Notes on Intuitionistic Fuzzy Sets

Print ISSN 1310-4926, Online ISSN 2367-8283
Vol. 25, 2019, No. 2, 29-40

DOI: 10.7546/nifs.2019.25.2.29-40

m-almost everywhere convergence
of intuitionistic fuzzy observables

induced by Borel measurable function

Katarina Cunderlikova

Mathematical Institute, Slovak Academy of Sciences
Stefanikova 49, 814 73 Bratislava, Slovakia

e-mail: cunderlikova.lendelova@gmail.com

Received: 8 February 2019 Revised: 24 April 2019 Accepted: 29 April 2019

Abstract: In paper [4] we studied the upper and the lower limits of sequence of intuitionistic
fuzzy observables. We used an intuitionistic fuzzy state m for a definition the notion of almost
everywhere convergence. We compared two concepts of m-almost everywhere convergence. The
aim of this paper is to show the connection between almost everywhere convergence in classical
probability space induced by Kolmogorov construction and m-almost everywhere convergence
in intuitionistic fuzzy space. We studied the sequence of intuitionistic fuzzy observables induced
by Borel measurable function.
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1 Introduction

In [1-3] K. T. Atanassov introduced the notion of intuitionistic fuzzy sets. Then in [7] B. Riecan
defined the intuitionistic fuzzy state on the family of intuitionistic fuzzy events

F = {(pa,va) ipa+va < lo},
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where y14,v4 are S-measurable functions, p14,v4 : Q — [0, 1], as a mapping m from the family
F to the set R by the formula

m ((114,v4)) :(1—04)/QNACZP+OK<1—/QVACZP),

where P : S — [0, 1] is a probability measure and « € [0, 1].

In paper [4] we defined the upper and the lower limits for sequence of intuitionistic fuzzy ob-
servables. We used an intuitionistic fuzzy state m for a definition the notion of almost everywhere
convergence. We compared two concepts of m-almost everywhere convergence.

In this paper we study the m-almost everywhere convergence of sequence of intuitionistic
fuzzy observables g, (z1, ..., x,) : B(R) — F given by

gn(xlu s )xn) - hn Ogrtlv

where h,, : B(R") — F is the joint intuitionistic fuzzy observable of intuitionistic fuzzy ob-
servables =1, ...,z, and g, : R — R is a Borel measurable function. We show the connection
between m-almost everywhere convergence of this sequence of intuitionistic fuzzy observables
and P-almost everywhere convergence of random variables in classical probability space induced
by Kolmogorov construction.

Remark. Note that in a whole text we use a notation “IF” in short as the phrase “intuitionistic
fuzzy.”

2 IF-events, IF-states and IF-observables

First we start with definitions of basic notions.

Definition 2.1. Let ) be a nonempty set. An IF-set A on ) is a pair (pa,va) of mappings
pa,va : Q — [0, 1] such that s +va < lg.

Definition 2.2. Start with a measurable space (), S). Hence S is a o-algebra of subsets of ().
An IF-event is called an IF-set A = (jua,v4) such that jia,v4 : Q@ — [0, 1] are S-measurable.

The family of all IF-events on (2, S) will be denoted by F, 14 : Q@ — [0, 1] will be called
the membership function, 4 : 2 — [0, 1] be called the non-membership function.

If A = (ua,va) € F,B = (up,vp) € F, then we define the Lukasiewicz binary operations
@, ® on F by

A®B = ((ppa+pus) Na, (va+ve —1g) VvV 0q)),
A OB = ((pa+pp — 1) V0q, (va+vp) Alg))

and the partial ordering is then given by

A§B<:>,MA§,U,B,VA2VB.
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In paper we use max-min connectives defined by
AVB = (uaVug,vaAvg),

AANB = (uaApug,vaVug)

and the de Morgan rules
(Vb)) =a"AND",

(aNb)" =a" Vb,
where a* =1 — a.
Example 2.3. Fuzzy set f : Q0 — [0, 1] can be regarded as IF-set, if we put
A= (f1la—f)
If f = x4, then the corresponding IF-set has the form
A = (xa,1o — xa) = (x4, x4)-

In this case A @ B corresponds to the union of sets, A ® B to the intersection of sets and < to
the set inclusion.

In the IF-probability theory [7, 9] instead of the notion of probability, we use the notion of
state.

Definition 2.4. Let F be the family of all IF-events in ). A mapping m : F — [0, 1] is called an
IF-state, if the following conditions are satisfied:

(i) m((1g,00)) =1, m((0g, 1)) = 0;
(ii) if A®B = (0q,1q) and A,B € F, then m(A & B) = m(A) + m(B);
(iii) lf An /‘ A (ie. KA, /l Ha, Va, \1 va), then m(An) /‘ m(A)

Probably the most useful result in the IF-state theory is the following representation theorem

([7D:

Theorem 2.5. To each IF-state m : F — |0, 1] there exists exactly one probability measure
P : S8 — |0, 1] and exactly one « € |0, 1] such that

m(A)=(1—-«) / padP + a(l — / yAdP)
0 Q
foreach A = (ua,v4) € F.

