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1 Introduction

In [1–3] K. T. Atanassov introduced the notion of intuitionistic fuzzy sets. Then in [7] B. Riečan
defined the intuitionistic fuzzy state on the family of intuitionistic fuzzy events

F = {(µA, νA) ;µA + νA ≤ 1Ω},
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where µA, νA are S-measurable functions, µA, νA : Ω → [0, 1], as a mapping m from the family
F to the set R by the formula

m
(
(µA, νA)

)
= (1− α)

∫
Ω

µAdP + α

(
1−

∫
Ω

νAdP

)
,

where P : S → [0, 1] is a probability measure and α ∈ [0, 1].
In paper [4] we defined the upper and the lower limits for sequence of intuitionistic fuzzy ob-

servables. We used an intuitionistic fuzzy state m for a definition the notion of almost everywhere
convergence. We compared two concepts of m-almost everywhere convergence.

In this paper we study the m-almost everywhere convergence of sequence of intuitionistic
fuzzy observables gn(x1, . . . , xn) : B(R)→ F given by

gn(x1, . . . , xn) = hn ◦ g−1
n ,

where hn : B(Rn) → F is the joint intuitionistic fuzzy observable of intuitionistic fuzzy ob-
servables x1, . . . , xn and gn : Rn → R is a Borel measurable function. We show the connection
between m-almost everywhere convergence of this sequence of intuitionistic fuzzy observables
and P -almost everywhere convergence of random variables in classical probability space induced
by Kolmogorov construction.

Remark. Note that in a whole text we use a notation “IF” in short as the phrase “intuitionistic
fuzzy.”

2 IF-events, IF-states and IF-observables

First we start with definitions of basic notions.

Definition 2.1. Let Ω be a nonempty set. An IF-set A on Ω is a pair (µA, νA) of mappings
µA, νA : Ω→ [0, 1] such that µA + νA ≤ 1Ω.

Definition 2.2. Start with a measurable space (Ω,S). Hence S is a σ-algebra of subsets of Ω.
An IF-event is called an IF-set A = (µA, νA) such that µA, νA : Ω→ [0, 1] are S-measurable.

The family of all IF-events on (Ω,S) will be denoted by F , µA : Ω −→ [0, 1] will be called
the membership function, νA : Ω −→ [0, 1] be called the non-membership function.

If A = (µA, νA) ∈ F , B = (µB, νB) ∈ F , then we define the Łukasiewicz binary operations
⊕,� on F by

A⊕B = ((µA + µB) ∧ 1Ω, (νA + νB − 1Ω) ∨ 0Ω)),

A�B = ((µA + µB − 1Ω) ∨ 0Ω, (νA + νB) ∧ 1Ω))

and the partial ordering is then given by

A ≤ B⇐⇒ µA ≤ µB, νA ≥ νB.
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In paper we use max-min connectives defined by

A ∨B = (µA ∨ µB, νA ∧ νB),

A ∧B = (µA ∧ µB, νA ∨ νB)

and the de Morgan rules
(a ∨ b)∗ = a∗ ∧ b∗,

(a ∧ b)∗ = a∗ ∨ b∗,

where a∗ = 1− a.

Example 2.3. Fuzzy set f : Ω −→ [0, 1] can be regarded as IF-set, if we put

A = (f, 1Ω − f).

If f = χA, then the corresponding IF-set has the form

A = (χA, 1Ω − χA) = (χA, χA′ ).

In this case A ⊕ B corresponds to the union of sets, A � B to the intersection of sets and ≤ to
the set inclusion.

In the IF-probability theory [7, 9] instead of the notion of probability, we use the notion of
state.

Definition 2.4. Let F be the family of all IF-events in Ω. A mapping m : F → [0, 1] is called an
IF-state, if the following conditions are satisfied:

(i) m((1Ω, 0Ω)) = 1 , m((0Ω, 1Ω)) = 0;

(ii) if A�B = (0Ω, 1Ω) and A,B ∈ F , then m(A⊕B) = m(A) + m(B);

(iii) if An ↗ A (i.e. µAn ↗ µA, νAn ↘ νA), then m(An)↗m(A).

