter adaptation, for simplicity, it can be used the presented in 
Fig. 10 and Fig. 11 design of the output variables applying the intuitionistic fuzzy rule set. 

5 Conclusions  

One of the main challenges of the field of metaheuristic algorithms is the parameter control.  
In order to increase the performance of the algorithms it is necessary to adapt the algorithm 
parameters during the computation. Such a procedure is not a trivial. In this paper, Type-1, 
interval Type-2 fuzzy logic and intuitionistic fuzzy logic systems to dynamically adaptaptation 
of BA parameters are proposed. The presented methods perform dynamic adaptation of 
considered parameters, during the algorithm run, trying to improve the BA performance.  
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