The third basic notion in the probability theory is the notion of an observable. Let 7 be the
family of all intervals in R of the form

la,0) ={r € R:a <z <b}.

Then the o-algebra o(J) is denoted B(R) and it is called the o-algebra of Borel sets, its elements
are called Borel sets.
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Definition 2.6. By an IF-observable on F we understand each mapping x : B(R) — F satisfying
the following conditions:

(i) z(R) = (1q,0q), (D) = (0g, 1a);
(ii) if AN B =0, then x(A) ® 2(B) = (0q, 1lq) and (AU B) = z(A) & z(B);
(iii) if A, N A, then x(A,) 7 x(A).

If we denote x(A) = (2°(A), 1o — 2*(A)) for each A € B(R), then 2°,2* : B(R) — T are
observables, where T = {f : Q@ — [0,1]; f is S — measurable}.

Remark 2.7. Sometimes we need to work with n-dimensional IF-observable x : B(R") — F
defined as a mapping with the following conditions:

(i) x(R") = (1q,0q), z(0) = (0q, 1q);
(ii) if ANB =10, A, B € B(R"), then z(A) ®xz(B) = (0q, 1q) and x(AUB) = z(A) & x(B);
(iii) if A, N A, then x(A,) /' x(A) for each A, A,, € B(R™).
If n = 1 we simply say that x is an IF-observable.
Similarly to the classical case, the following theorem can be proved ([9]).

Theorem 2.8. Let x : B(R) — F be an IF-observable, m : F — |0, 1] be an IF-state. Define
the mapping m,, : B(R) — |0, 1] by the formula

m,(C) = m(z(C)).

Then m, : B(R) — [0, 1] is a probability measure.

3 Product operation, joint IF-observable
and function of several IF-observables

In [5] we introduced the notion of product operation on the family of IF-events F and showed an
example of this operation.

Definition 3.1. We say that a binary operation - on F is product if it satisfying the following
conditions:

(i) (la,0q) - (a1,a2) = (a1, as) for each (a1, az) € F;

(ii) the operation - is commutative and associative;
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(iii) if (a1,a2) ® (b1, b2) = (0q, 1o) and (a1, az), (by,by) € F, then
(c1,¢2) - ((a17a2) D (bhbz)) = ((01702) : (a17a2)) D ((01,02) - (b1, 52))

and
((c1,¢2) - (a1,a2)) ® ((c1,¢2) - (br,b2)) = (0g, 1)
foreach (c1,c2) € F;

(ZV) l‘f (a1n7a2n) \( (OQa ]-Q): (blnaan) \1 <097 1Q) Clnd (a1n7a2n); (b1n7b2n) S F’ then
(alm @2n) : (blm an) N (OQ, 1Q)~

The following theorem provides an example of product operation for IF-events.

Theorem 3.2 ([5, Theorem 1]). The operation - defined by

(z1,91) - (v2,92) = (71 - T2, Y1 + Y2 — Y1 - Y2)
foreach (x1,11), (a9, y2) € F is product operation on F.
In [8] B. Riecan defined the notion of a joint IF-observable and proved its existence.

Definition 3.3. Let x,y : B(R) — F be two IF-observables. The joint IF-observable of the
IF-observables .,y is a mapping h : B(R?) — F satisfying the following conditions:

(i) h(R?) = (lg,0q), k(D) = (0a, 1),
(ii) if A, B € B(R?) and AN B =0, then

h(AU B) = h(A) @ h(B) and h(A) ® h(B) = (0g, 1g);

(iii) if A, Ay,... € B(R?) and A, /" A, then h(A,) /7 h(A);
(iv) h(C x D)= xz(C)-y(D) foreach C,D € B(R).

Theorem 3.4 ([8, Theorem 3.3]). For each two IF-observables x,y : B(R) — F there exists
their joint IF-observable.

Remark 3.5. The joint IF-observable of IF-observables x,y from Definition 3.3 is a two-dimen-

sional IF-observable.

If we have several IF-observables and a Borel measurable function, we can define the IF-
observable, which is the function of several [F-observables. Regarding this we provide the fol-

lowing definition.

Definition 3.6. Let x1,...,x, : B(R) — F be IF-observables, h,, their joint IF-observable and
gn : R" — R a Borel measurable function. Then we define the IF-observable g,(x1,...,x,) :
B(R) — F by the formula

gn(xla e 7xn)(A) = hy, (ggl(A))'

foreach A € B(R).
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4 Lower and upper limits, m-almost everywhere convergence

In [4] we defined the notions of lower and upper limits for a sequence of IF-observables and
showed the connection between two kinds of m-almost everywhere convergence.