Probably the most useful result in the IF-state theory is the following representation theorem
([7]):

Theorem 2.5. To each IF-state m : F → [0, 1] there exists exactly one probability measure
P : S → [0, 1] and exactly one α ∈ [0, 1] such that

m(A) = (1− α)

∫
Ω

µAdP + α

(
1−

∫
Ω

νAdP

)
for each A = (µA, νA) ∈ F .

The third basic notion in the probability theory is the notion of an observable. Let J be the
family of all intervals in R of the form

[a, b) = {x ∈ R : a ≤ x < b}.

Then the σ-algebra σ(J ) is denoted B(R) and it is called the σ-algebra of Borel sets, its elements
are called Borel sets.
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Definition 2.6. By an IF-observable onF we understand each mapping x : B(R)→ F satisfying
the following conditions:

(i) x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) if A ∩B = ∅, then x(A)� x(B) = (0Ω, 1Ω) and x(A ∪B) = x(A)⊕ x(B);

(iii) if An ↗ A, then x(An)↗ x(A).

If we denote x(A) =
(
x[(A), 1Ω − x](A)

)
for each A ∈ B(R), then x[, x] : B(R) → T are

observables, where T = {f : Ω→ [0, 1]; f is S −measurable}.

Remark 2.7. Sometimes we need to work with n-dimensional IF-observable x : B(Rn) → F
defined as a mapping with the following conditions:

(i) x(Rn) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) if A∩B = ∅, A,B ∈ B(Rn), then x(A)�x(B) = (0Ω, 1Ω) and x(A∪B) = x(A)⊕x(B);

(iii) if An ↗ A, then x(An)↗ x(A) for each A,An ∈ B(Rn).

If n = 1 we simply say that x is an IF-observable.

Similarly to the classical case, the following theorem can be proved ([9]).

Theorem 2.8. Let x : B(R) −→ F be an IF-observable, m : F −→ [0, 1] be an IF-state. Define
the mapping mx : B(R) −→ [0, 1] by the formula

mx(C) = m(x(C)).

Then mx : B(R) −→ [0, 1] is a probability measure.

3 Product operation, joint IF-observable
and function of several IF-observables

In [5] we introduced the notion of product operation on the family of IF-events F and showed an
example of this operation.

Definition 3.1. We say that a binary operation · on F is product if it satisfying the following
conditions:

(i) (1Ω, 0Ω) · (a1, a2) = (a1, a2) for each (a1, a2) ∈ F;

(ii) the operation · is commutative and associative;
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(iii) if (a1, a2)� (b1, b2) = (0Ω, 1Ω) and (a1, a2), (b1, b2) ∈ F , then

(c1, c2) ·
(
(a1, a2)⊕ (b1, b2)

)
=
(
(c1, c2) · (a1, a2)

)
⊕
(
(c1, c2) · (b1, b2)

)
and (

(c1, c2) · (a1, a2)
)
�
(
(c1, c2) · (b1, b2)

)
= (0Ω, 1Ω)

for each (c1, c2) ∈ F;

(iv) if (a1n, a2n) ↘ (0Ω, 1Ω), (b1n, b2n) ↘ (0Ω, 1Ω) and (a1n, a2n), (b1n, b2n) ∈ F , then
(a1n, a2n) · (b1n, b2n)↘ (0Ω, 1Ω).

The following theorem provides an example of product operation for IF-events.

Theorem 3.2 ([5, Theorem 1]). The operation · defined by

(x1, y1) · (x2, y2) = (x1 · x2, y1 + y2 − y1 · y2)

for each (x1, y1), (x2, y2) ∈ F is product operation on F .

In [8] B. Riečan defined the notion of a joint IF-observable and proved its existence.

Definition 3.3. Let x, y : B(R) → F be two IF-observables. The joint IF-observable of the
IF-observables x, y is a mapping h : B(R2)→ F satisfying the following conditions:

(i) h(R2) = (1Ω, 0Ω), h(∅) = (0Ω, 1Ω);

(ii) if A,B ∈ B(R2) and A ∩B = ∅, then

h(A ∪B) = h(A)⊕ h(B) and h(A)� h(B) = (0Ω, 1Ω);

(iii) if A,A1, . . . ∈ B(R2) and An ↗ A, then h(An)↗ h(A);

(iv) h(C ×D) = x(C) · y(D) for each C,D ∈ B(R).

Theorem 3.4 ( [8, Theorem 3.3]). For each two IF-observables x, y : B(R) → F there exists
their joint IF-observable.

Remark 3.5. The joint IF-observable of IF-observables x, y from Definition 3.3 is a two-dimen-
sional IF-observable.

If we have several IF-observables and a Borel measurable function, we can define the IF-
observable, which is the function of several IF-observables. Regarding this we provide the fol-
lowing definition.

Definition 3.6. Let x1, . . . , xn : B(R) → F be IF-observables, hn their joint IF-observable and
gn : Rn → R a Borel measurable function. Then we define the IF-observable gn(x1, . . . , xn) :

B(R)→ F by the formula

gn(x1, . . . , xn)(A) = hn
(
g−1
n (A)

)
.

for each A ∈ B(R).
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4 Lower and upper limits, m-almost everywhere convergence

In [4] we defined the notions of lower and upper limits for a sequence of IF-observables and
showed the connection between two kinds of m-almost everywhere convergence.

Definition 4.1. We shall say that a sequence (xn)n of IF-observables has lim sup
n→∞

, if there exists

an IF-observable x : B(R)→ F such that

x((−∞, t)) =
∞∨
p=1

∞∨
k=1

∞∧
n=k

xn

((
−∞, t− 1

p

))
for every t ∈ R. We write x = lim sup

n→∞
xn.

Note that if another IF-observable y satisfies the above condition, then m ◦ y = m ◦ x.

Definition 4.2. A sequence (xn)n of IF-observables has lim inf
n→∞

, if there exists an IF-observable
x such that

x((−∞, t)) =
∞∨
p=1

∞∧
k=1

∞∨
n=k

xn

((
−∞, t− 1

p

))
for all t ∈ R. Notation: x = lim inf

n→∞
xn.

Theorem 4.3 ( [4, Theorem 3.3]). The IF-observables x, x from Definition 4.1 and Definition 4.2
can be expressed in the following form

x(A) =
(
x[(A), 1Ω − x](A)

)
,

x(A) =
(
x[(A), 1Ω − x](A)

)
,

for each A ∈ B(R). Here x[, x[ are upper and lower limits of sequence (x[n)∞1 of observables
in tribe T and x], x] are upper and lower limits of sequence (x]n)∞1 of observables in tribe T
(see [6]).

Proposition 4.1 ( [4, Proposition 3.1]). If a sequence of IF-observables (xn)n has x = lim sup
n→∞

xn

and x = lim inf
n→∞

xn, then

x((−∞, t)) ≤ x((−∞, t)),

for every t ∈ R.

Proposition 4.2 ( [4, Proposition 4.1]). A sequence (xn)n of an IF-observables converges m-
almost everywhere to 0 if and only if

m

( ∞∨
p=1

∞∨
k=1

∞∧
n=k

xn

((
−∞, t− 1

p

)))
= m

( ∞∨
p=1

∞∧
k=1

∞∨
n=k

xn

((
−∞, t− 1

p

)))
=

= m
(
0F((−∞, t))

)
,

for every t ∈ R.
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In accordance to Proposition 4.2 we can extend the notion of m-almost everywhere conver-
gence in the following way.

Definition 4.4. A sequence (xn)n of an IF-observables converges m-almost everywhere to an
IF-observable x, if

m

( ∞∨
p=1

∞∨
k=1

∞∧
n=k

xn

((
−∞, t− 1

p

)))
= m

( ∞∨
p=1

∞∧
k=1

∞∨
n=k

xn

((
−∞, t− 1

p

)))
=

= m
(
x((−∞, t))

)
,

for every t ∈ R.