Definition 4.1. We shall say that a sequence (x,,), of [F-observables has lim sup, if there exists
n—oo
an IF-observable T : B(R) — F such that

[ e SlNe o

oot =V Y A1)

p=1k=1n=k p

for everyt € R. We write T = lim sup x,,.
n—oo
Note that if another IF-observable vy satisfies the above condition, then m oy = m o 7.

Definition 4.2. A sequence (x,,), of IF-observables has lim inf, if there exists an IF-observable

n—oo
x such that
o o0 o0

2((=00,1) = \/ \ V(= 00t = 1))

p=1 k=1 n=k p

forallt € R. Notation: x = liminf x,,.

n—o0

Theorem 4.3 ( [4, Theorem 3.3]). The IF-observables T, x from Definition 4.1 and Definition 4.2
can be expressed in the following form

7(A) = (P(4). 10 - (),

2(4) = (£(4). 10 — 2°(4)).

for each A € B(R). Here 22, 2’ are upper and lower limits of sequence (°,)5° of observables
in tribe T and z%, 2* are upper and lower limits of sequence (%)% of observables in tribe T

(see [6]).

Proposition 4.1 ( [4, Proposition 3.1]). If a sequence of IF-observables (z,,),, has T = lim sup z,

n—oo
and x = lim inf x,,, then
n—oo

E((_007 t)) = g((—OO, t)),

foreveryt € R.

Proposition 4.2 ( [4, Proposition 4.1]). A sequence (x,), of an IF-observables converges m-
almost everywhere to 0 if and only if

foreveryt € R.
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In accordance to Proposition 4.2 we can extend the notion of m-almost everywhere conver-
gence in the following way.

Definition 4.4. A sequence (x,), of an IF-observables converges m-almost everywhere to an
IF-observable z, if

(VY A((2r=3))) = m(VAV((25))) -

= m(z((—00,1))),

Il
—
3
Il

~
N—

foreveryt € R.

S P-almost everywhere convergence

and m-almost everywhere convergence

The main result of this section is given in Theorem 5.1. The main step is presented in the follow-
ing proposition.
Recall, that the corresponding probability space is (RY, (C), P), where C is the family of all
sets of the form
{2t € Ay ity € Ant

and P is the probability measure determined by the equality
P({(tz)fil 1t € Al, ce ,tn S An}) = m(:z:l(Al) L ZEn(An))

The corresponding projections &, : RY — R are defined by the equality

gn((tz)fil) =tn.

Proposition 5.1. Let (x,,),, be a sequence of IF-observables, (&), the sequence of corresponding
projections, g, : R" — R be a Borel measurable functions (n = 1,2,...). Then

P({u e RN . limsupgn(&(u), . ,§n(u)) < t}) <

n—oo

m(§7§77\g<><(_m_%)))

P<{u eRY ¢ lminfg,(&(u), ..., &w) < t}) >

(VA Ve o0 1))

IN

v

1n
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Proof. We have
P({u e RV limsupgn(&(u), . ,fn(u)) < t}) =

n—oo

= (QUA e m o <0 1)) -

p=1k=1n=k

k+1i 1
- . . . -1 -1 . 2 _
= () (5 (5 (-1 1))) ) )

n==k
k+1 1
= g o st ()t (-0 1)

k+i 1
= lim lim lim m hk+,(mg ( — oo, t — —

p—+00 k—00 1—+00

lim lim lim m
Pp—00 k—00 1—+00

[\
Bl
=71
=
El
T
)
N
S
—
— A
VR
|
\‘H
|
==
~_
Il

n=k
k+i X
- l‘ 1' 1‘ . e —_ . —
pg&kl—g}ozi{&m n/_\kg”(xh ,an)(( 00715 p)))
oo o0 o0 1
- (Tt (D)
p=1k=1n=k D
The second inequality can be proved similarly. -

Theorem 5.1. Let (x,,),, be a sequence of IF-observables, (&), be the sequence of correspond-
ing projections, (g,)n be a sequence of Borel measurable functions g, : R" — R. If the se-
quence (gn (&1, ... ,§n))n converges P-almost everywhere, then the sequence (gn(xl, e ,xn))n

converges m-almost everywhere and

m(}jm sup gn (21, . . . ,xn)((—OQ t))> = m(lim inf g, (z1, ... ,:L‘n)((—OO, t)))

n—o0o n—o0

foreacht € R. Moreover

P({u € RY :limsup g, (& (u), ..., & (u) < t}) = m(limsupgn(xl, o ,:I;n)((—oo,t)))

n—00 n—oo
foreacht € R.
Proof. Let the sequence (gn(gl, . ,§n))n converges P-almost everywhere, then

p({u e RV . limsupgn(gl(u% e ’fn(u)) < t}> -
msu ey

— P({u € RY :timinf g, (&(w), .. &a(w) < t}).
Put

[e.ole o)