5 P -almost everywhere convergence
and m-almost everywhere convergence

The main result of this section is given in Theorem 5.1. The main step is presented in the follow-
ing proposition.

Recall, that the corresponding probability space is (RN , σ(C), P ), where C is the family of all
sets of the form

{(ti)∞i=1 : t1 ∈ A1, . . . , tn ∈ An},

and P is the probability measure determined by the equality

P
(
{(ti)∞i=1 : t1 ∈ A1, . . . , tn ∈ An}

)
= m

(
x1(A1) · . . . · xn(An)

)
.

The corresponding projections ξn : RN → R are defined by the equality

ξn
(
(ti)
∞
i=1

)
= tn.

Proposition 5.1. Let (xn)n be a sequence of IF-observables, (ξn)n the sequence of corresponding
projections, gn : Rn → R be a Borel measurable functions (n = 1, 2, . . .). Then

P
(
{u ∈ RN : lim sup

n→∞
gn
(
ξ1(u), . . . , ξn(u)

)
< t}

)
≤

≤ m

( ∞∨
p=1

∞∨
k=1

∞∧
n=k

gn(x1, . . . , xn)

((
−∞, t− 1

p

)))
,

P
(
{u ∈ RN : lim inf

n→∞
gn
(
ξ1(u), . . . , ξn(u)

)
< t}

)
≥

≥ m

( ∞∨
p=1

∞∧
k=1

∞∨
n=k

gn(x1, . . . , xn)

((
−∞, t− 1

p

)))
.
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Proof. We have

P
(
{u ∈ RN : lim sup

n→∞
gn
(
ξ1(u), . . . , ξn(u)

)
< t}

)
=

= P

( ∞⋃
p=1

∞⋃
k=1

∞⋂
n=k

{
u ∈ RN : gn(u1, . . . , un) < t− 1

p

})
=

= lim
p→∞

lim
k→∞

lim
i→∞

P

(
k+i⋂
n=k

(
π−1
n

(
g−1
n

((
−∞, t− 1

p

)))))
=

= lim
p→∞

lim
k→∞

lim
i→∞

P

(
π−1
k+i

( k+i⋂
n=k

g−1
n

((
−∞, t− 1

p

))))
=

= lim
p→∞

lim
k→∞

lim
i→∞

m

(
hk+i

( k+i⋂
n=k

g−1
n

((
−∞, t− 1

p

))))
≤

≤ lim
p→∞

lim
k→∞

lim
i→∞

m

(
k+i∧
n=k

(hk+i ◦ g−1
n )

((
−∞, t− 1

p

)))
=

= lim
p→∞

lim
k→∞

lim
i→∞

m

(
k+i∧
n=k

gn(x1, . . . , xn)

((
−∞, t− 1

p

)))
=

= m

(
∞∨
p=1

∞∨
k=1

∞∧
n=k

gn(x1, . . . , xn)

((
−∞, t− 1

p

)))
.

The second inequality can be proved similarly.

Theorem 5.1. Let (xn)n be a sequence of IF-observables, (ξn)n be the sequence of correspond-
ing projections, (gn)n be a sequence of Borel measurable functions gn : Rn → R. If the se-
quence

(
gn(ξ1, . . . , ξn)

)
n

converges P -almost everywhere, then the sequence
(
gn(x1, . . . , xn)

)
n

converges m-almost everywhere and

m
(

lim sup
n→∞

gn(x1, . . . , xn)
(
(−∞, t)

))
= m

(
lim inf
n→∞

gn(x1, . . . , xn)
(
(−∞, t)

))
for each t ∈ R. Moreover

P
(
{u ∈ RN : lim sup

n→∞
gn
(
ξ1(u), . . . , ξn(u)

)
< t}

)
= m

(
lim sup
n→∞

gn(x1, . . . , xn)
(
(−∞, t)

))
for each t ∈ R.

Proof. Let the sequence
(
gn(ξ1, . . . , ξn)

)
n

converges P -almost everywhere, then

P
(
{u ∈ RN : lim sup

n→∞
gn
(
ξ1(u), . . . , ξn(u)

)
< t}

)
=

= P
(
{u ∈ RN : lim inf

n→∞
gn
(
ξ1(u), . . . , ξn(u)

)
< t}

)
.