:p\/lk:“Z\kgn(xl,...,xn)((—oo,t—%)),
YAV s ((i 1))

=1 n=k
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and
Since ¢(t) < ¥(t), then

By Proposition 5.1 and (1) we obtain

m(y(t)) < P({u € RN : h,{g{,{}f (1) < t}) = P({u € RY : limsupn,(u) < t})

n—o0

Hence

and moreover

P({u € RY : limsupn,(u) < t}) =m(p(t)) = m(Y(t)).

n—o0

Denote the common value by

F(t) = P({u e RV - limsup . (u) < t}) — m(p(t)) = m(y(t).

n—oo

Since limsup,,_,., 7, is a random variable, then /' : R — [0, 1] is a distribution function. Evi-
dently

m(ywn)) — tim m(p(n)) = lim F(n) = 1,

n—o0 n—o0

m( K gp(—n)) = lim m(p(—n)) = lim F(—n) = 0.

n=1

Since m is faithful, we obtain
\/ @(n) = (10,00), /\ ¢(—n) = (0, 1q). ©)
n=1 n=1

Let t,  t. Evidently o(t,) < ¢(t), hence

V o) <

On the other hand to each p € N there exist j,q € N such that ( — oo, ¢ — }D) C (—oo,t;—1),

gn(xl,...,$n)((_oo>t_%)) §9n($1>-~a$n)((_oovtﬂ'_é))

and therefore

7ig<x>(( e IE /\gn aiseee i) (oot ) ) < olt) < V ol
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Since the relation holds for every k£ and p, we obtain
1 o0
<\ o).

— gn(iﬂl,---,ﬂ?n)((—oo?t—_
plk\z/ln/:\k: p =1
Hence .
(p(t) = \/ Qp(tj). 3)
j=1
= (10,00), A\,—, p(—n) = (0q, 1a),

Let us summarize: ¢ is non-decreasing, \/°_, ¢(n)

tn /" timplies o(t,) 7 o(t)
). Using max-min connectives V, A, the De Morgan rules and equality

ey

Put y,, = gn(z1,.
Yn(A) = (yn(A> 1o — yg(A)) we obtain
VV Ani=(VVAsa=V VA

p=1 k=1 n==k
for each A € B(R), where 1/, v : B(R) — T are observables. Put

)

Then
o(t) =

w0 = UV A=)
= (¢"(t), 1o — (1))

(10,00) = \/ ¢(n) = \/ (¢(n), 10 — ¢
< A (=n) 10— N\ soﬂ(—n))

n=1
(00,10) = A @(=n) = A\ (¢’(—n). 10 — ¢*(-n)) =
n=1 n=1 n=1 n=1
Hence

\ &) =1a, N\ ¢(-n) =00, )

n=1 n=1
\ ¢(n) =10, \ ¢*(—n) = 0q 5)
n=1 n=1

Since t,, * t implies
= @(tn) /() = (£°(t), 1o — H(1)),

(¢ (tn), 1o — ¢P(t,))
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then

Ot S Q1) (6)
lo — @' (tn) ¢ lo— @' (t) = &'(ta) 7 (1) (7)

For fixed w € (2 and arbitrary ¢t € R put

F(t) = & (t)(w), Fi(t) = ¢ (t)(w).

Evidently Ff}, F[B : R — [0, 1] are the non-decreasing functions and by (4), (6) and by (5), (7)
we obtain that F| F% are the distribution functions. Denote by A’ , A, the corresponding Stieltjes
probability measures and define 7°, 7" : B(R) — T by the equalities

7' (A)(w) = A(A), T(A)(w) = AL (A).
Then 7°, i are the observables and

7 (=00, 1)) (w) = N,((—o0,1)) = Fi(t) = " () (w), (8)
7 ((—00,t))(w) = A((—o00,t)) = F5(t) = o (t)(w), )

for each w € (2. Using Theorem 4.3 and (8), (9) we have that there exists IF-observable § =
lim sup,,_, y,, given by

5((—00,) = (7 ((=00,1)). 1o = F((—00,1) ) = (¢' (1), 1 = (1)) = (1),

The existence of IF-observable y = liminf,,, y,, = 1) can be proved similarly. Since m(p(t)) =

m(¢(t)), then
S

foreacht € R and by Definition 4.4 we have that (y,,), = (gn(z1, ..., 2n)) , converges m-almost
everywhere. Moreover

P({u € RY :limsupn,(u) < t}) = m(ﬂ((—oo,t)))

n—oo

foreacht € R. O]

6 Conclusion

The Theorem 5.1 is important for the proof of the Individual ergodic theorem in intuitionistic
fuzzy case, where we work with the sequence of several IF-observables induced by the Borel
function.
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