(1)

Put

ϕ(t) =
∞∨
p=1

∞∨
k=1

∞∧
n=k

gn(x1, . . . , xn)

((
−∞, t− 1

p

))
,

ψ(t) =
∞∨
p=1

∞∧
k=1

∞∨
n=k

gn(x1, . . . , xn)

((
−∞, t− 1

p

))
,
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and
ηn(u) = gn(ξ1(u), . . . , ξn(u)).

Since ϕ(t) ≤ ψ(t), then
m(ϕ(t)) ≤m(ψ(t)).

By Proposition 5.1 and (1) we obtain

m(ψ(t)) ≤ P
(
{u ∈ RN : lim inf

n→∞
ηn(u) < t}

)
= P

(
{u ∈ RN : lim sup

n→∞
ηn(u) < t}

)
≤m(ϕ(t)).

Hence
m(ϕ(t)) = m(ψ(t)),

and moreover

P
(
{u ∈ RN : lim sup

n→∞
ηn(u) < t}

)
= m(ϕ(t)) = m(ψ(t)).

Denote the common value by

F (t) = P
(
{u ∈ RN : lim sup

n→∞
ηn(u) < t}

)
= m(ϕ(t)) = m(ψ(t)).

Since lim supn→∞ ηn is a random variable, then F : R → [0, 1] is a distribution function. Evi-
dently

m

( ∞∨
n=1

ϕ(n)

)
= lim

n→∞
m
(
ϕ(n)

)
= lim

n→∞
F (n) = 1,

m

( ∞∧
n=1

ϕ(−n)

)
= lim

n→∞
m
(
ϕ(−n)

)
= lim

n→∞
F (−n) = 0.

Since m is faithful, we obtain

∞∨
n=1

ϕ(n) = (1Ω, 0Ω),
∞∧
n=1

ϕ(−n) = (0Ω, 1Ω). (2)

Let tn ↗ t. Evidently ϕ(tn) ≤ ϕ(t), hence

∞∨
n=1

ϕ(n) ≤ ϕ(t).

On the other hand to each p ∈ N there exist j, q ∈ N such that
(
−∞, t− 1

p

)
⊂
(
−∞, tj − 1

q

)
,

hence

gn(x1, . . . , xn)

((
−∞, t− 1

p

))
≤ gn(x1, . . . , xn)

((
−∞, tj −

1

q

))
and therefore
∞∧
n=k

gn(x1, . . . , xn)

((
−∞, t−1

p

))
≤
∞∧
n=k

gn(x1, . . . , xn)

((
−∞, tj−

1

q

))
≤ ϕ(tj) ≤

∞∨
j=1

ϕ(tj).

37



Since the relation holds for every k and p, we obtain

ϕ(t) =
∞∨
p=1

∞∨
k=1

∞∧
n=k

gn(x1, . . . , xn)

((
−∞, t− 1

p

))
≤
∞∨
j=1

ϕ(tj).

Hence

ϕ(t) =
∞∨
j=1

ϕ(tj). (3)

Let us summarize: ϕ is non-decreasing,
∨∞

n=1 ϕ(n) = (1Ω, 0Ω),
∧∞

n=1 ϕ(−n) = (0Ω, 1Ω),
tn ↗ t implies ϕ(tn)↗ ϕ(t).

Put yn = gn(x1, . . . , xn). Using max-min connectives ∨, ∧, the De Morgan rules and equality
yn(A) =

(
y[n(A), 1Ω − y]n(A)

)
we obtain

∞∨
p=1

∞∨
k=1

∞∧
n=k

yn(A) =

( ∞∨
p=1

∞∨
k=1

∞∧
n=k

y[n(A), 1Ω −
∞∨
p=1

∞∨
k=1

∞∧
n=k

y]n(A)

)

for each A ∈ B(R), where y[n, y
]
n : B(R)→ T are observables. Put

ϕ[(t) =
∞∨
p=1

∞∨
k=1

∞∧
n=k

y[n

((
−∞, t− 1

p

))
,

ϕ](t) =
∞∨
p=1

∞∨
k=1

∞∧
n=k

y]n

((
−∞, t− 1

p

))
.

Then
ϕ(t) =

(
ϕ[(t), 1Ω − ϕ](t)

)
.

Since ϕ is non-decreasing, therefore ϕ[, ϕ] are non-decreasing. More by (2) we have

(1Ω, 0Ω) =
∞∨
n=1

ϕ(n) =
∞∨
n=1

(
ϕ[(n), 1Ω − ϕ](n)

)
=

( ∞∨
n=1

ϕ[(n), 1Ω −
∞∨
n=1

ϕ](n)

)
,

(0Ω, 1Ω) =
∞∧
n=1

ϕ(−n) =
∞∧
n=1

(
ϕ[(−n), 1Ω − ϕ](−n)

)
=

( ∞∧
n=1

ϕ[(−n), 1Ω −
∞∧
n=1

ϕ](−n)

)
.

Hence
∞∨
n=1

ϕ[(n) = 1Ω,

∞∧
n=1

ϕ[(−n) = 0Ω, (4)

∞∨
n=1

ϕ](n) = 1Ω,

∞∧
n=1

ϕ](−n) = 0Ω. (5)

Since tn ↗ t implies(
ϕ[(tn), 1Ω − ϕ](tn)

)
= ϕ(tn)↗ ϕ(t) =

(
ϕ[(t), 1Ω − ϕ](t)

)
,
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then

ϕ[(tn) ↗ ϕ[(t), (6)

1Ω − ϕ](tn) ↘ 1Ω − ϕ](t)⇐⇒ ϕ](tn)↗ ϕ](t). (7)

For fixed ω ∈ Ω and arbitrary t ∈ R put

F [
ω(t) = ϕ[(t)(ω), F ]

ω(t) = ϕ](t)(ω).

Evidently F [
ω, F

]
ω : R → [0, 1] are the non-decreasing functions and by (4), (6) and by (5), (7)

we obtain that F [
ω, F

]
ω are the distribution functions. Denote by λ[ω, λ]ω the corresponding Stieltjes

probability measures and define y[, y] : B(R)→ T by the equalities

y[(A)(ω) = λ[ω(A), y](A)(ω) = λ]ω(A).

Then y[, y] are the observables and

y[
(
(−∞, t)

)
(ω) = λ[ω

(
(−∞, t)

)
= F [

ω(t) = ϕ[(t)(ω), (8)

y]
(
(−∞, t)

)
(ω) = λ]ω

(
(−∞, t)

)
= F ]

ω(t) = ϕ](t)(ω), (9)

for each ω ∈ Ω. Using Theorem 4.3 and (8), (9) we have that there exists IF-observable y =

lim supn→ yn given by

y
(
(−∞, t)

)
=
(
y[
(
(−∞, t)

)
, 1Ω − y]

(
(−∞, t)

))
=
(
ϕ[(t), 1Ω − ϕ](t)

)
= ϕ(t).

The existence of IF-observable y = lim infn→ yn = ψ can be proved similarly. Since m(ϕ(t)) =

m(ψ(t)), then
m
(
y
(
(−∞, t)

))
= m

(
y
(
(−∞, t)

))
for each t ∈ R and by Definition 4.4 we have that (yn)n =

(
gn(x1, . . . , xn)

)
n

converges m-almost
everywhere. Moreover

P
(
{u ∈ RN : lim sup

n→∞
ηn(u) < t}

)
= m

(
y
(
(−∞, t)

))
for each t ∈ R.

6 Conclusion

The Theorem 5.1 is important for the proof of the Individual ergodic theorem in intuitionistic
fuzzy case, where we work with the sequence of several IF-observables induced by the Borel
function.
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[8] Riečan, B. (2006). On the probability and random variables on IF events, Applied Artifical
Intelligence, Proc. 7th FLINS Conf., Genova, D. Ruan et al. eds., 138–145.
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